JPH08113619A - Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin - Google Patents

Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin

Info

Publication number
JPH08113619A
JPH08113619A JP25319194A JP25319194A JPH08113619A JP H08113619 A JPH08113619 A JP H08113619A JP 25319194 A JP25319194 A JP 25319194A JP 25319194 A JP25319194 A JP 25319194A JP H08113619 A JPH08113619 A JP H08113619A
Authority
JP
Japan
Prior art keywords
resin
polyester resin
thermosetting polyester
decomposition
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25319194A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yamagata
芳和 山縣
Takahiko Terada
貴彦 寺田
Hiroshi Onishi
宏 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25319194A priority Critical patent/JPH08113619A/en
Publication of JPH08113619A publication Critical patent/JPH08113619A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE: To obtain a thermosetting polyester resin which can be easily decomposed when disposed of and to provide a method for decomposing the resin. CONSTITUTION: This resin is the one comprising an unsaturated polyester and styrene in an amount to give a molar ratio to the unsaturations of the polyester of 1.3-2.5 or comprises these two components and at least one member selected from between a polycaprolactonediol and a polycaprolactonetriol. To decompose this resin, it is immersed in a solution containing at least a base and a hydrophilic solvent. When a molded motor formed by using this resin as the molding resin or a semiconductor element sealed with this resin is disposed of, the inner valuables can be recovered by easily decomposing the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱硬化性ポリエステル
樹脂、同樹脂を用いたモールドモータ、樹脂封止半導体
素子、および熱硬化性ポリエステル樹脂の分解処理方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosetting polyester resin, a molded motor using the resin, a resin-sealed semiconductor element, and a method for decomposing a thermosetting polyester resin.

【0002】[0002]

【従来の技術】熱硬化型のポリエステル樹脂は、構造が
一次元である熱可塑性樹脂と異なり、三次元的な複雑な
構造を持っており、1930年代に誕生して以来、建築
関係、自動車関係、電気産業関係など幅広い分野に使用
されてきた。樹脂単独で利用されるよりも複合材料とし
て使用される場合が多く、ガラス繊維や炭素繊維、有機
繊維等の補強材を添加した繊維強化プラスチックスや炭
酸カルシウム、カオリン、水酸化アルミニウム、タル
ク、マイカ等のフィラーを添加した粒子分散型の複合材
料などがある。熱硬化性ポリエステル樹脂の用途として
は、大きく分けて積層品と注型品がある。積層品として
は、建築関係では波板、平板、床材、壁材、浴槽、便
槽、水槽、洗面台等、船舶関係ではヨット、ボート、カ
ヌー、漁船、水中翼船等、自動車関係では自動車ボデ
ィ、エアスポイラー、キャンピングトレラー等、鉄道関
係では客車、コンテナー、寝台、タンク類等、航空機関
係ではレーダードーム、プロペラ、補助翼、グライダー
等、鉱業・化学工業関係ではパイプ、タンク類、反応槽
等、電気産業関係では各種絶縁板、プリント基板、配電
盤、ケース類、モータ、トランス封止、VTR、オーデ
ィオ製品等、その他では椅子、机、トランク、ヘルメッ
ト、サーフボード、スノーボード等に使用される。注型
品としては、土木建築関係では人造大理石、タイル、ド
ア、パイプ、モルタルコンクリート等、電気・通信機関
係ではコンデンサ、コイル、電気機器部品封入用、キャ
パシタ、接合端子部封入用等、その他ではボタン、置
物、食器類等に使用される。
2. Description of the Prior Art Thermosetting polyester resins have a three-dimensional complex structure, unlike thermoplastic resins, which have a one-dimensional structure. Since their birth in the 1930s, they are related to construction and automobiles. , Has been used in a wide range of fields such as the electrical industry. It is often used as a composite material rather than being used as a resin alone, and fiber reinforced plastics and calcium carbonate, kaolin, aluminum hydroxide, talc, mica with reinforcing materials such as glass fiber, carbon fiber and organic fiber added. There is a particle dispersion type composite material in which a filler such as Applications of thermosetting polyester resins are broadly classified into laminated products and cast products. As laminated products, corrugated sheets, flat plates, flooring materials, wall materials, bathtubs, toilet tanks, water tanks, wash basins, etc. for construction-related products, yachts, boats, canoes, fishing boats, hydrofoil ships, etc. for ships, and automobiles for cars. Passenger cars, containers, sleepers, tanks, etc. for bodies, air spoilers, camping trailers, etc., radar domes, propellers, ailerons, gliders, etc. for aircraft, pipes, tanks, reaction tanks, etc. for mining and chemical industries. In the electrical industry, it is used for various insulating plates, printed circuit boards, switchboards, cases, motors, transformer seals, VTRs, audio products, etc., and others, such as chairs, desks, trunks, helmets, surfboards, and snowboards. As for cast products, artificial marble, tiles, doors, pipes, mortar concrete, etc. for civil engineering and construction, capacitors, coils, electrical equipment parts encapsulation, capacitors, joint terminal encapsulation, etc. for electrical and communication equipment, etc. Used for buttons, figurines, tableware, etc.

【0003】熱硬化性ポリエステル樹脂の製造方法とし
ては、不飽和多塩基酸と飽和多塩基酸、グリコール類か
ら構成された不飽和ポリエステルを溶解させ、かつ架橋
剤も兼ねるモノマーや重合防止剤、促進剤などを添加し
て硬化反応を起こさせるのが一般的である。性能とコス
トの面から、不飽和多塩基酸としては無水マレイン酸と
フマル酸がよく使用され、飽和多塩基酸としては無水フ
タル酸、イソフタル酸、テレフタル酸等が用いられ、グ
リコール類としてはプロピレングリコール、エチレング
リコール、ジエチレングリコール等が使用される。モノ
マーとしてはスチレンを使用するのが一般的である。熱
硬化性ポリエステル樹脂は、ゴム状弾性体のものから、
250℃以上の熱変形温度を有するものまで幅広く、多
品種が開発され、その物性を広範囲に変えられる。熱硬
化性ポリエステル樹脂の組成と機械的強度、電気的性
質、耐化学薬品性、耐水性等については詳細な研究がな
されている。特に、熱硬化性ポリエステルの多塩基酸と
グリコール類とモノマーの種類と組成比による耐化学薬
品性、耐水性に関する研究では、煮沸水による耐水性試
験、有機溶剤による耐溶剤性試験、水酸化ナトリウム水
溶液等による耐アルカリ性試験などについては詳細な検
討がなされている。しかし、これらの溶液を組み合わせ
た溶液の影響などについてはあまり研究されていなく、
分解性の観点からの研究はほとんどないのが現状であ
る。
As a method for producing a thermosetting polyester resin, an unsaturated polyester composed of an unsaturated polybasic acid, a saturated polybasic acid, and glycols is dissolved, and a monomer or a polymerization inhibitor which also serves as a crosslinking agent, is promoted. Generally, a curing reaction is caused by adding an agent or the like. From the aspects of performance and cost, maleic anhydride and fumaric acid are often used as the unsaturated polybasic acid, phthalic anhydride, isophthalic acid, terephthalic acid, etc. are used as the saturated polybasic acid, and propylene is used as the glycols. Glycol, ethylene glycol, diethylene glycol and the like are used. It is common to use styrene as the monomer. Thermosetting polyester resin is a rubber-like elastic material,
A wide variety of products having a heat distortion temperature of 250 ° C or higher have been developed, and their physical properties can be widely changed. Detailed studies have been conducted on the composition and mechanical strength, electrical properties, chemical resistance, and water resistance of thermosetting polyester resins. In particular, in the research on chemical resistance and water resistance depending on the type and composition ratio of polybasic acid, glycols and monomers of thermosetting polyester, water resistance test with boiling water, solvent resistance test with organic solvent, sodium hydroxide Detailed examinations have been made on the alkali resistance test with an aqueous solution. However, there has been little research on the effects of solutions that combine these solutions,
At present, there is almost no research from the viewpoint of degradability.

【0004】[0004]

【発明が解決しようとする課題】上述したように熱硬化
型のポリエステル樹脂は、硬化反応によって複雑な橋架
け化三次元構造となるため、一般的には不溶不融の樹脂
である。そのため、その分解・再生処理は困難であり、
再利用し難い樹脂である。しかし、最近、廃棄物問題が
クローズアップされ、様々な製品(建築物、自動車、電
気製品等)の再利用が求められるようになってきた。特
に樹脂の再生・再利用は金属の場合と異なり、技術的に
も確立していない点が多く、とりわけ熱硬化性ポリエス
テル樹脂の再生・再利用は困難となっている。また、熱
硬化性ポリエステル樹脂は構造材として使用されること
が多く、例えばモータのモールド材や半導体封止材とし
ての利用など、その内部に金属等を包含している場合が
多い。そのため、内部の有用な部品、材料を再生・再利
用することも困難となっている。さらに、熱硬化性ポリ
エステル樹脂を減容化するためには、例えばそのまま粉
砕する方法などが考えられるが、強度的な問題から粉砕
に大きなエネルギーを要す。
As described above, the thermosetting polyester resin is generally an insoluble and infusible resin because it has a complicated crosslinked three-dimensional structure due to the curing reaction. Therefore, it is difficult to disassemble and recycle it,
It is a resin that is difficult to reuse. However, recently, the problem of waste has been highlighted, and the reuse of various products (buildings, automobiles, electric appliances, etc.) has been required. In particular, unlike the case of metal, the recycling and recycling of resin is not technically established, and it is particularly difficult to recover and reuse the thermosetting polyester resin. Further, the thermosetting polyester resin is often used as a structural material, and in many cases, for example, is used as a molding material for a motor or a semiconductor encapsulating material, and contains metal or the like therein. Therefore, it is difficult to recycle and reuse useful internal parts and materials. Further, in order to reduce the volume of the thermosetting polyester resin, for example, a method of pulverizing the thermosetting polyester resin as it is can be considered, but pulverization requires a large amount of energy because of its strength.

【0005】以上に鑑み、本発明の目的は、廃棄時の処
理が容易な熱硬化性ポリエステル樹脂を提供することで
ある。本発明は、またそのような熱硬化性ポリエステル
樹脂を用いたモールドモータ、および樹脂封止半導体素
子を提供することを目的とする。本発明は、さらにおよ
び熱硬化性ポリエステル樹脂の分解処理方法を提供する
ことを目的とする。
In view of the above, an object of the present invention is to provide a thermosetting polyester resin which can be easily treated at the time of disposal. Another object of the present invention is to provide a molded motor and a resin-sealed semiconductor element using such a thermosetting polyester resin. Another object of the present invention is to provide a method for decomposing a thermosetting polyester resin.

【0006】[0006]

【課題を解決するための手段】本発明の熱硬化性ポリエ
ステル樹脂は、不飽和ポリエステルおよび前記不飽和ポ
リエステル中の不飽和基に対してモル比で1.3〜2.
5倍のスチレンよりなる。ここにおいて、ポリカプロラ
クトンジオールおよびポリカプロラクトントリオールの
うち少なくとも1種類を含むことが好ましい。本発明の
モールドモータは、前記の熱硬化性ポリエステル樹脂を
含むモールド材が、鉄芯または巻線のうち少なくとも一
部と直接接触してモールドされてモータの外郭を構成し
ている。
The thermosetting polyester resin of the present invention has a molar ratio of 1.3 to 2. to the unsaturated polyester and the unsaturated groups in the unsaturated polyester.
Consists of 5 times styrene. Here, it is preferable to contain at least one of polycaprolactone diol and polycaprolactone triol. In the molded motor of the present invention, the molding material containing the thermosetting polyester resin is molded in direct contact with at least a part of the iron core or the winding to form the outer shell of the motor.

【0007】また、本発明の樹脂封止半導体素子は、前
記の熱硬化性ポリエステル樹脂を含む封止材が、半導体
素子、リード線、およびボンディング線のうち少なくと
も一部と直接接触して半導体素子を封止している。本発
明の熱硬化性ポリエステル樹脂の分解処理方法は、不飽
和ポリエステルおよび前記不飽和ポリエステル中の不飽
和基に対してモル比で1.3〜2.5倍量のスチレンを
含む熱硬化性ポリエステル樹脂を、少なくとも塩基と親
水性溶媒を含む分解溶液に浸漬するものである。
In the resin-encapsulated semiconductor element of the present invention, the encapsulating material containing the thermosetting polyester resin is brought into direct contact with at least a part of the semiconductor element, the lead wire and the bonding wire to form the semiconductor element. Is sealed. The method for decomposing a thermosetting polyester resin of the present invention is a thermosetting polyester containing an unsaturated polyester and styrene in a molar ratio of 1.3 to 2.5 times the unsaturated group in the unsaturated polyester. The resin is immersed in a decomposition solution containing at least a base and a hydrophilic solvent.

【0008】[0008]

【作用】本発明の熱硬化性ポリエステル樹脂は、スチレ
ン添加量を不飽和ポリエステル中の不飽和基に対してモ
ル比で1.3〜2.5倍としているため、十分な三次元
骨格を構成でき、一般の熱硬化性ポリエステル樹脂と同
様の物性値を有している。しかも、この熱硬化性ポリエ
ステル樹脂は、少なくとも塩基と親水性溶媒を含む分解
溶液の浸透性が高く、熱硬化性ポリエステル樹脂骨格の
エステル部分を加溶媒分解しやすいため、使用後廃棄物
となった場合には上記分解溶液で速やかにエステル部分
の分解を行い、三次元構造を崩壊させ、廃棄処理を容易
にすることができる。また、ポリカプロラクトンジオー
ルおよびポリカプロラクトントリオールのうち少なくと
も1種類を混入している熱硬化性ポリエステル樹脂は、
ポリカプロラクトンジオールやポリカプロラクトントリ
オールによって、さらに分解溶液の浸透性が向上し、か
つこれらのエステル部分も加溶媒分解されるので一層分
解溶液の浸透が進む。そのため、熱硬化性ポリエステル
樹脂骨格中のエステル部分の加溶媒分解も速やかに進
み、樹脂の三次元構造が崩壊して、より短時間の処理で
容易に廃棄処理ができる。
The thermosetting polyester resin of the present invention has a sufficient three-dimensional skeleton because the amount of styrene added is 1.3 to 2.5 times the molar ratio of unsaturated groups in the unsaturated polyester. It is possible and has the same physical property value as a general thermosetting polyester resin. Moreover, this thermosetting polyester resin has high permeability to a decomposition solution containing at least a base and a hydrophilic solvent, and easily solvolytically decomposes the ester portion of the thermosetting polyester resin skeleton, resulting in waste after use. In this case, the ester solution can be rapidly decomposed with the above decomposition solution to disintegrate the three-dimensional structure and facilitate disposal. The thermosetting polyester resin containing at least one of polycaprolactone diol and polycaprolactone triol is
The polycaprolactone diol and the polycaprolactone triol further improve the permeability of the decomposition solution, and the ester portion of these is also solvolytically decomposed, so that the decomposition solution further permeates. Therefore, the solvolysis of the ester portion in the thermosetting polyester resin skeleton also rapidly progresses, the three-dimensional structure of the resin collapses, and the disposal can be easily performed in a shorter time.

【0009】また、上記熱硬化性ポリエステル樹脂を含
むモールド材を使用したモールドモータは、使用後、分
解溶液で樹脂部分を崩壊させて、内部の有価物(鉄芯や
巻線など)を容易に取り出すことができ、再利用の容易
なモールドモータを提供できる。さらに、上記熱硬化性
ポリエステル樹脂を含む封止材を使用した樹脂封止半導
体素子は、モールドモータの場合と同様に内部の半導体
素子やリード線、ボンディング線を容易に取り出し再利
用できることは勿論、半導体素子が、例えばGaAs等
でそのまま廃棄することが好ましくない有害物である場
合には、封止材を分解溶液にて加溶媒分解することによ
り内部の有害物を取り出すことができるため、有害物の
除去も容易な樹脂封止半導体素子を提供できる。
Further, in the molded motor using the molding material containing the thermosetting polyester resin, after the use, the resin portion is disintegrated by the decomposition solution so that the valuable materials inside (iron core, winding, etc.) can be easily obtained. It is possible to provide a molded motor that can be taken out and is easily reused. Further, the resin-encapsulated semiconductor element using the encapsulating material containing the thermosetting polyester resin, the same as in the case of the molded motor, it is of course that the internal semiconductor element and lead wire, the bonding wire can be easily taken out and reused, If the semiconductor device is a harmful substance, such as GaAs, which is not desirable to discard as it is, the harmful substance inside can be taken out by solvolysis of the encapsulant with a decomposition solution. It is possible to provide a resin-sealed semiconductor element that can be easily removed.

【0010】[0010]

【実施例】本発明に供される不飽和ポリエステルは、主
要原料として不飽和多塩基酸と飽和多塩基酸、グリコー
ル類から構成されるあらゆる不飽和ポリエステルが使用
できる。不飽和多塩基酸としては、例えば、無水マレイ
ン酸、フマル酸、イタコン酸等が用いられる。飽和多塩
基酸としては、例えば、無水フタル酸、イソフタル酸、
テレフタル酸、テトラヒドロ無水フタル酸、メチルテト
ラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無
水フタル酸、テトラブロム無水フタル酸、アジピン酸、
セバシン酸等が挙げられる。グリコール類としては、例
えば、プロピレングリコール、エチレングリコール、ジ
エチレングリコール、ジプロピレングリコール、ネオペ
ンチルグリコール、ジブロムネオペンチルグリコール、
1,3−ブタンジオール、1,4−ブタンジオール、水
素化ビスフェノールA等が挙げられる。
EXAMPLES As the unsaturated polyester used in the present invention, any unsaturated polyester composed of an unsaturated polybasic acid, a saturated polybasic acid and glycols as a main raw material can be used. Examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, itaconic acid and the like. Examples of the saturated polybasic acid include phthalic anhydride, isophthalic acid,
Terephthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, tetrabromophthalic anhydride, adipic acid,
Sebacic acid etc. are mentioned. Examples of glycols include propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, dibromoneopentyl glycol,
1,3-butanediol, 1,4-butanediol, hydrogenated bisphenol A and the like can be mentioned.

【0011】本発明に供される架橋剤となるモノマー
は、スチレンであり、不飽和多塩基酸に対してモル比で
1.3〜2.5倍添加することが好ましい。モル比1.
3未満では、未反応の不飽和多塩基酸が多くなり、樹脂
の強度等が低下する。また、モル比2.5を超えると、
分解溶液の浸透性が低下して十分な分解性が得られな
い。また、さらに好ましくは1.9〜2.3倍添加する
ことが機械的性質や分解処理上適当である。本発明に供
されるポリカプロラクトンジオールの一般的な構造は以
下の式(1)に、またポリカプロラクトントリオールの
一般的な構造は式(2)にそれぞれ示す。
The monomer serving as the crosslinking agent used in the present invention is styrene, and it is preferable to add it in a molar ratio of 1.3 to 2.5 times that of the unsaturated polybasic acid. Molar ratio 1.
If it is less than 3, the amount of unreacted unsaturated polybasic acid increases and the strength of the resin decreases. Also, when the molar ratio exceeds 2.5,
Permeability of the decomposition solution decreases and sufficient decomposition cannot be obtained. Further, it is more preferable to add 1.9 to 2.3 times in terms of mechanical properties and decomposition treatment. The general structure of the polycaprolactone diol used in the present invention is shown in the following formula (1), and the general structure of the polycaprolactone triol is shown in the formula (2).

【0012】[0012]

【化1】 Embedded image

【0013】なお、式(1)および式(2)のl、m、
nは1以上の整数を表している。また、M1は、例えば
式(3)で示される基を表している。ここで、p、qは
整数、R1、R2、R3は脂肪族アルキレン基を表してい
る。R1、R2、R3としては例えば、メチレン基、エチ
レン基、プロピレン基、ブチレン基、ペンチル基、ヘキ
シル基等の脂肪族アルキレン基が挙げられる。p=q=
0の場合は、M1=R1となり、エーテル結合やエステル
結合を有さない単純な脂肪族アルキレンとなる。また、
pやqが2以上の場合、2個以上存在することになるR
2及びR3は同じ脂肪族アルキレンでも異なった脂肪族ア
ルキレンでもどちらでもよい。さらに、M1は勿論エー
テル結合とエステル結合をランダムな順番に有する基で
もよい。M2は、例えば式(4)で示される基を表して
いる。ここで、p、qは整数、R1、R2、R3は脂肪族
アルキレン基を表している。R1、R2、R3としては例
えば、メチレン基、エチレン基、プロピレン基、ブチレ
ン基、ペンチル基、ヘキシル基等の脂肪族アルキレン基
が挙げられる。ただし、R1の末端は3つの結合の手を
有している。pやqが2以上の場合、2個以上存在する
ことになるR2およびR3は同じ脂肪族アルキレンでも異
なった脂肪族アルキレンでもどちらでもよい。また、勿
論M2中のエーテル結合とエステル結合の順番は式
(4)と異なっていてもよい。さらに、式(4)ではR
1の末端が3つの結合の手を有していて、Oを介してポ
リカプロラクトンと結合しているが、R2やR3の中の1
つが3つの結合の手を有していて、Oを介してポリカプ
ロラクトンと結合しているものでもよい。
Note that l, m in the equations (1) and (2),
n represents an integer of 1 or more. Further, M 1 represents a group represented by the formula (3), for example. Here, p and q are integers and R 1 , R 2 and R 3 are aliphatic alkylene groups. Examples of R 1 , R 2 and R 3 include aliphatic alkylene groups such as methylene group, ethylene group, propylene group, butylene group, pentyl group and hexyl group. p = q =
In the case of 0, M 1 = R 1 is obtained, which is a simple aliphatic alkylene having no ether bond or ester bond. Also,
If p or q is 2 or more, there will be 2 or more R
2 and R 3 may be the same aliphatic alkylene or different aliphatic alkylene. Further, M 1 may of course be a group having an ether bond and an ester bond in random order. M 2 represents a group represented by the formula (4), for example. Here, p and q are integers and R 1 , R 2 and R 3 are aliphatic alkylene groups. Examples of R 1 , R 2 and R 3 include aliphatic alkylene groups such as methylene group, ethylene group, propylene group, butylene group, pentyl group and hexyl group. However, the end of R 1 has three bonding hands. When p and q are 2 or more, two or more R 2 and R 3 which are present may be the same aliphatic alkylene or different aliphatic alkylenes. Also, the order of the ether bond and the ester bond in M 2 may be different from the formula (4). Furthermore, in equation (4), R
1 termini have three bonds hand, although linked polycaprolactone via O, 1 in R 2 and R 3
One may have three bonding hands and be bonded to polycaprolactone via O.

【0014】[0014]

【化2】 Embedded image

【0015】R1、R2、R3としてネオペンチル基を含
むものが、スチレンへの溶解性が高く、不飽和ポリエス
テル樹脂とポリカプロラクトンジオールあるいはポリカ
プロラクトントリオールとの相溶性が上がるため、本発
明の熱硬化性ポリエステル樹脂中にポリカプロラクトン
ジオールやポリカプロラクトントリオールを多く混入で
き、かつ、分散性も良いため、高い分解性を得られるの
で好ましい。
Those containing a neopentyl group as R 1 , R 2 and R 3 have high solubility in styrene and increase the compatibility of the unsaturated polyester resin with polycaprolactone diol or polycaprolactone triol. Since a large amount of polycaprolactone diol or polycaprolactone triol can be mixed in the thermosetting polyester resin and the dispersibility is good, high degradability can be obtained, which is preferable.

【0016】また、本発明の熱硬化性ポリエステル樹脂
を複合材料として使用する場合は、熱硬化性ポリエステ
ル樹脂に上述したような添加物、例えば、ガラス繊維、
炭素繊維、有機繊維等の補強材や炭酸カルシウム、カオ
リン、水酸化アルミニウム、タルク、マイカ等のフィラ
ーを混入することができる。モールドモータのモールド
材として本発明の熱硬化性ポリエステル樹脂を使用する
場合は、フィラー、補強材、硬化剤、着色剤、増粘剤、
離型剤等を混入して使用することが多く、特にフィラー
は混入量が最も多いため、モールド材の特性に大きな影
響を与える。フィラーとしては、例えば、炭酸カルシウ
ム、珪酸カルシウム、炭酸マグネシウム、硫酸バリウ
ム、硫酸カルシウム、カオリン、水酸化アルミニウム、
タルク、マイカ、けいそう土、ガラス球、シリカゲル等
が挙げられる。補強材としては、主にガラス繊維が使用
されるが、それ以外にもポリアクリロニトリル系あるい
はレーヨン系もしくはピッチ系の炭素繊維、ビニロン、
ポリプロピレン、ポリエステル、アラミド繊維等の有機
繊維も使用できる。硬化剤としては、例えば、t−ブチ
ルパーオクエート、過酸化ベンゾイル、t−ブチルパー
ベンゾエート、2,2−ビス(t−ブチルパーオキシ)
ブタン、3,3,5−トリメチル(t−ブチルパーオキ
シ)シクロヘキサン等が挙げられる。着色剤としては、
例えば、カーボンブラック等が挙げられる。増粘剤とし
ては、例えば、酸化マグネシウム、水酸化マグネシウ
ム、水酸化カルシウム、多価イソシアナート化合物等が
挙げられる。離型剤としては、例えば、ステアリン酸亜
鉛等が挙げられる。また、樹脂封止半導体素子の封止材
として本発明の熱硬化性ポリエステル樹脂を使用する場
合も、モールド材として使用する場合と同様にフィラ
ー、補強材、硬化剤、着色剤、増粘剤、離型剤等を混入
して使用することが多い。それらの混入物の例は上述し
たモールド材の場合と同じである。
When the thermosetting polyester resin of the present invention is used as a composite material, additives such as those mentioned above, such as glass fiber, are added to the thermosetting polyester resin.
Reinforcing materials such as carbon fibers and organic fibers and fillers such as calcium carbonate, kaolin, aluminum hydroxide, talc and mica can be mixed. When the thermosetting polyester resin of the present invention is used as a molding material for a molded motor, a filler, a reinforcing material, a curing agent, a coloring agent, a thickener,
In many cases, a release agent or the like is mixed and used, and since the filler is contained in the largest amount, the characteristics of the molding material are greatly affected. As the filler, for example, calcium carbonate, calcium silicate, magnesium carbonate, barium sulfate, calcium sulfate, kaolin, aluminum hydroxide,
Examples thereof include talc, mica, diatomaceous earth, glass balls, silica gel and the like. As the reinforcing material, glass fiber is mainly used, but other than that, polyacrylonitrile-based or rayon-based or pitch-based carbon fiber, vinylon,
Organic fibers such as polypropylene, polyester and aramid fibers can also be used. Examples of the curing agent include t-butyl peroctoate, benzoyl peroxide, t-butyl perbenzoate, and 2,2-bis (t-butyl peroxy).
Examples include butane and 3,3,5-trimethyl (t-butylperoxy) cyclohexane. As a colorant,
For example, carbon black and the like can be mentioned. Examples of the thickener include magnesium oxide, magnesium hydroxide, calcium hydroxide, polyvalent isocyanate compounds and the like. Examples of the release agent include zinc stearate and the like. Further, also when using the thermosetting polyester resin of the present invention as a sealing material for a resin-sealed semiconductor element, as in the case of using as a molding material, a filler, a reinforcing material, a curing agent, a coloring agent, a thickener, A release agent is often mixed and used. The examples of these contaminants are the same as the case of the above-mentioned molding material.

【0017】本発明に供される分解溶液は、少なくとも
塩基と親水性溶媒を含んでいる。塩基としては、例え
ば、水酸化ナトリウム、水酸化カリウム、水酸化バリウ
ム、ナトリウムエトキシド、カリウムブトキシド等が挙
げられる。また、親水性溶媒としては、例えば、メタノ
ール、エタノール、プロパノール、アセトン、テトラヒ
ドロフラン、ジメチルホルムアミド、エチレングリコー
ル、ジエチレングリコールジエチルエーテル、ジメチル
アミン等が挙げられる。なお、これらの単成分のみなら
ず、複数含まれていてもよい。
The decomposition solution used in the present invention contains at least a base and a hydrophilic solvent. Examples of the base include sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, potassium butoxide and the like. Further, examples of the hydrophilic solvent include methanol, ethanol, propanol, acetone, tetrahydrofuran, dimethylformamide, ethylene glycol, diethylene glycol diethyl ether, dimethylamine and the like. Note that not only these single components but also a plurality of them may be contained.

【0018】以下に、具体的実施例を挙げて、本発明を
より詳細に説明する。 [実施例1]不飽和ポリエステル(日本触媒(株)のエ
ポラック)およびこの不飽和ポリエステル中の不飽和二
塩基酸に対してモル比で1.3〜4.0倍量の架橋剤ス
チレンの混合液100重量部に対して、硬化剤(日本油
脂(株)のパーブチルZ)を1重量部添加し、120℃
で1時間硬化させて、スチレン含有量の異なる数種類の
熱硬化性ポリエステル樹脂を得た。得られた樹脂を大き
さ10×20×1mmに切削し、水酸化ナトリウム1.
1g、エタノール21.0gおよび水6.0gを混合し
た分解溶液に浸漬して200時間、室温で攪拌した後、
樹脂を取り出し、乾燥後の重量を測定し、重量変化およ
び外観変化を観察した。各試料の分解前の引張強度と分
解後の重量変化、外観変化等をまとめて表1に示す。
The present invention will be described in more detail below with reference to specific examples. [Example 1] Mixing of unsaturated polyester (Epolac manufactured by Nippon Shokubai Co., Ltd.) and a cross-linking agent styrene in a molar ratio of 1.3 to 4.0 times with respect to the unsaturated dibasic acid in the unsaturated polyester. To 100 parts by weight of the liquid, 1 part by weight of a curing agent (Perbutyl Z of NOF CORPORATION) was added, and the temperature was 120 ° C.
After curing for 1 hour, several kinds of thermosetting polyester resins having different styrene contents were obtained. The obtained resin was cut into a size of 10 × 20 × 1 mm, and sodium hydroxide 1.
After immersing in a decomposition solution obtained by mixing 1 g, 21.0 g of ethanol and 6.0 g of water and stirring for 200 hours at room temperature,
The resin was taken out, the weight after drying was measured, and the change in weight and the change in appearance were observed. Table 1 shows the tensile strength of each sample before decomposition, the weight change after decomposition, the change in appearance, and the like.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の結果から明らかなように、スチレン
量比によって分解前の引張強度にはほとんど差がみられ
ず、どのようなスチレン量比でも同様に使用できるが、
分解溶液に浸漬して分解させると、スチレン量比2.5
以下では樹脂表面に微小なクラックが発生して重量減少
も大きく、樹脂の加溶媒あるいは加水分解が進んでいる
ことがわかる。このようにスチレン量比を制御すること
によって、樹脂の機械的強度などは変化させずに、塩基
と親水性溶媒を含む分解溶液に対する分解性のみを変化
させることができる。また、比較例として、スチレン量
比1.3の試料を、水酸化ナトリウム1.1gおよび水
27.0gを混合した分解溶液に200時間浸漬した。
その場合には、重量変化は0%であり、さらに、エタノ
ールのみに浸漬した場合も重量変化は0%であった。こ
のことから、スチレン量比が小さい試料でも耐アルカリ
性、耐溶媒性は変化せず、従来の熱硬化性ポリエステル
樹脂と同様に使用できることがわかる。
As is clear from the results shown in Table 1, there is almost no difference in the tensile strength before decomposition depending on the styrene content ratio, and any styrene content ratio can be similarly used.
When immersed in a decomposition solution and decomposed, the styrene content ratio is 2.5.
In the following, it can be seen that minute cracks are generated on the resin surface and the weight is greatly reduced, and the solvent addition or hydrolysis of the resin is progressing. By controlling the styrene content ratio in this way, it is possible to change only the decomposability with respect to the decomposition solution containing the base and the hydrophilic solvent without changing the mechanical strength of the resin. As a comparative example, a sample having a styrene content ratio of 1.3 was immersed in a decomposition solution in which 1.1 g of sodium hydroxide and 27.0 g of water were mixed for 200 hours.
In that case, the weight change was 0%, and the weight change was 0% even when immersed in ethanol only. From this, it can be seen that even a sample having a small styrene content ratio does not change in alkali resistance and solvent resistance and can be used similarly to the conventional thermosetting polyester resin.

【0021】[実施例2]不飽和ポリエステル(日本触
媒(株)のエポラック)および不飽和ポリエステル中の
不飽和二塩基酸に対してモル比で1.9倍量のスチレン
の混合液100重量部に対して、硬化剤(日本油脂
(株)のパーブチルZ)を1重量部添加し、さらにフィ
ラーとして炭酸カルシウムを50〜300重量部添加し
て120℃で1時間硬化させて、炭酸カルシウム含有量
の異なる数種類のフィラー混入樹脂を得た。得られた樹
脂を大きさ10×20×1mmに切削し、水酸化ナトリ
ウム1.1g、エタノール21.0gおよび水6.0g
を混合した分解溶液に浸漬して200時間、室温で攪拌
した後、樹脂を取り出し、乾燥後の重量を測定し、重量
変化および外観変化を観察した。各試料の分解後の重量
変化、外観変化等をまとめて表2に示す。
[Example 2] 100 parts by weight of a mixture of unsaturated polyester (Epolac manufactured by Nippon Shokubai Co., Ltd.) and styrene in a molar ratio of 1.9 times the unsaturated dibasic acid in the unsaturated polyester. In contrast, 1 part by weight of a curing agent (Perbutyl Z manufactured by NOF CORPORATION) was added, and 50 to 300 parts by weight of calcium carbonate was further added as a filler, followed by curing at 120 ° C. for 1 hour to give a calcium carbonate content. Several kinds of filler-mixed resins of different types were obtained. The obtained resin was cut into a size of 10 × 20 × 1 mm, and sodium hydroxide 1.1 g, ethanol 21.0 g and water 6.0 g were cut.
After immersing in the decomposition solution in which was mixed and stirring at room temperature for 200 hours, the resin was taken out and the weight after drying was measured, and the change in weight and the change in appearance were observed. Table 2 shows the changes in weight and appearance of each sample after decomposition.

【0022】[0022]

【表2】 [Table 2]

【0023】表2の結果より、炭酸カルシウムを混入し
た場合でも分解溶液に浸漬すると重量減少がみられ、そ
の減少量は炭酸カルシウム混入量が多いほど小さい。た
だし、各試料の熱硬化性ポリエステル樹脂量に対する重
量変化は炭酸カルシウム混入量によらず、どの場合も1
0%程度でほとんど差がみらなかった。この値は炭酸カ
ルシウムを全く含まない樹脂の場合(実施例1)と同程
度の値であり、分解性に炭酸カルシウムはほとんど影響
しないことがわかる。このことから、複合材料としてフ
ィラーや繊維を混入した場合でも樹脂のみの場合と同様
の樹脂部分の分解性が得られるため、容易に崩壊させて
処理することができる。また、モールド材や封止材とし
て使用した場合でも、容易に内部の有価物を取り出した
り、有害物を取り除いたりすることできる。なお、モー
ルド材や封止材として使用した場合の例は、実施例5以
下の例で述べる。
From the results shown in Table 2, even when calcium carbonate is mixed, weight loss is observed when immersed in the decomposition solution, and the amount of decrease is smaller as the amount of calcium carbonate mixed is larger. However, the weight change with respect to the amount of thermosetting polyester resin of each sample does not depend on the amount of calcium carbonate mixed.
At 0%, there was almost no difference. This value is about the same as in the case of a resin containing no calcium carbonate (Example 1), and it can be seen that calcium carbonate has almost no effect on degradability. From this, even when a filler or fiber is mixed as the composite material, the same decomposability of the resin portion as in the case of only the resin can be obtained, so that the resin material can be easily disintegrated and treated. Further, even when it is used as a molding material or a sealing material, it is possible to easily take out valuable materials inside or remove harmful materials. An example of using it as a molding material or a sealing material will be described in Examples below Example 5.

【0024】[実施例3]不飽和ポリエステル(日本触
媒(株)のエポラック)に、不飽和ポリエステル中の不
飽和二塩基酸に対してモル比で1.3〜4.0倍量のス
チレンを添加し、さらにおよび式(1)中のM1が式
(5)で示されるポリカプロラクトンジオールを12w
t%添加した。この混合液混合液100重量部に対し
て、硬化剤(日本油脂(株)のパーブチルZ)を1重量
部添加して、120℃で1時間硬化させて、スチレン含
有量の異なる数種類の熱硬化性ポリエステル樹脂を得
た。得られた樹脂はスチレン量比が2.5以下では透明
であったが、スチレン量比2.8では少し白濁し、スチ
レン量比4.0ではかなり白濁した樹脂であった。引張
強度もスチレン量比が2.5以下では、ポリカプロラク
トンジオールを混入しない樹脂と同程度であったが、ス
チレン量比2.8や4.0では少し強度が小さくなっ
た。
Example 3 Unsaturated polyester (Epolak manufactured by Nippon Shokubai Co., Ltd.) was mixed with 1.3 to 4.0 times the amount of styrene by molar ratio with respect to the unsaturated dibasic acid in the unsaturated polyester. 12 w of polycaprolactone diol in which M 1 in the formula (1) is represented by the formula (5).
t% was added. To 100 parts by weight of this mixed solution, 1 part by weight of a curing agent (Perbutyl Z of NOF CORPORATION) was added, and the mixture was cured at 120 ° C. for 1 hour, and several types of heat curing with different styrene contents were performed. A transparent polyester resin was obtained. The obtained resin was transparent at a styrene content ratio of 2.5 or less, but was slightly cloudy at a styrene content ratio of 2.8, and was considerably cloudy at a styrene content ratio of 4.0. When the styrene content ratio was 2.5 or less, the tensile strength was similar to that of the resin in which polycaprolactone diol was not mixed, but when the styrene content ratio was 2.8 or 4.0, the strength was slightly reduced.

【0025】[0025]

【化3】 Embedded image

【0026】得られた樹脂を大きさ10×20×1mm
に切削し、水酸化ナトリウム1.1g、エタノール2
1.0gおよび水6.0gを混合した分解溶液に浸漬し
て200時間、室温で攪拌した後、樹脂を取り出し、乾
燥後の重量を測定し、重量変化および外観変化を観察し
た。各試料の分解後の重量変化、外観変化等をまとめて
表3に示す。表3の結果より、スチレン量比2.5以下
では重量減少が激しく、分解溶液中で樹脂がぼろぼろに
崩壊する現象がみられた。それよりもスチレン量比が大
きい場合には重量減少はポリカプロラクトンジオール混
入量程度(12%)しかみられず、不飽和ポリエステル
樹脂部分の分解はほとんど起きていないことがわかる。
また、スチレン量比が1.3や1.9では、実施例1に
示した樹脂の重量減少と添加したポリカプロラクトンジ
オールの量を併せた量よりも大きな重量減少がみられ、
ポリカプロラクトンジオール添加によって不飽和ポリエ
ステル樹脂の分解も促進されていることがわかる。
The resin thus obtained has a size of 10 × 20 × 1 mm.
Cut into 1.1 g of sodium hydroxide and 2 parts of ethanol
After immersing in a decomposition solution in which 1.0 g and 6.0 g of water were mixed and stirring for 200 hours at room temperature, the resin was taken out, the weight after drying was measured, and the change in weight and the change in appearance were observed. Table 3 shows the changes in weight and appearance of each sample after decomposition. From the results in Table 3, when the styrene content ratio was 2.5 or less, the weight was drastically reduced, and the phenomenon that the resin collapsed into pieces in the decomposition solution was observed. When the styrene content ratio is larger than that, the weight reduction is observed only in the amount of polycaprolactone diol mixed (12%), and it is understood that the decomposition of the unsaturated polyester resin portion hardly occurs.
Further, when the styrene content ratio is 1.3 or 1.9, a greater weight reduction than the combined weight reduction of the resin shown in Example 1 and the amount of polycaprolactone diol added is observed.
It can be seen that the addition of polycaprolactone diol also promotes the decomposition of the unsaturated polyester resin.

【0027】[0027]

【表3】 [Table 3]

【0028】[実施例4]不飽和ポリエステル(日本触
媒(株)のエポラック)に、不飽和ポリエステル中の不
飽和二塩基酸に対してモル比で1.9倍量のスチレンを
添加し、さらに実施例3と同じポリカプロラクトンジオ
ールを12wt%添加した。この混合液混合液100重
量部に対して、硬化剤(日本油脂(株)のパーブチル
Z)を1重量部添加し、さらにフィラーとして炭酸カル
シウムを50〜300重量部添加して120℃で1時間
硬化させて、炭酸カルシウム含有量の異なる数種類のフ
ィラー混入樹脂を得た。得られた樹脂を大きさ10×2
0×1mmに切削し、水酸化ナトリウム1.1g、エタ
ノール21.0gおよび水6.0gを混合した分解溶液
に浸漬して200時間、室温で攪拌した後、樹脂を取り
出し、乾燥後の重量を測定し、重量変化および外観変化
を観察した。各試料の分解後の重量変化、外観変化等を
まとめて表4に示す。表4の結果より、実施例2と同様
に重量減少量は炭酸カルシウム混入量が多いほど小さい
が、各試料の熱硬化性ポリエステル樹脂量に対する重量
変化は炭酸カルシウム混入量によらず、どの場合も40
%程度でほとんど差がみらなかった。この値は炭酸カル
シウムを全く含まない樹脂の場合(実施例3)と同程度
の値であり、分解性に炭酸カルシウムはほとんど影響し
ないことがわかる。
Example 4 To an unsaturated polyester (Epolac manufactured by Nippon Shokubai Co., Ltd.), 1.9 times the molar amount of styrene was added to the unsaturated dibasic acid in the unsaturated polyester. 12 wt% of the same polycaprolactone diol as in Example 3 was added. To 100 parts by weight of this mixed solution mixed solution, 1 part by weight of a curing agent (Perbutyl Z of NOF CORPORATION) was added, and further 50 to 300 parts by weight of calcium carbonate was added as a filler, followed by 120 ° C. for 1 hour. Upon curing, several types of filler mixed resins with different calcium carbonate contents were obtained. The size of the obtained resin is 10 × 2
It was cut into 0 × 1 mm, immersed in a decomposition solution in which 1.1 g of sodium hydroxide, 21.0 g of ethanol and 6.0 g of water were mixed and stirred for 200 hours at room temperature, then, the resin was taken out and the weight after drying was measured. It was measured and observed for weight change and appearance change. Table 4 shows the changes in weight and appearance of each sample after decomposition. From the results in Table 4, as in Example 2, the amount of weight loss decreases as the amount of calcium carbonate mixed increases, but the weight change with respect to the thermosetting polyester resin amount of each sample does not depend on the amount of calcium carbonate mixed, and in any case. 40
%, There was almost no difference. This value is about the same as in the case of a resin containing no calcium carbonate (Example 3), and it can be seen that calcium carbonate has almost no effect on degradability.

【0029】[0029]

【表4】 [Table 4]

【0030】[実施例5]実施例1の樹脂に炭酸カルシ
ウム100重量部、ガラス繊維15重量部を混入した樹
脂をモールド材として、モールドモータを作成した。そ
の概略断面図を図1に示す。ブラケット1に設けたベア
リング2に、回転子3のシャフト4が回転自在に軸支さ
れている。回転子3を間隔を隔てて囲むように配された
固定子鉄芯5の珪素鋼板にエナメル被覆銅線からなる固
定子巻線6が巻かれている。この固定子鉄芯5、固定子
巻線6およびブラケット1に接して前記モールド材をモ
ールドしてモータの外郭7を構成した。8は取付け孔で
ある。このモールドモータを室温で500時間分解溶液
に浸漬して、その分解性を調べた。なお、モールドの厚
みは薄い部分で約1mm、厚い部分で約5mm程度であ
り、分解溶液としては実施例1と同様の分解溶液を用い
た。各試料の分解後の状態変化をまとめて表5に示す。
[Example 5] A molded motor was prepared by using a resin obtained by mixing 100 parts by weight of calcium carbonate and 15 parts by weight of glass fiber with the resin of Example 1 as a molding material. The schematic sectional view is shown in FIG. A shaft 4 of a rotor 3 is rotatably supported by a bearing 2 provided on a bracket 1. A stator winding 6 made of an enamel-coated copper wire is wound around a silicon steel plate of a stator iron core 5 arranged so as to surround the rotor 3 with a space. The stator core 5, the stator winding 6, and the bracket 1 were in contact with each other and the molding material was molded to form an outer shell 7 of the motor. Reference numeral 8 is a mounting hole. This mold motor was immersed in a decomposition solution at room temperature for 500 hours to examine its decomposability. The thickness of the mold was about 1 mm at the thin portion and about 5 mm at the thick portion, and the same decomposition solution as in Example 1 was used as the decomposition solution. Table 5 shows the state changes of each sample after decomposition.

【0031】[0031]

【表5】 [Table 5]

【0032】スチレン量比1.3〜2.3の場合、薄い
部分のモールドはかなりぼろぼろになっていて、手で簡
単に剥がすことができた。また、厚い部分も表面に剥
離、クラックが発生し、内部もゴム状に軟化していたた
め手で剥がすことができる状態であった。スチレン量比
2.5の場合は、厚い部分のモールドに分解液の浸透し
ていない部分が数カ所あり、その部分は手で剥がすこと
ができなかった。しかし、分解時間を長くしたり、ある
いは超音波を印加する等して分解液の浸透を高めること
によって、残った部分も手で剥がせる状態になった。ス
チレン量比2.8と4.0の場合は、全く変化しなかっ
た。このようにスチレン量比1.3〜2.5に制御した
モールド材を用いた本発明のモールドモータは、塩基と
親水性溶媒を含む分解溶液により室温で簡単にモールド
材を分解できるため、モールドモータ内の有価物を容易
に取り出すことができる。
When the styrene content ratio was 1.3 to 2.3, the mold in the thin portion was rather shabby and could be easily peeled off by hand. Further, even the thick portion was peeled and cracked on the surface, and the inside was softened like a rubber, so that it could be peeled by hand. In the case where the styrene content ratio was 2.5, there were several parts where the decomposition liquid had not penetrated into the thick part of the mold, and these parts could not be peeled off by hand. However, by lengthening the decomposition time or increasing the penetration of the decomposition liquid by applying ultrasonic waves, the remaining portion can be removed by hand. When the styrene content ratio was 2.8 and 4.0, there was no change. As described above, the mold motor of the present invention using the mold material in which the styrene content ratio is controlled to 1.3 to 2.5 can be easily decomposed at room temperature with a decomposition solution containing a base and a hydrophilic solvent. Valuable materials in the motor can be easily taken out.

【0033】[実施例6]実施例2の樹脂にガラス繊維
を8重量部混入した樹脂をモールド材として、実施例5
と同様なモールドモータを作成した。このモールドモー
タを室温で500時間分解溶液に浸漬して、その分解性
を調べた。なお、分解溶液としては実施例2と同様の分
解溶液を用いた。各試料の分解後の状態変化をまとめて
表6に示す。炭酸カルシウム50および100重量部混
入樹脂の場合、薄い部分のモールドは手で簡単に剥がす
ことができ、厚い部分もゴム状に軟化していたため手で
剥がすことができた。炭酸カルシウム200および30
0重量部混入樹脂の場合は、炭酸カルシウム50および
100重量部混入樹脂の場合と比較して、厚い部分のモ
ールドが若干硬かったが、手で剥がすことができた。こ
のように、炭酸カルシウム含量を変化させても十分な分
解性が得られ、モールドモータの鉄芯や巻線等の有価物
を容易に取り出すことができる。
[Embodiment 6] A resin obtained by mixing 8 parts by weight of glass fiber with the resin of Embodiment 2 is used as a molding material, and Embodiment 5 is used.
A molded motor similar to the above was created. This mold motor was immersed in a decomposition solution at room temperature for 500 hours to examine its decomposability. The same decomposition solution as in Example 2 was used as the decomposition solution. Table 6 shows the state changes of each sample after decomposition. In the case of the resin containing 50 parts by weight of calcium carbonate and 100 parts by weight of calcium carbonate, the mold in the thin portion could be easily peeled off by hand, and the thick portion could be peeled off by hand because it was softened like rubber. Calcium carbonate 200 and 30
In the case of the resin mixed with 0 parts by weight, the mold in the thick portion was slightly harder than in the case of the resin mixed with 50 parts by weight of calcium carbonate and 100 parts by weight, but it could be peeled off by hand. Thus, sufficient decomposability can be obtained even if the calcium carbonate content is changed, and valuable materials such as the iron core and windings of the molded motor can be easily taken out.

【0034】[0034]

【表6】 [Table 6]

【0035】[実施例7]実施例3の樹脂に炭酸カルシ
ウム100重量部、ガラス繊維15重量部を混入した樹
脂をモールド材として実施例5と同様なモールドモータ
を作成した。このモールドモータを室温で300時間分
解溶液に浸漬して、その分解性を調べた。なお、分解溶
液としては実施例3と同様の分解溶液を用いた。各試料
の分解後の状態変化をまとめて表7に示す。スチレン量
比1.3〜2.5の場合、薄い部分の大部分のモールド
は分解溶液中で自然に剥がれ落ち、厚い部分も表面の数
カ所に剥離がみられ、大きなクラックも発生し、内部は
ゴム状に軟化していたため手で剥がすことができた。ス
チレン量比2.8と4.0の場合は、表面に少しクラッ
クが発生し、表面の一部のモールドは手で剥がすことが
できたが、大部分のモールドは剥がすことができなかっ
た。実施例5と比較して、分解時間が300時間と短い
にも拘らず、どの試料も実施例5よりも大きな分解性が
得られた。これはポリカプロラクトンジオールを混入さ
せたことによる分解液の浸透性向上に起因すると考えら
れる。
[Embodiment 7] A mold motor similar to that of Embodiment 5 was prepared by using a resin obtained by mixing 100 parts by weight of calcium carbonate and 15 parts by weight of glass fiber with the resin of Example 3 as a molding material. This mold motor was immersed in a decomposition solution at room temperature for 300 hours, and its decomposability was examined. As the decomposition solution, the same decomposition solution as in Example 3 was used. Table 7 shows the state changes of the samples after decomposition. When the styrene content ratio is 1.3 to 2.5, most of the thin part of the mold peels off spontaneously in the decomposition solution, the thick part also peels off at several points on the surface, large cracks occur, and the inside is Since it had softened into a rubber, it could be peeled off by hand. In the case of the styrene content ratios of 2.8 and 4.0, some cracks were generated on the surface, and some molds on the surface could be peeled off by hand, but most molds could not be peeled off. Despite the shorter decomposition time of 300 hours as compared with Example 5, all the samples obtained a higher decomposability than Example 5. It is considered that this is due to the improvement of the permeability of the decomposition solution due to the incorporation of polycaprolactone diol.

【0036】[0036]

【表7】 [Table 7]

【0037】[実施例8]実施例4の樹脂にガラス繊維
を8重量部混入した樹脂をモールド材として、実施例5
と同様なモールドモータを作成して、室温で300時間
分解溶液に浸漬して、その分解性を調べた。なお、分解
溶液としては実施例4と同様の分解溶液を用いた。各試
料の分解後の状態変化をまとめて表8に示す。どの試料
においてもモールドはゴム状になり全体的にぼろぼろに
なっていて、手で簡単に剥がすことができた。特に炭酸
カルシウム50および100重量部添加した試料では、
手で剥がさなくても、分解液中で自然に剥がれる部分が
あり、高い分解性を有していた。実施例6と比較して、
分解時間が300時間と短いにも拘らず、ポリカプロラ
クトンジオールを混入させたため、どの試料も実施例6
よりも大きな分解性が得られた。
[Embodiment 8] A resin obtained by mixing 8 parts by weight of glass fiber with the resin of Embodiment 4 is used as a molding material, and Embodiment 5 is used.
A mold motor similar to the above was prepared and immersed in a decomposition solution at room temperature for 300 hours to examine its decomposability. The same decomposition solution as in Example 4 was used as the decomposition solution. Table 8 shows the state changes of the samples after decomposition. In all the samples, the mold was rubber-like and was totally shabby, and could be easily peeled off by hand. Especially in the case of adding 50 and 100 parts by weight of calcium carbonate,
Even if it was not peeled off by hand, there was a part that peeled off naturally in the decomposition solution, and it had high decomposability. Compared to Example 6,
Despite the short decomposition time of 300 hours, polycaprolactone diol was mixed in, so that all samples were tested in Example 6.
Greater degradability was obtained.

【0038】[0038]

【表8】 [Table 8]

【0039】[実施例9]実施例2の炭酸カルシウムの
代わりにシリカを250重量部、さらにガラス繊維を8
重量部添加した樹脂を用いて樹脂封止ICを作成した。
その概略図を図2に示す。半導体素子10およびワイヤ
11、リード線12を上記封止樹脂13で封止した。そ
の樹脂封止ICを室温で200時間分解溶液に浸漬し
て、その分解性を調べた。なお、モールドの厚みは約1
mm程度であり、分解溶液としては実施例2と同様の分
解溶液を用いた。200時間浸漬後、封止樹脂表面にク
ラックが発生し、微小片の剥離がみられた。また封止樹
脂はゴム状になり、手で容易に剥がすことができた。そ
のため、内部の金ワイヤを容易に回収でき、また、有害
なGaAs素子を取り除くこともできた。
Example 9 In place of the calcium carbonate of Example 2, 250 parts by weight of silica and 8 glass fibers were used.
A resin-encapsulated IC was prepared using the resin added by weight.
The schematic diagram is shown in FIG. The semiconductor element 10, the wire 11, and the lead wire 12 were sealed with the sealing resin 13. The resin-encapsulated IC was immersed in a decomposition solution at room temperature for 200 hours to examine its decomposability. The thickness of the mold is about 1
The same decomposition solution as in Example 2 was used as the decomposition solution. After dipping for 200 hours, cracks were generated on the surface of the sealing resin and peeling of minute pieces was observed. Further, the sealing resin became rubbery and could be easily peeled off by hand. Therefore, the gold wire inside could be easily recovered, and the harmful GaAs element could be removed.

【0040】[実施例10]実施例9の樹脂封止ICの
封止材を、実施例4の炭酸カルシウムの代わりにシリカ
を250重量部、さらにガラス繊維を8重量部添加した
樹脂を用いて樹脂封止ICを作成した。その樹脂封止I
Cを室温で200時間分解溶液に浸漬して、分解性を調
べた。なお、分解溶液としては実施例4と同様の分解溶
液を用いた。200時間浸漬後、封止樹脂の数カ所にク
ラック、剥離がみられ、手で剥がさなくても分解溶液中
で自然に封止樹脂は剥離した。そのため、実施例9より
もさらに容易に内部のワイヤや素子を取り出すことがで
きた。
[Embodiment 10] As the encapsulating material for the resin-encapsulated IC of Embodiment 9, a resin in which 250 parts by weight of silica and 8 parts by weight of glass fiber are added in place of the calcium carbonate of Example 4 is used. A resin sealed IC was created. The resin encapsulation I
C was immersed in the decomposition solution at room temperature for 200 hours to examine the decomposability. The same decomposition solution as in Example 4 was used as the decomposition solution. After dipping for 200 hours, cracks and peeling were observed in several places of the sealing resin, and the sealing resin naturally peeled in the decomposition solution without being peeled by hand. Therefore, the wires and elements inside could be taken out more easily than in Example 9.

【0041】[実施例11]実施例3のポリカプロラク
トンジオールを、式(2)のM2が式(6)で示される
ポリカプロラクトントリオールに変えた他は同様の条件
で実験を行った結果、得られた樹脂の状態および分解性
は、ポリカプロラクトンジオールを混入した場合とほと
んど変わらず、スチレン量比2.5以下では重量減少が
激しく、高い分解性(最高重量変化率−38.6%(ス
チレン量比1.3の場合))を示した。
Example 11 An experiment was conducted under the same conditions except that the polycaprolactone diol of Example 3 was changed to the polycaprolactone triol represented by the formula (6) in which M 2 of the formula (2) was changed. The state and decomposability of the obtained resin were almost the same as those when polycaprolactone diol was mixed in, and when the styrene content ratio was 2.5 or less, the weight was drastically reduced and the decomposability was high (maximum weight change rate-38.6% ( The ratio of styrene was 1.3)).

【0042】[0042]

【化4】 [Chemical 4]

【0043】[実施例12]実施例3の樹脂のポリカプ
ロラクトンジオール混入量を6wt%にし、さらに実施
例11と同様のポリカプロラクトントリオールを6wt
%混入した樹脂を作成した。それらの樹脂はスチレン量
比が2.5以下では透明であったが、スチレン量比2.
8では少し白濁し、スチレン量比4.0ではかなり白濁
した樹脂であった。これらの樹脂を実施例3と同様の条
件で分解した結果、得られた樹脂の状態および分解性は
ポリカプロラクトンジオールを12wt%混入した実施
例3およびポリカプロラクトントリオールを12wt%
混入した実施例11の場合とほぼ同じ結果となり、スチ
レン量比2.5以下では重量減少が激しく、高い分解性
(最高重量変化率−40.2%(スチレン量比1.3の
場合))を示した。
[Example 12] The amount of polycaprolactone diol mixed in the resin of Example 3 was set to 6% by weight, and the same polycaprolactone triol as in Example 11 was added to 6% by weight.
% Mixed resin was prepared. Although those resins were transparent when the styrene content ratio was 2.5 or less, the styrene content ratio was 2.
In the case of No. 8, the resin was a little cloudy, and at a styrene content ratio of 4.0, it was a cloudy resin. As a result of decomposing these resins under the same conditions as in Example 3, the state and degradability of the obtained resin were 12% by weight of Example 3 and 12% by weight of polycaprolactonetriol mixed with 12% by weight of polycaprolactone diol.
Almost the same result as in the case of the mixed Example 11 was obtained, and when the styrene content ratio was 2.5 or less, the weight was drastically reduced and high degradability (maximum weight change rate-40.2% (when styrene content ratio was 1.3)). showed that.

【0044】なお、以上の実施例では、分解溶液として
水酸化ナトリウムとエタノールと水を含む混合溶液を用
いたが、この混合溶液に限定されるものではなく、少な
くとも塩基と親水性溶媒を含んでいる混合溶液であれば
よい。また、以上の実施例では、不飽和ポリエステルと
して、フマル酸とフタル酸とプロピレングリコールから
なるものを用いたが、この不飽和ポリエステルに限定さ
れるものではなく、前述したような一般によく用いられ
る不飽和多塩基酸と飽和多塩基酸とグリコール類からな
る不飽和ポリエステルならいずれでもよい。また、モー
ルドモータや樹脂封止半導体素子は、以上の実施例で述
べた構成に限定されるものではない。例えば、耐湿性を
上げるため等の目的でモールド樹脂あるいは封止樹脂表
面にコーティングを施したもの、分解性の異なる樹脂で
二重以上にモールドあるいは封止したもの、加溶媒分解
性を有しない樹脂を本発明の熱硬化性ポリエステル樹脂
に分散させてモールドあるいは封止したもの等の構成の
モールドモータや樹脂封止半導体素子でもよい。
In the above examples, a mixed solution containing sodium hydroxide, ethanol and water was used as the decomposition solution, but it is not limited to this mixed solution, and at least a base and a hydrophilic solvent are contained. Any mixed solution can be used. Further, in the above examples, as the unsaturated polyester, one made of fumaric acid, phthalic acid, and propylene glycol was used. However, the unsaturated polyester is not limited to the unsaturated polyester and is generally used as described above. Any unsaturated polyester composed of saturated polybasic acid, saturated polybasic acid and glycols may be used. Further, the molded motor and the resin-sealed semiconductor element are not limited to the configurations described in the above embodiments. For example, a resin coated on the surface of a molding resin or a sealing resin for the purpose of increasing the moisture resistance, a resin having different decomposability and molded or sealed in double or more, a resin having no solvolysis May be a molded motor or resin-sealed semiconductor element having a structure in which the thermosetting polyester resin of the present invention is dispersed and molded or sealed.

【0045】[0045]

【発明の効果】以上のように本発明は、熱硬化性ポリエ
ステル樹脂のスチレン量を低レベルに制御することによ
って、少なくとも塩基と親水性溶媒を含む分解溶液が樹
脂内部に浸透しやすく、室温で容易に分解して崩壊する
熱硬化性ポリエステル樹脂を提供する。また、上記熱硬
化性ポリエステル樹脂にポリカプロラクトンジオールお
よびポリカプロラクトントリオールのうち少なくとも1
種類を混入することによって、さらに樹脂の分解性を上
げることができ、樹脂、モールドモータ、樹脂封止半導
体素子廃棄後の処理を容易に行うことができる。さら
に、本発明の分解処理方法により、室温で容易に樹脂を
分解できるため、省エネルギーにも効果的であり、少な
くとも塩基と親水性溶媒を含む分解溶液を使用するた
め、モールドモータや樹脂封止半導体素子中の有価物、
例えば金属などにあまり影響を与えることなく、それら
を取り出すことができる。
As described above, according to the present invention, by controlling the styrene content of the thermosetting polyester resin to a low level, the decomposition solution containing at least the base and the hydrophilic solvent easily penetrates into the resin, so that Provided is a thermosetting polyester resin which easily decomposes and disintegrates. Further, at least one of polycaprolactone diol and polycaprolactone triol is added to the thermosetting polyester resin.
By mixing the types, it is possible to further improve the decomposability of the resin, and it is possible to easily perform the processing after discarding the resin, the mold motor, and the resin-sealed semiconductor element. Furthermore, since the decomposition treatment method of the present invention allows the resin to be decomposed easily at room temperature, it is also effective in saving energy, and since a decomposition solution containing at least a base and a hydrophilic solvent is used, the molded motor and the resin-sealed semiconductor Valuables in the element,
For example, they can be taken out without significantly affecting the metal.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるモールドモータの概
略構成を示す縦断面図である。
FIG. 1 is a vertical sectional view showing a schematic configuration of a molded motor according to an embodiment of the present invention.

【図2】本発明の一実施例における樹脂封止ICの概略
構成を示す一部欠截斜視図である。
FIG. 2 is a partially cutaway perspective view showing a schematic configuration of a resin-sealed IC according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ブラケット 2 ベアリング 3 回転子 4 回転子シャフト 5 固定子鉄芯 6 固定子巻線 7 モールド樹脂 8 取付孔 10 半導体素子 11 ワイヤ 12 リード線 13 封止樹脂 1 Bracket 2 Bearing 3 Rotor 4 Rotor shaft 5 Stator iron core 6 Stator winding 7 Mold resin 8 Mounting hole 10 Semiconductor element 11 Wire 12 Lead wire 13 Sealing resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 67/06 MSJ H01L 23/29 23/31 H02K 5/08 A 15/12 E //(C08L 67/06 67:04) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 67/06 MSJ H01L 23/29 23/31 H02K 5/08 A 15/12 E // (C08L 67/06 67:04)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 不飽和ポリエステルおよび前記不飽和ポ
リエステル中の不飽和基に対してモル比で1.3〜2.
5倍のスチレンよりなる熱硬化性ポリエステル樹脂。
1. The unsaturated polyester and the unsaturated groups in the unsaturated polyester are in a molar ratio of 1.3 to 2.
Thermosetting polyester resin consisting of 5 times styrene.
【請求項2】 ポリカプロラクトンジオールおよびポリ
カプロラクトントリオールのうち少なくとも1種類を含
む請求項1記載の熱硬化性ポリエステル樹脂。
2. The thermosetting polyester resin according to claim 1, containing at least one of polycaprolactone diol and polycaprolactone triol.
【請求項3】 請求項1または2記載の熱硬化性ポリエ
ステル樹脂を含むモールド材が、鉄芯または巻線のうち
少なくとも一部と直接接触してモールドされてモータの
外郭を構成しているモールドモータ。
3. A mold forming the outer shell of a motor by molding the molding material containing the thermosetting polyester resin according to claim 1 or 2 in direct contact with at least a part of an iron core or a winding. motor.
【請求項4】 請求項1または2記載の熱硬化性ポリエ
ステル樹脂を含む封止材が、半導体素子、リード線、お
よびボンディング線のうち少なくとも一部と直接接触し
て半導体素子を封止している樹脂封止半導体素子。
4. The encapsulating material containing the thermosetting polyester resin according to claim 1 or 2 is in direct contact with at least a part of a semiconductor element, a lead wire and a bonding wire to encapsulate the semiconductor element. Resin-sealed semiconductor device.
【請求項5】 不飽和ポリエステルおよび前記不飽和ポ
リエステル中の不飽和基に対してモル比で1.3〜2.
5倍量のスチレンを含む熱硬化性ポリエステル樹脂を、
少なくとも塩基と親水性溶媒を含む分解溶液に浸漬する
ことを特徴とする熱硬化性ポリエステル樹脂の分解処理
方法。
5. The unsaturated polyester and the unsaturated groups in the unsaturated polyester are in a molar ratio of 1.3 to 2.
Thermosetting polyester resin containing 5 times the amount of styrene,
A method for decomposing a thermosetting polyester resin, which comprises immersing in a decomposition solution containing at least a base and a hydrophilic solvent.
JP25319194A 1994-10-19 1994-10-19 Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin Pending JPH08113619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25319194A JPH08113619A (en) 1994-10-19 1994-10-19 Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25319194A JPH08113619A (en) 1994-10-19 1994-10-19 Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin

Publications (1)

Publication Number Publication Date
JPH08113619A true JPH08113619A (en) 1996-05-07

Family

ID=17247822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25319194A Pending JPH08113619A (en) 1994-10-19 1994-10-19 Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin

Country Status (1)

Country Link
JP (1) JPH08113619A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749193A3 (en) * 1995-06-13 1997-05-02 Matsushita Electric Ind Co Ltd Method of recovering resources in resin-molded electrical rotating device and resin for molding of the device
US5969009A (en) * 1995-11-30 1999-10-19 Matsushita Electric Industrial Co, Ltd. Molding material and molded motor
US6673463B1 (en) * 1995-08-02 2004-01-06 Matsushita Electric Industrial Co., Ltd. Structure material and molded product using the same and decomposing method thereof
US6780894B2 (en) 2000-12-22 2004-08-24 Hitachi Chemical Co., Ltd. Treatment liquid for cured unsaturated polyester resin and treatment method thereof
JP2007084829A (en) * 2006-09-26 2007-04-05 Mitsubishi Electric Corp Molded resin part
CN114289479A (en) * 2021-12-31 2022-04-08 广西康利岗石有限公司 Method for removing unsaturated resin in artificial granite waste residue by using tetrahydrofuran

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0749193A3 (en) * 1995-06-13 1997-05-02 Matsushita Electric Ind Co Ltd Method of recovering resources in resin-molded electrical rotating device and resin for molding of the device
US5830258A (en) * 1995-06-13 1998-11-03 Matsushita Electric Industrial Co., Ltd. Method of recovering resources in resin-molded electrical rotating device
CN1094804C (en) * 1995-06-13 2002-11-27 松下电器产业株式会社 Resource recovery method of resin moulded rotary motor and resin for moulding
US6673463B1 (en) * 1995-08-02 2004-01-06 Matsushita Electric Industrial Co., Ltd. Structure material and molded product using the same and decomposing method thereof
US5969009A (en) * 1995-11-30 1999-10-19 Matsushita Electric Industrial Co, Ltd. Molding material and molded motor
US6780894B2 (en) 2000-12-22 2004-08-24 Hitachi Chemical Co., Ltd. Treatment liquid for cured unsaturated polyester resin and treatment method thereof
JP2007084829A (en) * 2006-09-26 2007-04-05 Mitsubishi Electric Corp Molded resin part
CN114289479A (en) * 2021-12-31 2022-04-08 广西康利岗石有限公司 Method for removing unsaturated resin in artificial granite waste residue by using tetrahydrofuran

Similar Documents

Publication Publication Date Title
EP0707043B1 (en) Use of a thermosetting composition, of a molding material, of a molded structure, and method of decomposing them
CN1094804C (en) Resource recovery method of resin moulded rotary motor and resin for moulding
US2993920A (en) Resins and method of making the same
KR100244441B1 (en) Molding material and molded motor
CN102174182A (en) Unsaturated polyester resin for die pressing and preparation method thereof
JPH08113619A (en) Thermosetting polyester resin, molded motor, resin-sealed semiconductor element and decomposition thermosetting polyester resin
JP2002220473A (en) Production method for cured-resin fine powder
JPH10147621A (en) Thermosetting composition and mold material
JPH1095904A (en) Mold material and mold motor
JP2002284925A (en) Method for recycling cured resin
JPH09194614A (en) Molded plastic, and method of treatment of molded plastic
JP3697672B2 (en) Mold material, mold motor and method for disassembling mold material
JP2837760B2 (en) Thermosetting composition, mold material, mold structure, and decomposition treatment method thereof
JPH01234434A (en) Bulk molding compound composition and molded article produced therefrom
JPS612747A (en) Production of electrical insulation material
JP2551540B2 (en) Unsaturated polyester curable resin composition
JP2000053731A (en) Damping resin composition and damping resin molding product for structure using the same
JPS6221010B2 (en)
JPS5936805B2 (en) Electrical equipment sealed and impregnated with a resin composition
EP0708157A2 (en) Low emission gel coat polyester resin
JPS62115059A (en) Resin composition for molding material
JPS608355A (en) Unsaturated polyester resin composition
JPH09121497A (en) Stator of motor
JPH10128919A (en) Plastic molding and method of disposal thereof
JPH0238086B2 (en)