JPH08121758A - Combustion control device - Google Patents

Combustion control device

Info

Publication number
JPH08121758A
JPH08121758A JP25491794A JP25491794A JPH08121758A JP H08121758 A JPH08121758 A JP H08121758A JP 25491794 A JP25491794 A JP 25491794A JP 25491794 A JP25491794 A JP 25491794A JP H08121758 A JPH08121758 A JP H08121758A
Authority
JP
Japan
Prior art keywords
combustion
area
region
flame
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25491794A
Other languages
Japanese (ja)
Other versions
JP3041206B2 (en
Inventor
Kiyoyuki Kawato
清之 川戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6254917A priority Critical patent/JP3041206B2/en
Publication of JPH08121758A publication Critical patent/JPH08121758A/en
Application granted granted Critical
Publication of JP3041206B2 publication Critical patent/JP3041206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE: To reduce the exhaust volume of CO and reduce the production of dioxine by grasping the production timing of carbon monoxide at in a secondary combustion region from the image information of the combustion flame, and adjusting the volume of air to be fed to the secondary combustion region for combustion. CONSTITUTION: After a flame region is extracted from the image data by a photographing means 20 to photograph the combustion condition of a combustion part M by a first operating means C1, the image data are decomposed into the color elements of red, green and blue by a second operating means C2, and the intensity ratio of the blue element to the green element is operated and derived for each pixel, and the area of the high temperature region is extracted from the value. Then, the area ratio of the area of the flame region to that of the high temperature region is operated by a third operating means C3 to estimate the production timing of carbon monoxide. Generation of dioxine is effectively suppressed by adjusting the air volume for the secondary combustion by a control means 22 for the produced unburnt gas based on the production timing of CO estimated by a third operating means C3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼却炉の燃焼制御装置
に関し、特に、燃焼部等で生じた未燃ガスを完全燃焼化
する二次燃焼領域への二次燃焼用空気の供給量を調節す
る燃焼制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion control device for an incinerator, and more particularly, to a supply amount of secondary combustion air to a secondary combustion region for completely combusting unburned gas generated in a combustion section or the like. It relates to a combustion control device for adjusting.

【0002】[0002]

【従来の技術】一般に、二次燃焼領域への燃焼用空気の
供給量が不足したり、二次燃焼温度が低下すると不完全
燃焼が発生し、逆に二次燃焼領域への燃焼用空気の供給
量が過剰になると冷却効果により二次燃焼温度が低下し
て不完全燃焼が発生する。特にゴミ焼却炉では、一酸化
炭素の発生量と正の相関があるといわれているダイオキ
シンの発生を阻止するために、二次燃焼用空気の供給制
御が重要である。
2. Description of the Related Art Generally, when the amount of combustion air supplied to the secondary combustion region is insufficient or the secondary combustion temperature is lowered, incomplete combustion occurs, and conversely, the combustion air is not supplied to the secondary combustion region. If the supply amount becomes excessive, the cooling effect lowers the secondary combustion temperature and incomplete combustion occurs. Particularly in a refuse incinerator, in order to prevent the generation of dioxin, which is said to have a positive correlation with the amount of carbon monoxide generated, it is important to control the supply of secondary combustion air.

【0003】そのために、従来のゴミ焼却炉の燃焼制御
装置では、ばいじん等を除去する電気集塵機等の排ガス
処理装置の下流側にガスセンサを設置して、そのガスセ
ンサによる一酸化炭素の検出濃度に基づいて、二次燃焼
領域への燃焼用空気の供給量を調節する制御手段を設け
たものや、一定量の二次燃焼用空気を常に供給するよう
に構成したものがあった。
Therefore, in a conventional combustion control device for a refuse incinerator, a gas sensor is installed on the downstream side of an exhaust gas treatment device such as an electric dust collector for removing dust and the like, and based on the detected concentration of carbon monoxide by the gas sensor. Then, there are those which are provided with a control means for adjusting the supply amount of the combustion air to the secondary combustion region and those which are configured to always supply a constant amount of the secondary combustion air.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述の従来技
術、特に前者では、検出された一酸化炭素濃度が、二次
燃焼領域での燃焼時期から時間的にずれた値であるため
に、そのような値に基づいて制御すると二次燃焼用空気
の供給時期が遅れるために、ダイオキシンの発生を効果
的に阻止できるものではないという問題点があり、後者
では、常に一定量の二次燃焼用の空気を供給するため
に、一酸化炭素のダイナミックな発生に対応できないと
いう問題点があった。
However, in the above-mentioned prior art, particularly in the former case, the detected carbon monoxide concentration is a value that is temporally deviated from the combustion timing in the secondary combustion region. If control is performed based on such a value, the supply timing of the secondary combustion air will be delayed, so there is a problem that it is not possible to effectively prevent the generation of dioxins. However, there is a problem that it is not possible to cope with the dynamic generation of carbon monoxide in order to supply the air.

【0005】本発明の目的は上述した従来欠点を解消
し、二次燃焼部における一酸化炭素の発生時期を的確に
捕らえて、二次燃焼部への燃焼用空気の供給量を的確に
調節できる燃焼制御装置を提供することにより、ダイオ
キシン等の有害物質の発生を極力低減させる点にある。
The object of the present invention is to eliminate the above-mentioned conventional drawbacks, to accurately grasp the generation time of carbon monoxide in the secondary combustion section, and to precisely control the supply amount of combustion air to the secondary combustion section. By providing a combustion control device, the generation of harmful substances such as dioxins can be reduced as much as possible.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明による燃焼制御装置の特徴構成は、燃焼部に
おける燃焼状態を入力する撮像手段と、前記撮像手段に
よる画像データから火炎領域を抽出する第一演算手段
と、前記撮像手段による画像データを赤(R)緑(G)
青(B)の色成分に分解し、前記第一演算手段により抽
出された火炎領域における青(B)成分と緑(G)成分
の強度比(IB /IG )を画素毎に演算導出して、その
値から高温領域の面積(SH )を抽出する第二演算手段
と、前記第一演算手段により抽出された火炎領域の面積
(SF )と前記第二演算手段により抽出された高温領域
の面積(SH )の面積比(SH /SF )を演算導出し、
演算結果から一酸化炭素の発生時期を推定する第三演算
手段と、前記第三演算手段による推定結果に基づいて、
発生した未燃ガスに対して二次燃焼用空気の供給量を調
節する制御手段22とからなる点にある。
To achieve this object, the combustion control device according to the present invention is characterized in that an image pickup means for inputting a combustion state in a combustion section and a flame region is extracted from image data obtained by the image pickup means. Image data obtained by the first calculation means and the image pickup means are red (R) green (G)
Decomposed into color components of blue (B), calculated and derived blue in the flame region extracted by the first computing means (B) component and green (G) component intensity ratio (I B / I G) for each pixel Then, the second calculation means for extracting the area (S H ) of the high temperature region from the value, the area (S F ) of the flame region extracted by the first calculation means and the second calculation means area ratio of the area (S H) of the high-temperature region (S H / S F) was calculated and derived,
Based on the estimation result by the third calculation means for estimating the generation time of carbon monoxide from the calculation result, and the third calculation means,
The control means 22 adjusts the supply amount of the secondary combustion air with respect to the generated unburned gas.

【0007】上述の構成において、前記制御手段は、バ
ーナ機構による未燃ガスの加熱量を調節するものである
ことが好ましい。
In the above structure, it is preferable that the control means adjusts the heating amount of the unburned gas by the burner mechanism.

【0008】さらに、前記第三演算手段は、前記高温領
域の面積(SH )又は前記面積比(SH /SF )が所定
時間にわたり設定値以下となるとき、又は、前記高温領
域の面積(SH )又は前記面積比(SH /SF )の減少
率が設定値以上となった時に、一酸化炭素の発生時期で
あると推定するものであることが好ましい。
Further, the third calculation means is used when the area ( SH ) of the high temperature area or the area ratio ( SH / SF ) is below a set value for a predetermined time, or the area of the high temperature area. It is preferable to estimate that it is the time of generation of carbon monoxide when the reduction rate of ( SH ) or the area ratio ( SH / SF ) becomes equal to or greater than a set value.

【0009】[0009]

【作用】一般に、物体は、約1000K以上の温度で
は、目で見える量の可視光を放射しており、その温度が
上昇すると最初に赤、次に黄、緑、青、最後に紫という
具合に光のエネルギー、スペクトルに新しい色の部分が
付け加わる。従って、燃焼火炎の各波長毎の強度比を求
めることにより、局所的な高温燃焼部位と低温燃焼部位
の客観的な判別が可能となる。そこで、第二演算手段
は、撮像手段による画像データを赤(R)緑(G)青
(B)の色成分に分解し、背景の影響等を含む赤(R)
成分を除き、第一演算手段により炎領域として抽出され
た領域の各画素毎に、青(B)成分と緑(G)成分の強
度比(IB /IG )を演算導出して、その値が所定の閾
値より大なる値を示す画素を高温領域としてその面積
(SH )を抽出するのである。尚、第一演算手段による
火炎領域の抽出は、輝度データを二値化してもよいし、
任意の色成分を所定の閾値で二値化するものであっても
よい。
In general, an object emits a visible amount of visible light at a temperature of about 1000 K or higher, and when the temperature rises, first red, then yellow, green, blue, and finally purple. To the energy of light, a new color part is added to the spectrum. Therefore, by determining the intensity ratio of each wavelength of the combustion flame, it is possible to objectively discriminate between the local high temperature combustion portion and the local low temperature combustion portion. Therefore, the second calculation means decomposes the image data obtained by the image pickup means into color components of red (R) green (G) blue (B), and red (R) including the influence of the background and the like.
Except for components, for each pixel of the extracted region as the flame region by the first computing means, and blue (B) component and green (G) component intensity ratio of the (I B / I G) was calculated and derived, the The area ( SH ) is extracted by setting a pixel having a value larger than a predetermined threshold value as a high temperature area. Incidentally, the extraction of the flame area by the first calculation means, the brightness data may be binarized,
It is also possible to binarize any color component with a predetermined threshold value.

【0010】第三演算手段は、第一演算手段により抽出
された炎領域の面積(SF )と第二演算手段により抽出
された高温領域の面積(SH )の面積比(SH /SF
を演算導出して、演算結果から燃焼火炎の全体的な燃焼
状態、つまり燃焼温度の高低を把握して、燃焼温度が低
ければ炉内温度の低下により一酸化炭素の完全燃焼化が
阻害される状態にあると推定する。具体的には、前記面
積比(SH /SF )が所定時間にわたり設定値以下とな
るときに、火炎温度の低下、つまり炉内温度の低下によ
り不完全燃焼が生じ、又は、前記面積比(SH /SF
の減少率が設定値以上となった時に、酸素不足により不
完全燃焼が生じて、一酸化炭素の発生量が増す時期であ
ると推定する。
The third calculating means is an area ratio (S H / S) of the area of the flame region (S F ) extracted by the first calculating means and the area of the high temperature region (S H ) extracted by the second calculating means. F )
Is calculated and the overall combustion state of the combustion flame, that is, the level of the combustion temperature is grasped from the calculation result, and if the combustion temperature is low, the complete combustion of carbon monoxide is hindered due to the decrease in the furnace temperature. Presumed to be in a state. Specifically, when the area ratio (S H / S F ) is below a set value for a predetermined time, incomplete combustion occurs due to a decrease in flame temperature, that is, a decrease in furnace temperature, or the area ratio (S H / S F )
It is presumed that it is the time when the amount of carbon monoxide generated increases due to incomplete combustion due to lack of oxygen when the decrease rate of is above the set value.

【0011】例えば、図5に示すように、焼却炉におけ
る午前10時から11時における排ガス中の一酸化炭素
濃度と、燃焼火炎の面積比(SH /SF )との関係を計
測すると、図6に示すように、面積比(SH /SF )が
小となる時期、面積比(SH/SF )の減少率が大なる
時期が一酸化炭素の発生時期と重なるのである。
For example, as shown in FIG. 5, when the relationship between the carbon monoxide concentration in the exhaust gas from 10 am to 11 am in the incinerator and the area ratio (S H / S F ) of the combustion flame is measured, as shown in FIG. 6, timing where the area ratio (S H / S F) is small, the time in which the reduction rate of the area ratio (S H / S F) is large is to overlap with the generation timing of the carbon monoxide.

【0012】制御手段は、前記第三演算手段による推定
結果に基づいて、一酸化炭素の発生量が増す時期に、発
生した未燃ガスに対して二次燃焼用空気の供給量を増し
て、未燃ガスと酸素との攪拌を促すことにより、一酸化
炭素の完全燃焼化を促進するのである。その際に、二次
燃焼領域に設けたバーナ機構により未燃ガスを加熱すれ
ば、炉内温度の低下に抗して一酸化炭素の燃焼に必要な
二次燃焼温度を確保して完全燃焼化が促進できるのであ
る。
The control means increases the supply amount of the secondary combustion air with respect to the unburned gas generated based on the estimation result of the third calculation means at the time when the generation amount of carbon monoxide increases. By promoting stirring of unburned gas and oxygen, the complete combustion of carbon monoxide is promoted. At that time, if the unburned gas is heated by the burner mechanism provided in the secondary combustion region, the secondary combustion temperature necessary for the combustion of carbon monoxide is secured against the decrease in the temperature inside the furnace and complete combustion is achieved. Can be promoted.

【0013】[0013]

【発明の効果】従って本発明によれば、二次燃焼領域に
おける一酸化炭素の発生時期を燃焼火炎の画像情報から
捕らえて、二次燃焼領域への燃焼用空気の供給量を的確
に調節し、一酸化炭素の排出量の低減、ひいてはダイオ
キシンの発生を低減しうる燃焼制御装置を提供すること
ができるようになった。
Therefore, according to the present invention, the generation timing of carbon monoxide in the secondary combustion region is grasped from the image information of the combustion flame, and the supply amount of the combustion air to the secondary combustion region is accurately adjusted. Thus, it has become possible to provide a combustion control device that can reduce the emission amount of carbon monoxide, and thus the generation of dioxin.

【0014】[0014]

【実施例】以下に、本発明の燃焼制御装置の実施例を説
明する。ゴミ焼却炉は、図4に示すように、被焼却物で
ある都市ゴミを受け入れるホッパ3と、前記ホッパ3内
のゴミを下端部から炉内に投入するプッシャ4と、前記
プッシャ4により投入されたゴミを攪拌搬送しながら焼
却処理するストーカ式の焼却処理帯5を設け、その底部
から一次燃焼用の空気を供給する空気供給手段6を設け
て構成してある。
EXAMPLES Examples of the combustion control device of the present invention will be described below. As shown in FIG. 4, the refuse incinerator is loaded by a hopper 3 that receives city refuse that is an object to be incinerated, a pusher 4 that throws the dust in the hopper 3 into the furnace from the lower end, and a pusher 4 that is pushed by the pusher 4. A stoker-type incineration zone 5 for incinerating waste while stirring and transporting it is provided, and an air supply means 6 for supplying air for primary combustion from the bottom thereof is provided.

【0015】前記焼却処理帯5は、固定の火格子(図示
せず)に対して斜め上方に往復移動する可動の火格子
(図示せず)を搬送方向に沿って交互に配する油圧駆動
式のストーカ機構により、ゴミを乾燥させつつ搬送する
乾燥帯L、燃焼させつつ搬送する燃焼帯M、灰化処理し
つつ搬送する後燃焼帯Nとから構成してあり、前記可動
の火格子の往復サイクルを可変とすることでゴミの搬送
速度を調節自在に構成してある。
The incineration zone 5 is a hydraulically driven type in which movable grate (not shown) that reciprocates obliquely upward with respect to a fixed grate (not shown) is arranged alternately along the transport direction. The stoker mechanism includes a dry zone L for transporting dust while drying it, a combustion zone M for transporting while burning dust, and a post-combustion zone N for transporting while performing ashing treatment. By making the cycle variable, the transport speed of dust is adjustable.

【0016】前記空気供給手段6は、ブロアファン6a
による誘引空気を、前記乾燥帯L、燃焼帯M、後燃焼帯
Nそれぞれの下方に各別に設けた風箱6cに送風路6b
を介して供給するように構成してあり、送風路6bの各
風箱6cへの出口側にダンパ機構6dを設けて、送風量
を調節自在に構成してある。
The air supply means 6 is a blower fan 6a.
The air drawn by the blower 6b is sent to the air box 6c separately provided below the drying zone L, the combustion zone M, and the post combustion zone N, respectively.
The air flow rate is adjustable by providing a damper mechanism 6d on the outlet side of the air flow path 6b to each air box 6c.

【0017】前記焼却処理帯5の上部を、ゴミを直接に
焼却処理する一次燃焼領域1に構成し、さらにその上方
空間に形成した煙道を、燃焼ガスを完全燃焼させる二次
燃焼領域2に構成してあり、前記煙道入口側に二次燃焼
用空気供給機構13としてのノズル13aを設けて、ブ
ロアファン13bからの誘引空気をダンパ機構13cを
介して前記煙道に供給するとともに、前記煙道内の燃焼
ガスを加熱するバーナ機構14を設けてある。
The upper part of the incineration zone 5 is constructed as a primary combustion zone 1 for directly incinerating refuse, and a flue formed in the upper space thereof is made a secondary combustion zone 2 for completely burning combustion gas. The nozzle 13a as the secondary combustion air supply mechanism 13 is provided on the flue inlet side to supply the induced air from the blower fan 13b to the flue through the damper mechanism 13c. A burner mechanism 14 for heating the combustion gas in the flue is provided.

【0018】前記二次燃焼領域2の下流側の空間に燃焼
排ガスの熱エネルギーを回収する廃熱ボイラ12を設け
て燃焼により生じた熱量を蒸気として発電装置11に供
する一方、さらに下流につながる排ガス路7から煙突1
0に至る流路途中にバグフィルタ8、洗煙装置9等でな
る排ガス処理装置を設けてある。
A waste heat boiler 12 for recovering the thermal energy of combustion exhaust gas is provided in the space on the downstream side of the secondary combustion region 2 to supply the heat amount generated by combustion to the power generator 11 as steam, while the exhaust gas connected further downstream. Road 7 to chimney 1
An exhaust gas treatment device including a bag filter 8 and a smoke washing device 9 is provided in the middle of the flow path reaching 0.

【0019】図1及び図4に示すように、前記焼却処理
帯5の下流側の側壁中央上部に、前記燃焼帯Mにおける
燃焼状態を撮影入力する撮像手段20としてのカラーC
CDカメラを設け、その撮像手段20による入力画像デ
ータから前記燃焼帯Mにおけるゴミの燃焼状態を判断す
るマイクロコンピュータ利用の画像処理手段21を設け
て燃焼状態検出装置を構成してある。即ち、燃焼帯Mが
燃焼部となる。
As shown in FIGS. 1 and 4, in the upper center of the side wall on the downstream side of the incineration zone 5, a color C as an image pickup means 20 for photographing and inputting the combustion state in the combustion zone M.
A CD camera is provided, and an image processing means 21 using a microcomputer for judging the combustion state of dust in the combustion zone M from the image data input by the image pickup means 20 is provided to constitute a combustion state detection device. That is, the combustion zone M becomes the combustion section.

【0020】画像処理手段21は、図1に示すように、
撮像手段20から入力された画像データを赤(R)緑
(G)青(B)の色成分に分解し、緑(G)成分の画像
データから炎領域を抽出する第一演算手段C1と、前記
第一演算手段C1により抽出された炎領域における青
(B)成分と緑(G)成分の強度比を演算導出して、そ
の値から高温領域の面積を抽出する第二演算手段C2
と、前記第一演算手段C1により抽出された炎領域の面
積と前記第二演算手段C2により抽出された高温領域の
面積の面積比を演算導出して、その値から前記燃焼帯M
における燃焼状態を評価する第三演算手段C3とからな
る。
The image processing means 21, as shown in FIG.
First computing means C1 for decomposing the image data input from the imaging means 20 into red (R) green (G) blue (B) color components and extracting a flame region from the green (G) component image data; Second calculating means C2 for calculating and deriving the intensity ratio of the blue (B) component and the green (G) component in the flame area extracted by the first calculating means C1 and extracting the area of the high temperature area from the calculated value.
And the area ratio of the area of the flame region extracted by the first calculating means C1 to the area of the high temperature region extracted by the second calculating means C2, and the combustion zone M is calculated from the calculated value.
The third calculation means C3 for evaluating the combustion state in

【0021】以下、図3に示すフローチャートに基づい
て詳述する。撮像手段20から入力された画像データを
赤(R)緑(G)青(B)の色成分に分解すると、図2
(イ)、(ロ)に示すように、各画素毎に赤(R)緑
(G)青(B)の強度データが得られる<#1>。一般
に、物体は約1000K以上の温度では、目で見える量
の可視光を放射しており、その温度が上昇すると最初に
赤、次に黄、緑、青、最後に紫という具合に光のエネル
ギー、スペクトルに新しい色の部分が付け加わる。燃焼
部、つまり、焼却炉における燃焼帯Mに対して、撮像手
段20により得られた画像データには、火炎部分以外に
側壁やゴミ自身のデータも含まれ、それらの部位の温度
や反射光による色成分が混在するため、火炎のみを正確
に抽出するためには、比較的低温部位を示す赤(R)成
分を参照しない方が好ましい。一方、青(B)成分は、
火炎温度に応じて大きく変動するので、この成分のみに
より炎の領域を特定するのも好ましくない。そこで、前
記第一演算手段C1は、緑(G)成分の強度データが所
定の閾値G Thより大なる画素を炎領域に対応する画素、
即ち、面積(SF )として抽出する<#2>,<#3
>。ここに、閾値は特に限定するものではなく、炉の規
模や運転条件により適宜設定すればよい。
Hereinafter, based on the flowchart shown in FIG.
Will be described in detail. The image data input from the image pickup means 20
When decomposed into red (R) green (G) blue (B) color components, FIG.
As shown in (a) and (b), red (R) green for each pixel
(G) Intensity data of blue (B) is obtained <# 1>. General
In addition, the temperature of the object is about 1000K
Emits visible light, and when its temperature rises
The energy of light is red, then yellow, green, blue, and finally purple.
Gee, a new color part is added to the spectrum. combustion
Part, that is, the imaging zone for the combustion zone M in the incinerator.
In the image data obtained by the step 20, other than the flame part,
The temperature of those parts is also included, including the data of the side walls and the dust itself.
Accurate flame only because color components due to
In order to extract into
It is preferable not to refer to the minutes. On the other hand, the blue (B) component is
Since it greatly fluctuates according to the flame temperature, only this component
It is also unfavorable to specify the area of flame more. So before
Note that the first computing means C1 stores the intensity data of the green (G) component.
Constant threshold G ThThe larger pixel corresponds to the flame area,
That is, the area (SF<# 2>, <# 3>
>. Here, the threshold value is not particularly limited, and the standard of the furnace is
It may be set appropriately depending on the model and operating conditions.

【0022】前記第二演算手段C2は、前記第一演算手
段C1により抽出された火炎領域における青(B)成分
と緑(G)成分の強度比(IB /IG )を演算導出し
て、その値が所定の閾値以上となる画素を高温領域の面
積(SH )として抽出する<#4>,<#5>。
[0022] The second calculating means C2 is, the intensity ratio of the first calculating means and blue in the flame region extracted by C1 (B) component and green (G) component (I B / I G) was calculated and derived , And the pixels whose values are equal to or greater than a predetermined threshold are extracted as the area ( SH ) of the high temperature region <# 4>, <# 5>.

【0023】前記第三演算手段C3は、前記第一演算手
段C1により抽出された炎領域の面積(SF )と前記第
二演算手段C2により抽出された高温領域の面積
(SH )の面積比(SH /SF )を演算導出して、その
値からから燃焼火炎の全体的な燃焼状態、つまり燃焼温
度の高低を間接的ながらも迅速に把握して、一酸化炭素
の完全燃焼化が阻害される状態にあるか否かを推定する
<#6>,<#7>。つまり、前記第三演算手段C3
は、前記面積比(SH /SF )が所定時間にわたり設定
値以下となるときに、火炎温度の低下、つまり炉内温度
の低下により不完全燃焼が生じ、又は、前記面積比(S
H /SF )の減少率が設定値以上となった時に、酸素不
足により不完全燃焼が生じて、一酸化炭素の発生量が増
す時期であると推定するものである。
The area of the flame region (S F ) extracted by the first operation unit C1 and the area of the high temperature region (S H ) extracted by the second operation unit C2 are applied to the third operation unit C3. The ratio (S H / S F ) is calculated and derived, and from that value the overall combustion state of the combustion flame, that is, the high and low combustion temperatures, is indirectly and quickly grasped, and complete combustion of carbon monoxide is achieved. <# 6>, <# 7> for estimating whether or not the state is inhibited. That is, the third computing means C3
Means that when the area ratio (S H / S F ) becomes lower than a set value for a predetermined time, incomplete combustion occurs due to a decrease in flame temperature, that is, a decrease in furnace temperature, or the area ratio (S
It is presumed that it is the time when the amount of carbon monoxide generated increases due to incomplete combustion due to lack of oxygen when the rate of decrease of H 2 / SF ) is above the set value.

【0024】コンピュータ利用の制御手段22は、前記
第三演算手段C3による推定結果に基づいて、前記二次
燃焼用空気供給機構13のダンパ機構13cを調節して
前記煙道への二次燃焼用空気の供給量を調節する<#8
>。
The computer-based control means 22 adjusts the damper mechanism 13c of the secondary combustion air supply mechanism 13 on the basis of the estimation result by the third computing means C3 to perform the secondary combustion to the flue. Adjusting the air supply <# 8
>.

【0025】例えば、前記面積比(SH /SF )が0.
15(15%)以下となる時間が5分以上続く時、又
は、前記面積比(SH /SF )の減少率が15パーセン
ト以上となる時に、前記ダンパ機構13cのダンパ開度
を大に設定して空気供給量を増加して酸素と一酸化炭素
の攪拌を促し、前記煙道での完全燃焼を促進して燃焼温
度を上昇させることにより一酸化炭素の完全燃焼化を促
進する。ここに、二次燃焼用空気の増加量は特に限定す
るものではなく、炉の規模や形状等に基づいて適宜設定
すればよい。
For example, the area ratio ( SH / SF ) is 0.
When the time of 15 (15%) or less continues for 5 minutes or more, or when the reduction rate of the area ratio ( SH / SF ) is 15% or more, the damper opening of the damper mechanism 13c is increased. It is set to increase the air supply amount to promote the stirring of oxygen and carbon monoxide, promote complete combustion in the flue and raise the combustion temperature to promote complete combustion of carbon monoxide. Here, the increase amount of the secondary combustion air is not particularly limited, and may be appropriately set based on the scale and shape of the furnace.

【0026】ここに、制御手段22による空気供給量や
搬送速度の制御方式は、特に限定するものではなく、P
ID制御方式、ファジィ制御、その他AI制御方式等適
宜公知の方式を用いることができる。即ち、前記撮像手
段20と前記画像処理手段21と前記制御手段22とで
燃焼制御装置が構成される。
Here, the control method of the air supply amount and the conveyance speed by the control means 22 is not particularly limited, and P
A well-known method such as an ID control method, a fuzzy control method, or an AI control method can be appropriately used. That is, the image pickup means 20, the image processing means 21, and the control means 22 constitute a combustion control device.

【0027】以下に別実施例を説明する。先の実施例で
は、面積比(SH /SF )を基準に一酸化炭素の発生時
期を判断するものを説明したが、面積比ではなく、高温
領域の面積(SH )を基準に判断するものであってもよ
い。
Another embodiment will be described below. In the above embodiment, the case where the generation time of carbon monoxide is determined based on the area ratio ( SH / SF ) has been described, but it is determined based on the area of the high temperature region ( SH ) instead of the area ratio. It may be one that does.

【0028】先の実施例では、前記第一演算手段C1
を、緑(G)成分の強度データが所定の閾値GThより大
なる画素を火炎領域に対応する画素、即ち、面積
(SF )として抽出するように構成したものを説明した
が、これに限定するものではなく、単にモノトーン画像
としての輝度データを所定の閾値で二値化して、火炎領
域を抽出するように構成してもよく、赤(R)成分の強
度データを所定の閾値で二値化して、火炎領域を抽出す
るように構成してもよい。
In the previous embodiment, the first computing means C1
In the above description, the pixel in which the intensity data of the green (G) component is larger than the predetermined threshold value G Th is extracted as the pixel corresponding to the flame region, that is, the area (S F ). The present invention is not limited to this, and the luminance data as a monotone image may be binarized with a predetermined threshold value to extract the flame region, and the intensity data of the red (R) component may be binarized with a predetermined threshold value. It may be configured so as to be binarized to extract the flame region.

【0029】先の実施例では、前記第三演算手段C3
は、前記面積比(SH /SF )が0.15(15%)以
下となる時間が5分以上続く時、又は、前記面積比(S
H /S F )の減少率が15パーセント以上となる時に、
酸素不足により不完全燃焼が生じて、一酸化炭素の発生
量が増す時期であると推定するものを説明したが、これ
らの数値は特に限定するものではなく、炉の規模や形
状、ゴミ質等により適宜設定可能なものである。
In the above embodiment, the third calculating means C3 is used.
Is the area ratio (SH/ SF) Is 0.15 (15%) or less
When the lowering time continues for 5 minutes or more, or the area ratio (S
H/ S FWhen the reduction rate of) becomes 15% or more,
Carbon monoxide is generated due to incomplete combustion due to lack of oxygen
I explained what is supposed to be the time when the amount increases, but this
These numbers are not particularly limited, and the scale and shape of the furnace
It can be appropriately set according to the shape, the quality of dust, and the like.

【0030】バーナ機構14の点火時期又は燃焼温度に
ついては、上述したものの他、前記画像処理手段21
に、ゴミが気体燃焼から固体燃焼に移る燃え切り点を検
出する燃え切り点演算手段を設けてゴミ切れ傾向である
燃え切り位置が上流側にあるときに点火し、又は燃焼温
度を上昇させるよう調節するものであってもよい。
Regarding the ignition timing or the combustion temperature of the burner mechanism 14, in addition to the above, the image processing means 21
In addition, a burn-out point calculation means for detecting the burn-off point at which dust moves from gas combustion to solid combustion is provided to ignite or raise the combustion temperature when the burn-off position where dust tends to run out is on the upstream side. It may be adjusted.

【0031】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】要部の斜視図FIG. 1 is a perspective view of a main part.

【図2】入力画像データの特性図FIG. 2 is a characteristic diagram of input image data.

【図3】フローチャートFIG. 3 Flow chart

【図4】ゴミ焼却炉の概略構成図[Fig. 4] Schematic configuration diagram of a refuse incinerator

【図5】計測結果の説明図FIG. 5 is an explanatory diagram of measurement results.

【図6】計測結果の説明図FIG. 6 is an explanatory diagram of measurement results.

【符号の説明】[Explanation of symbols]

20 撮像手段 22 制御手段 C1 第一演算手段 C2 第二演算手段 C3 第三演算手段 M 燃焼部 20 image pickup means 22 control means C1 first calculation means C2 second calculation means C3 third calculation means M combustion section

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃焼部(M)における燃焼状態を入力す
る撮像手段(20)と、 前記撮像手段(20)による画像データから火炎領域を
抽出する第一演算手段(C1)と、 前記撮像手段(20)による画像データを赤(R)緑
(G)青(B)の色成分に分解し、前記第一演算手段
(C1)により抽出された火炎領域における青(B)成
分と緑(G)成分の強度比(IB /IG )を画素毎に演
算導出して、その値から高温領域の面積(SH )を抽出
する第二演算手段(C2)と、 前記第一演算手段(C1)により抽出された火炎領域の
面積(SF )と前記第二演算手段(C2)により抽出さ
れた高温領域の面積(SH )の面積比(SH /SF )を
演算導出し、演算結果から一酸化炭素の発生時期を推定
する第三演算手段(C3)と、 前記第三演算手段(C3)による推定結果に基づいて、
発生した未燃ガスに対して二次燃焼用空気の供給量を調
節する制御手段(22)とからなる燃焼制御装置。
1. An image pickup means (20) for inputting a combustion state in a combustion section (M), a first calculation means (C1) for extracting a flame region from image data obtained by the image pickup means (20), and the image pickup means. The image data obtained by (20) is decomposed into red (R) green (G) blue (B) color components, and the blue (B) component and green (G) in the flame region extracted by the first calculation means (C1). ) intensity ratio of component (I B / I G) was calculated and derived for each pixel, the area of the high-temperature region from that value (second calculating means for extracting the S H) (C2), said first calculation means ( The area ratio (S H / S F ) between the area (S F ) of the flame area extracted by C1) and the area (S H ) of the high temperature area extracted by the second operation means (C2) is calculated and derived, A third calculation means (C3) for estimating the generation time of carbon monoxide from the calculation result; Based on the estimation result by the calculation means (C3),
A combustion control device comprising a control means (22) for adjusting the supply amount of secondary combustion air with respect to the generated unburned gas.
【請求項2】 前記制御手段(22)は、バーナ機構
(14)による未燃ガスの加熱量を調節するものである
請求項1記載の燃焼制御装置。
2. The combustion control device according to claim 1, wherein the control means (22) adjusts a heating amount of the unburned gas by the burner mechanism (14).
【請求項3】 前記第三演算手段(C3)は、前記高温
領域の面積(SH )又は前記面積比(SH /SF )が所
定時間にわたり設定値以下となるとき、又は、前記高温
領域の面積(SH )又は前記面積比(SH /SF )の減
少率が設定値以下となった時に、一酸化炭素の発生時期
であると推定するものである請求項1又は2記載の燃焼
制御装置。
3. The third computing means (C3) is configured to operate when the area (S H ) or the area ratio (S H / S F ) of the high temperature region is below a set value for a predetermined time, or when the high temperature 3. The carbon monoxide generation time is estimated when the reduction rate of the area ( SH ) or the area ratio ( SH / SF ) becomes less than a set value. Combustion control device.
JP6254917A 1994-10-20 1994-10-20 Combustion control device Expired - Fee Related JP3041206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6254917A JP3041206B2 (en) 1994-10-20 1994-10-20 Combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6254917A JP3041206B2 (en) 1994-10-20 1994-10-20 Combustion control device

Publications (2)

Publication Number Publication Date
JPH08121758A true JPH08121758A (en) 1996-05-17
JP3041206B2 JP3041206B2 (en) 2000-05-15

Family

ID=17271658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6254917A Expired - Fee Related JP3041206B2 (en) 1994-10-20 1994-10-20 Combustion control device

Country Status (1)

Country Link
JP (1) JP3041206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801527A (en) * 2018-03-02 2020-10-20 普莱克斯技术有限公司 Flame image analysis for furnace combustion control

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801527A (en) * 2018-03-02 2020-10-20 普莱克斯技术有限公司 Flame image analysis for furnace combustion control
JP2021515173A (en) * 2018-03-02 2021-06-17 プラクスエア・テクノロジー・インコーポレイテッド Flame image analysis for furnace combustion control
CN111801527B (en) * 2018-03-02 2023-01-24 普莱克斯技术有限公司 Flame image analysis for furnace combustion control

Also Published As

Publication number Publication date
JP3041206B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
JP6465351B2 (en) Grate-type waste incinerator and waste incineration method
JPH08121757A (en) Combustion control device
JP3041206B2 (en) Combustion control device
JPH08100916A (en) Combustion controller
JPH08178247A (en) Method of detecting nature of refuse in incinerator
JPH0894055A (en) Combustion controller
JP3467751B2 (en) Detection method of combustion position and burn-off point position in refuse incinerator
JP7397627B2 (en) Incineration plant and its combustion control method
JP3669781B2 (en) Combustion control method for garbage incinerator
JP2001004116A (en) Method and apparatus for controlling combustion in incinerator
JP3825148B2 (en) Combustion control method and apparatus in refuse incinerator
JP3121204B2 (en) Combustion state detector
JP3669778B2 (en) Combustion control device for garbage incinerator
JPH10253031A (en) Combustion controller for incinerator
JP3669779B2 (en) Combustion control device for garbage incinerator
JP4230925B2 (en) Calorific value estimation device, calorific value estimation method, and combustion control device
JP3534562B2 (en) Combustion control method and combustion control device
JP2889833B2 (en) Measurement method of combustion flame of garbage incinerator
JP3315036B2 (en) Combustion control device of garbage incinerator
JP2800871B2 (en) Incinerator combustion control device
JP3173963B2 (en) Garbage incineration equipment
JPS6136612A (en) Combustion control of refuse incinerator
JP7516963B2 (en) Information processing device and information processing method
JP2889117B2 (en) Garbage incinerator
JP2955436B2 (en) Method of detecting moisture content of garbage in garbage incinerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees