JPH081004A - Zirconium phosphate molded body for catalyst carrier and its production - Google Patents

Zirconium phosphate molded body for catalyst carrier and its production

Info

Publication number
JPH081004A
JPH081004A JP6156476A JP15647694A JPH081004A JP H081004 A JPH081004 A JP H081004A JP 6156476 A JP6156476 A JP 6156476A JP 15647694 A JP15647694 A JP 15647694A JP H081004 A JPH081004 A JP H081004A
Authority
JP
Japan
Prior art keywords
zirconium
added
terms
molded body
hydroxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6156476A
Other languages
Japanese (ja)
Other versions
JP3531217B2 (en
Inventor
Miki Masuda
幹 増田
Toshio Yamaguchi
敏男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP15647694A priority Critical patent/JP3531217B2/en
Publication of JPH081004A publication Critical patent/JPH081004A/en
Application granted granted Critical
Publication of JP3531217B2 publication Critical patent/JP3531217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a zirconium phosphate molded body having excellent strength characteristics and specific surface area by calcining a mixture molded body comprising a zirconium hydroxide powder, phosphoric acid, and basic zirconium salt. CONSTITUTION:After phosphoric acid and water are added and kneaded with a zirconium hydroxide powder, a soln. of basic zirconium salt is added to the mixture and kneaded till the mixture is plasticized. Then the mixture is molded, dried and calcined at about 400-600 deg.C to obtain the molded body having >=80m<2>/g specific surface area and an absorption peak at 1635cm<-1> in the infrared spectrum. The amt. of phosphoric acid added is 2 to 5wt.% expressed in terms of P2O5 to the amt. of all zirconium expressed in terms of ZrO2 in the molded body. The amt. of basic zirconium salt soln. added is 10-30wt.% expressed in terms of ZrO2 to the zirconium hydroxide powder expressed in terms of ZrO2. Thereby, high specific surface area and excellent rupture strength can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、揮発性ハロゲン化有機
化合物を分解するための触媒担体として優れたリン酸ジ
ルコニウム成型体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zirconium phosphate molded article excellent as a catalyst carrier for decomposing volatile halogenated organic compounds and a method for producing the same.

【0002】[0002]

【従来の技術】揮発性ハロゲン化有機化合物としては、
フロンガス、トリクロロエチレン、テトラクロロエチレ
ン等がある。
As a volatile halogenated organic compound,
Freon gas, trichlorethylene, tetrachloroethylene, etc. are available.

【0003】フロンガスは、その化学的性質が、特に噴
射剤、冷媒等の用途に対し優れているため、産業界のみ
ならず一般にも広く用いられている。しかし、フロンガ
スは大気中に排出された場合にオゾン層に流れ、太陽紫
外線によって分解されて塩素原子が生じ、この塩素原子
によるオゾン層の破壊が地球環境の保護の観点から重大
な問題となっている。従って、フロンガスを排出する場
合には、そのままの形では排出せずに何等かの無害処理
を施することが必要とされている。
Freon gas is widely used not only in the industrial world but also in general because its chemical properties are excellent for applications such as propellants and refrigerants. However, when CFCs are discharged into the atmosphere, they flow into the ozone layer and are decomposed by solar ultraviolet rays to generate chlorine atoms, and the destruction of the ozone layer by these chlorine atoms is a serious problem from the perspective of protecting the global environment. There is. Therefore, when the CFC gas is discharged, it is necessary to perform some harmless treatment without discharging the CFC gas as it is.

【0004】また、トリクロロエチレンやテトラクロロ
エチレン等は金属の脱脂工程やドライクリーニング工程
等に幅広く用いられている。しかし、トリクロロエチレ
ン等の塩素化合物には、発癌作用があることが見いださ
れて以来、これらの大気中への排出、あるいは埋め立て
処分や不法投棄による土壌汚染や地下水汚染が問題化し
てきている。
Trichloroethylene, tetrachloroethylene and the like are widely used in metal degreasing processes and dry cleaning processes. However, since it was found that chlorine compounds such as trichlorethylene have a carcinogenic effect, their emission into the atmosphere, soil contamination and groundwater contamination due to landfill or illegal dumping have become a problem.

【0005】このように、揮発性ハロゲン化有機化合物
およびこれらを含む廃液等は、環境衛生上の見地から、
各地において法規則の実施に伴い、厳しい管理と共に無
害化処理技術の開発が強く望まれている。
As described above, the volatile halogenated organic compounds and the waste liquid containing them are, from the viewpoint of environmental hygiene,
With the implementation of laws and regulations in various places, it is strongly desired to develop detoxification treatment technology along with strict management.

【0006】従来、フロンガスやトリクロロエチレンや
テトラクロロエチレン等の揮発性ハロゲン化有機化合物
の処理の方法としては、活性炭、ゼオライト等で吸着し
回収する方法が知られているが、回収した揮発性ハロゲ
ン化有機化合物の無害化処理方法に関しては開発が未だ
十分なされていない。
[0006] Conventionally, as a method for treating volatile halogenated organic compounds such as CFCs, trichloroethylene and tetrachloroethylene, a method of adsorbing and collecting with activated carbon, zeolite or the like has been known. The detoxification treatment method has not been sufficiently developed.

【0007】すなわち、揮発性ハロゲン化有機化合物を
高圧下で800℃以上の温度で燃焼させる熱分解法、紫
外線を照射して光分解させる高周波プラズマ分解法、触
媒の存在下で分解・燃焼を行う接触分解法等が提案され
ている。しかし、高圧下で燃焼する方法、高周波プラズ
マで分解する方法では装置が大掛かりであったり、処理
コストが高いなどの問題がある。これに対し、触媒によ
る接触分解法は簡便な方法である。
That is, a thermal decomposition method in which a volatile halogenated organic compound is burned at a temperature of 800 ° C. or higher under high pressure, a high-frequency plasma decomposition method in which ultraviolet rays are irradiated for photolysis, and decomposition and combustion are performed in the presence of a catalyst The catalytic decomposition method and the like have been proposed. However, the method of burning under high pressure and the method of decomposing with high-frequency plasma have problems such as large-scale equipment and high processing cost. On the other hand, the catalytic cracking method using a catalyst is a simple method.

【0008】この接触分解法で用いる触媒坦体として
は、アルミナ、シリカ、ゼオライト、チタニア、ジルコ
ニア、リン酸ジルコニウム等が提案されているが、耐酸
性が優れているものはチタニア、ジルコニア、リン酸ジ
ルコニウムである。そして、これらの触媒坦体に白金、
パラジウム、ロジウム等の活性金属酸化物を坦持したも
のが、揮発性ハロゲン化有機化合物の分解活性に優れて
いることが知られている。
Alumina, silica, zeolite, titania, zirconia, zirconium phosphate, etc. have been proposed as the catalyst carrier used in this catalytic cracking method, but titania, zirconia, phosphoric acid having excellent acid resistance is proposed. It is zirconium. And platinum on these catalyst carriers,
It is known that those carrying active metal oxides such as palladium and rhodium are excellent in decomposition activity of volatile halogenated organic compounds.

【0009】[0009]

【発明が解決しようとする課題】一般に、ジルコニア系
で実用可能な強度を持たせた触媒担体用成型体を得る方
法としては、ジルコニアに補強剤としてロックウール、
アルミナ等のファイバーあるいはアルミナゾル、シリカ
ゾル等の無機物を添加し、さらに水を加えて混練したも
のから成型体を得る方法が提案されている。しかし、前
記補強剤がジルコニア成型体中に含有されるため、ジル
コニアの特性が低下するという欠点があり、特に無機物
を添加すると著しく耐酸性が低下する。
Generally, a method for obtaining a molded product for a catalyst carrier having practical strength in a zirconia system is to use rock wool as a reinforcing agent in zirconia,
A method has been proposed in which a fiber such as alumina or an inorganic substance such as alumina sol or silica sol is added, and water is further added to knead the mixture to obtain a molded body. However, since the reinforcing agent is contained in the zirconia molded body, there is a drawback that the characteristics of zirconia are deteriorated, and particularly when an inorganic substance is added, the acid resistance is significantly decreased.

【0010】通常、触媒坦体としての実用破壊強度は、
直径1.5mmの円筒状成型体で0.5kg/mm以上
が必要とされる。このため、融点が高いジルコニアは、
必要な強度すなわち粒子間結合を得るのに、900℃以
上の温度で焼成を行わなくてはならない。しかし、高温
で焼成すると比表面積が減少し、触媒坦体として十分に
機能しなくなるという新たな問題点を生ずる。すなわ
ち、反応がガス系であれば、触媒坦体の比表面積は50
2 /g以上必要とされ、さらに十分な触媒機能を向上
させるためには80m2 /g以上の比表面積を実現しな
ければならない。
Usually, the practical breaking strength as a catalyst carrier is
A cylindrical molded body having a diameter of 1.5 mm requires 0.5 kg / mm or more. Therefore, zirconia with a high melting point
In order to obtain the required strength, that is, the interparticle bond, firing must be performed at a temperature of 900 ° C. or higher. However, calcination at a high temperature reduces the specific surface area and causes a new problem that the catalyst carrier does not function sufficiently. That is, if the reaction is a gas system, the specific surface area of the catalyst carrier is 50.
m 2 / g or more is required, and a specific surface area of 80 m 2 / g or more must be realized in order to further improve the catalytic function.

【0011】本発明は、リン酸ジルコニウム成型体にお
ける上記したような種々の問題点を解決し、優れた強度
特性と比表面積を有する触媒担体用リン酸ジルコニウム
成型体およびその製造方法を提供することを目的とす
る。
The present invention solves various problems as described above in a molded zirconium phosphate, and provides a molded zirconium phosphate for a catalyst carrier having excellent strength characteristics and specific surface area, and a method for producing the same. With the goal.

【0012】[0012]

【課題を解決するための手段】上記の課題を解決し上記
の目的を達成するための本発明のリン酸ジルコニウム成
型体は、水酸化ジルコニウム粉体とリン酸と塩基性ジル
コニウム塩とよりなる混合成型物を焼成してなる成型坦
体であって、その比表面積が80m2 /g以上であり、
赤外線スペクトルで1635cm-1に吸収ピークを有す
る。
The zirconium phosphate molded article of the present invention for solving the above problems and achieving the above objects is a mixture of zirconium hydroxide powder, phosphoric acid and a basic zirconium salt. A molded carrier obtained by firing a molded product, having a specific surface area of 80 m 2 / g or more,
It has an absorption peak at 1635 cm -1 in the infrared spectrum.

【0013】また、本発明の製造方法は、水酸化ジルコ
ニウム粉体にリン酸と水とを添加して混練した後、塩基
性ジルコニウム塩溶液を添加して可塑化するまで混練
し、成型して乾燥し、次いで400〜600℃の温度範
囲において焼成することからなる。そして、リン酸の添
加量が成型体中の全ジルコニウムのZrO2 換算量に対
してP25換算量で2〜5重量%の範囲であり、塩基性
ジルコニウム塩溶液の添加量が水酸化ジルコニウム粉体
のZrO2 換算量に対してZrO2 換算量で10〜30
重量%の範囲になるようにして添加する。
Further, in the manufacturing method of the present invention, phosphoric acid and water are added to the zirconium hydroxide powder and kneaded, and then a basic zirconium salt solution is added and kneaded until plasticized and molded. It consists of drying and then calcining in the temperature range from 400 to 600 ° C. The addition amount of phosphoric acid is in the range of 2 to 5% by weight in terms of P 2 O 5 equivalent to the ZrO 2 equivalent amount of all zirconium in the molded body, and the addition amount of the basic zirconium salt solution is hydroxylated. in terms of ZrO 2 amount to the terms of ZrO 2 of zirconium powder 10-30
It is added in the range of weight%.

【0014】[0014]

【作用】本発明の詳細およびその作用についてさらに具
体的に説明すると次の通りである。
The details of the present invention and the operation thereof will be described in more detail below.

【0015】すなわち、水酸化ジルコニウム粉体に適量
の水とリン酸とを混練し、さらに塩基性ジルコニウム塩
を添加して混練したものを成型し、乾燥し、焼成してリ
ン酸ジルコニウム成型体を形成した場合には、耐酸性を
損なうような補強材を添加しなくても、破壊強度の優れ
た成型体が比較的低温の焼成で得られる。しかも、この
ようにして低温焼成で得られた成型体は、従来の高温焼
成のリン酸ジルコニウム成型体に比べて比表面積が大き
く、触媒坦体として十分な機能を発揮させることができ
る。なお、赤外線スペクトルで1635cm-1に吸収ピ
ークを有するリン酸ジルコニウム成型体の比表面積が大
きいことが確認されている。
That is, the zirconium hydroxide powder is kneaded with an appropriate amount of water and phosphoric acid, and a basic zirconium salt is added to the kneaded product, which is then molded, dried and fired to form a zirconium phosphate molded product. When formed, a molded product having excellent fracture strength can be obtained by firing at a relatively low temperature without adding a reinforcing material that impairs acid resistance. Moreover, the molded product obtained by the low temperature firing in this way has a larger specific surface area than the conventional high temperature baked zirconium phosphate molded product, and can exhibit a sufficient function as a catalyst carrier. It has been confirmed that the specific surface area of the zirconium phosphate molded body having an absorption peak at 1635 cm -1 in the infrared spectrum is large.

【0016】本発明において、水酸化ジルコニウム粉体
に適量の水とリン酸とを混練した後、塩基性ジルコニウ
ム塩を添加することによって、優れた破壊強度を有する
リン酸ジルコニウム成型体が比較的低温の焼成で得られ
る理由については明きらかではない。しかし、水酸化ジ
ルコニウム粉体にリン酸を添加し混練することで、ジル
コニウムの2次、3次粒子からなる水酸化ジルコニウム
粉体の粗粒子が解膠されて、粒子が均質化し、次いで塩
基性ジルコニウム塩を添加することで、中和反応により
前記粒子が固定され、充填密度が高くなるのではないか
と推定される。また、ジルコニア粒子の均質化は成型体
の比表面積を大きくするのにも寄与すると思われる。
In the present invention, a zirconium phosphate molding having excellent breaking strength can be obtained at a relatively low temperature by kneading an appropriate amount of water and phosphoric acid with zirconium hydroxide powder and then adding a basic zirconium salt. It is not clear why it is obtained by firing. However, by adding phosphoric acid to the zirconium hydroxide powder and kneading, coarse particles of the zirconium hydroxide powder consisting of secondary and tertiary particles of zirconium are deflocculated and the particles are homogenized, and then basic It is presumed that the particles are fixed and the packing density is increased by the addition of the zirconium salt due to the neutralization reaction. Further, homogenization of zirconia particles is considered to contribute to increase the specific surface area of the molded body.

【0017】本発明において、水酸化ジルコニウム粉体
に添加するリン酸としては、正リン酸、亜リン酸、次亜
リン酸等あるが、正リン酸を使用することが望ましい。
In the present invention, the phosphoric acid added to the zirconium hydroxide powder includes orthophosphoric acid, phosphorous acid, hypophosphorous acid and the like, and it is preferable to use orthophosphoric acid.

【0018】リン酸の添加量は、成型体中の全ジルコニ
ウムのZrO2 換算量に対してP25 換算量で2〜5
重量%の範囲となるように添加した場合に好結果が得ら
れる。リン酸の添加量をP25換算量で2重量%未満と
した場合には、適切な破壊強度と高比表面積を有する成
型体が得られなくなり、逆に5重量%を超えると、破壊
強度は向上するが、P25の存在が過大となって、これ
によるシンタリング効果のために比表面積が低下してし
まう。
The amount of phosphoric acid added is 2 to 5 in terms of P 2 O 5 with respect to ZrO 2 in terms of all zirconium in the molded body.
Good results are obtained when added in the range of wt%. When the amount of phosphoric acid added is less than 2% by weight in terms of P 2 O 5 , a molded product having an appropriate fracture strength and a high specific surface area cannot be obtained. Conversely, when the amount exceeds 5% by weight, fracture occurs. Although the strength is improved, the presence of P 2 O 5 becomes excessive and the specific surface area decreases due to the sintering effect.

【0019】次に、水酸化ジルコニウム粉体と水とリン
酸の混練物に添加する塩基性ジルコニウム塩としては、
炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭
酸ジルコニウムカリウム等があげられるが、炭酸ジルコ
ニウムアンモニウムを使用することが望ましい。塩基性
ジルコニウム塩の添加量は、水酸化ジルコニウム粉体を
ZrO2 換算量に対して塩基性ジルコニウム塩をZrO
2 換算量で10〜30重量%の範囲となるように添加す
る。塩基性ジルコニウム塩の添加量がZrO2換算量で
10重量%未満とした場合、適切な破壊強度を有する成
型体が得られなくなり、逆に30重量%を超えると、N
3 の存在が過大となって、これにより成型体の破壊強
度が低下する。このように、リン酸や塩基性ジルコニウ
ム塩の添加量が適正でないと、本発明の目的とする80
2 /g以上の比表面積を有し、かつ十分な破壊強度を
有するリン酸ジルコニウム成型体をえることができなく
なる。また、塩基性ジルコニウム塩を添加してから加熱
混練するのは、ジルコニア粒子を均一に分散させるため
である。
Next, as the basic zirconium salt to be added to the kneaded product of zirconium hydroxide powder, water and phosphoric acid,
Examples thereof include zirconium carbonate, ammonium zirconium carbonate, potassium zirconium carbonate and the like, and it is preferable to use ammonium zirconium carbonate. The amount of the basic zirconium salt added is such that the zirconium hydroxide powder is added to the basic zirconium salt based on the ZrO 2 conversion amount.
2 Add in an amount of 10 to 30% by weight in terms of conversion amount. When the amount of the basic zirconium salt added is less than 10% by weight in terms of ZrO 2 , a molded body having an appropriate breaking strength cannot be obtained. Conversely, when it exceeds 30% by weight, N
The presence of H 3 becomes excessive, which reduces the breaking strength of the molded body. In this way, if the addition amount of phosphoric acid or basic zirconium salt is not proper, the object of the present invention is 80.
It becomes impossible to obtain a zirconium phosphate molded product having a specific surface area of m 2 / g or more and having sufficient breaking strength. Moreover, the reason why the basic zirconium salt is added and then kneaded by heating is to uniformly disperse the zirconia particles.

【0020】本発明のリン酸ジルコニウム成型体を得る
ためには、上記の添加量の範囲で水酸化ジルコニウム粉
体に水とリン酸とを混練した後、塩基性ジルコニウム塩
溶液を添加し、加熱混練し、十分に可塑化した混練物を
所望の形状に成型し、乾燥し、これを400〜600℃
の温度で焼成する。
In order to obtain the molded zirconium phosphate of the present invention, the zirconium hydroxide powder is kneaded with water and phosphoric acid in the above-mentioned addition amount range, and then the basic zirconium salt solution is added and heated. The kneaded and sufficiently plasticized kneaded product is molded into a desired shape and dried, and this is 400 to 600 ° C.
Firing at a temperature of

【0021】混練物の成型は一般的な押出し成型機、製
丸機等を使用して行われる。成型体の形状は円筒状、四
ツ葉状、中空円筒状、球状等いかなる形状でも良い。焼
成温度を400〜600℃の範囲とするのは、400℃
以下の温度および600℃以上の温度では、1635c
-1に赤外線吸収スペクトルが認められず、80m2
g以上の比表面積値を得ることができないからである。
Molding of the kneaded product is carried out by using a general extrusion molding machine, a rounding machine or the like. The shape of the molded body may be any shape such as a cylindrical shape, a four-lobed shape, a hollow cylindrical shape, and a spherical shape. The firing temperature is set in the range of 400 to 600 ° C.
1635c at temperatures below and above 600 ° C
No infrared absorption spectrum was observed at m -1 and 80 m 2 /
This is because a specific surface area value of g or more cannot be obtained.

【0022】[0022]

【実施例】以下に本発明の実施例を比較例とともに述べ
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0023】なお、リン酸ジルコニウム成型体の比表面
積は窒素ガス吸着によるBET法により求め、赤外線ス
ペクトルはパーキンエルマ社製モデル1720Xを用い
て求め、破壊強度は木屋式硬度計を用いて求めた。
The specific surface area of the zirconium phosphate molded body was determined by the BET method using nitrogen gas adsorption, the infrared spectrum was determined using Model 1720X manufactured by Perkin Elma Co., and the breaking strength was determined using a Kiya hardness meter.

【0024】(実施例1)水酸化ジルコニウム粉体(Z
rO2 として65重量%含む工業試薬)1500gに水
200mlと正リン酸(1級試薬)41gとを加温ジャ
ケット付ニーダーの中で混練した後、炭酸ジルコニウム
アンモニウム溶液(ZrO2 として65重量%含む工業
試薬)1220gを加え十分可塑化するまで混練して混
練物を得た。なお、水酸化ジルコニウム粉体と炭酸ジル
コニウムアンモニウム溶液のZrO2 換算量に対し、正
リン酸の量はP25換算量で2重量%であり、水酸化ジ
ルコニウム粉体のZrO2 換算量に対しての炭酸ジルコ
ニウムアンモニウム溶液の添加量はZrO2 換算量で2
0重量%であり、混練物の500℃での強熱減量は48
%であった。次いで、1.5mmφのダイスを有する押
出し成型機にて前記混練物を成型し、100℃の温度で
15時間乾燥し、該乾燥物を500℃で2時間焼成して
リン酸ジルコニウム成型体Aを得た。得られた成型体A
についての性状を求めたところ、比表面積は91m2
g、破壊強度は0.6kg/mmであり、赤外線スペク
トルについても1635cm-1に吸収ピークが有ること
も確認された。本実施例の結果より比表面積および破壊
強度はともに触媒坦体として要求される値を満足し、触
媒坦体として十分適用可能であることが判る。
(Example 1) Zirconium hydroxide powder (Z
1500 g of an industrial reagent containing 65% by weight of rO 2 ) and 200 g of water and 41 g of orthophosphoric acid (first-grade reagent) were kneaded in a kneader with a heating jacket, and then a zirconium ammonium carbonate solution (containing 65% by weight of ZrO 2) (Industrial reagent) 1220 g was added and kneaded until sufficiently plasticized to obtain a kneaded product. Incidentally, with respect to ZrO 2 equivalent amount of zirconium hydroxide powder and ammonium zirconium carbonate solution, the amount of orthophosphoric acid is 2% by weight P 2 O 5 equivalent amount, in terms of ZrO 2 of zirconium hydroxide powder On the other hand, the amount of the ammonium zirconium carbonate solution added is 2 in terms of ZrO 2.
It is 0% by weight, and the loss on ignition of the kneaded material at 500 ° C. is 48.
%Met. Next, the kneaded product is molded with an extruder having a 1.5 mmφ die and dried at a temperature of 100 ° C. for 15 hours, and the dried product is fired at 500 ° C. for 2 hours to obtain a zirconium phosphate molded body A. Obtained. Obtained molded body A
The specific surface area was 91 m 2 /
g, breaking strength was 0.6 kg / mm, and it was also confirmed that the infrared spectrum had an absorption peak at 1635 cm -1 . From the results of this example, it can be seen that both the specific surface area and the fracture strength satisfy the values required for the catalyst carrier and are sufficiently applicable as the catalyst carrier.

【0025】(実施例2)水酸化ジルコニウム粉体と炭
酸ジルコニウムアンモニウム溶液のZrO2 換算量に対
して添加する正リン酸の添加量を酸化物換算量で5重量
%としたこと以外は、実施例1に示す方法とほぼ同様の
方法でリン酸ジルコニウム成型体Bを得た。得られた該
成型体Bについて性状を調べたところ、比表面積は84
2 /gであり、破壊強度は0.8kg/mmであり、
赤外線スペクトルについても1635cm-1に吸収ピー
クが有ることも確認された。
[0025] Except (Example 2) that the amount of orthophosphoric acid to be added to ZrO 2 equivalent amount of zirconium hydroxide powder and a zirconium ammonium carbonate solution was 5 wt% in terms of oxide amount, performed A zirconium phosphate molded body B was obtained by a method substantially similar to the method shown in Example 1. When the properties of the obtained molded product B were examined, the specific surface area was 84.
m 2 / g, breaking strength is 0.8 kg / mm,
It was also confirmed that the infrared spectrum had an absorption peak at 1635 cm -1 .

【0026】本実施例1の結果より水酸化ジルコニウム
粉体と炭酸ジルコニウムアンモニウム溶液のZrO2
算量に対して添加する正リン酸量を酸化物換算量で2〜
5重量%の範囲であれば比表面積および破壊強度は共に
触媒坦体として要求される値を満足できることが判る。
From the results of Example 1, the amount of orthophosphoric acid added to the ZrO 2 conversion amount of the zirconium hydroxide powder and the zirconium ammonium carbonate solution was 2 to the oxide conversion amount.
It can be seen that both the specific surface area and the breaking strength can satisfy the values required as the catalyst carrier within the range of 5% by weight.

【0027】(実施例3〜4)水酸化ジルコニウム粉体
のZrO2 換算量に対して炭酸ジルコニウムアンモニウ
ム溶液の添加量をZrO2 換算量で10重量%、30重
量%としたこと以外は、実施例1に示す方法とほぼ同様
の方法でリン酸ジルコニウム成型体C、Dを得た。得ら
れた該成型体C、Dについて性状を求めたところ、比表
面積はそれぞれ86m2/g、89m2/gであり、破壊
強度はそれぞれ0.7kg/mm、0.5kg/mmで
あり、赤外線スペクトルもともに1635cm-1に吸収
ピークが有ることが確認された。
(Examples 3 to 4) Except that the amount of zirconium ammonium carbonate solution added was 10% by weight and 30% by weight in terms of ZrO 2 with respect to the amount of ZrO 2 in zirconium hydroxide powder. Zirconium phosphate molded bodies C and D were obtained by a method substantially similar to the method shown in Example 1. When the properties of the obtained molded products C and D were determined, the specific surface areas were 86 m 2 / g and 89 m 2 / g, respectively, and the breaking strengths were 0.7 kg / mm and 0.5 kg / mm, respectively. It was confirmed that the infrared spectrum also had an absorption peak at 1635 cm -1 .

【0028】実施例3〜4の結果より、水酸化ジルコニ
ウム粉体のZrO2 換算量に対しての炭酸ジルコニウム
アンモニウム溶液の添加量をZrO2 換算量で10〜3
0重量%の範囲であれば比表面積および破壊強度は共に
触媒坦体として要求される値を満足できることが判る。
From the results of Examples 3 to 4, the addition amount of the ammonium zirconium carbonate solution to the ZrO 2 conversion amount of the zirconium hydroxide powder was 10 to 3 in ZrO 2 conversion amount.
It can be understood that both the specific surface area and the breaking strength can satisfy the values required as the catalyst carrier within the range of 0% by weight.

【0029】(比較例1〜2)水酸化ジルコニウム粉体
と炭酸ジルコニウムアンモニウム溶液のZrO2 換算量
に対して、これに添加する正リン酸の添加量を酸化物換
算量で1重量%、7重量%としたこと以外は、実施例1
に示す方法とほぼ同様の方法でリン酸ジルコニウム成型
体E、Fを得た。得られた該成型体E、Fについて性状
を求めたところ、比表面積はそれぞれ72m2/g、4
5m2/gであり、破壊強度は0.4kg/mm、1.
0kg/mmであり、赤外線スペクトルについても16
35cm-1に吸収ピークが有ることが確認された。
Comparative Examples 1 and 2 The amount of orthophosphoric acid added to the zirconium hydroxide powder and the zirconium ammonium carbonate solution in terms of ZrO 2 was 1% by weight in terms of oxide, and 7 Example 1 except that the weight percent was used.
Zirconium phosphate molded bodies E and F were obtained by a method substantially similar to the method shown in FIG. When the properties of the obtained molded products E and F were determined, the specific surface areas were 72 m 2 / g and 4 respectively.
It is 5 m 2 / g and the breaking strength is 0.4 kg / mm.
0 kg / mm, and the infrared spectrum is 16
It was confirmed that there was an absorption peak at 35 cm -1 .

【0030】比較例1〜2の結果より、水酸化ジルコニ
ウム粉体と炭酸ジルコニウムアンモニウム溶液のZrO
2 換算量に対して正リン酸の添加量を酸化物換算量で2
重量%以下にすると、実施例1のリン酸ジルコニウム成
型体Aと比べ比表面積は減少し、破壊強度は著しく劣
り、触媒坦体として要求される値を十分満足できないこ
とが判り、逆に5重量%以上にすると、破壊強度は強く
なるが、比表面積は著しく小さくなるため、ともに触媒
坦体としては不適当であることが明きらかである。
From the results of Comparative Examples 1 and 2, ZrO 2 of zirconium hydroxide powder and zirconium ammonium carbonate solution was added.
The addition amount of orthophosphoric acid is 2 in terms of oxide in 2 equivalent
When the content is less than 5% by weight, the specific surface area is reduced as compared with the zirconium phosphate molded article A of Example 1, and the breaking strength is remarkably inferior, and it is found that the value required as a catalyst carrier cannot be sufficiently satisfied. When the content is more than 100%, the fracture strength becomes strong, but the specific surface area becomes remarkably small. Therefore, it is clear that both are not suitable as a catalyst carrier.

【0031】(比較例3〜4)水酸化ジルコニウム粉体
のZrO2 換算量に対して炭酸ジルコニウムアンモニウ
ム溶液の添加量をZrO2 換算量で5重量%、40重量
%と変化させたこと以外は実施例1に示す方法とほぼ同
様の方法でリン酸ジルコニウム成型体G、Hを得た。得
られた該成型体G、Hについて性状を調べたところ、比
表面積はそれぞれ84m2/g、88m2/gであり、破
壊強度は0.4kg/mm、0.3kg/mmであり、
赤外線スペクトルもともに1635cm-1に吸収ピーク
が有ることが確認された。
Comparative Examples 3 to 4 Except that the amount of the zirconium ammonium carbonate solution added was changed to 5% by weight and 40% by weight in terms of ZrO 2 with respect to the amount of ZrO 2 in zirconium hydroxide powder. Zirconium phosphate molded bodies G and H were obtained by a method substantially similar to the method shown in Example 1. The resulting molded mold bodies G, was examined the properties for H, each specific surface area 84m 2 / g, a 88m 2 / g, breaking strength was 0.4kg / mm, 0.3kg / mm,
It was confirmed that the infrared spectrum also had an absorption peak at 1635 cm -1 .

【0032】比較例3〜4の結果より、水酸化ジルコニ
ウム粉体のZrO2 換算量に対して炭酸ジルコニウムア
ンモニウム溶液の添加量をZrO2 換算量で10重量%
以下または30重量%以上にすると、破壊強度がともに
触媒坦体として要求される値を満足できないことが判
る。
From the results of Comparative Examples 3 to 4, the amount of the zirconium ammonium carbonate solution added was 10% by weight in terms of ZrO 2 with respect to the amount of zirconium hydroxide powder in terms of ZrO 2.
It can be seen that when the content is less than or equal to 30% by weight or more, the breaking strength cannot satisfy the values required as the catalyst carrier.

【0033】(比較例5〜6)リン酸ジルコニウム成型
乾燥物の焼成温度を300℃、700℃と変化させてそ
れぞれ2時間焼成したこと以外は、実施例1に示す方法
とほぼ同様の方法でリン酸ジルコニウム成型体I、Jを
得た。得られた該成型体I、Jについて性状を調べたと
ころ、比表面積はそれぞれ98m2/g、34m2/gで
あり、破壊強度はそれぞれ0.4kg/mm、1.2k
g/mmであり、赤外線スペクトルの1635cm-1
現れる吸収ピークはリン酸ジルコニウム成型体Jについ
ては確認されたが、リン酸ジルコニウム成型体Iについ
ては確認できなかった。
(Comparative Examples 5 to 6) Almost the same as the method shown in Example 1 except that the zirconium phosphate molded dried product was calcined for 2 hours while changing the calcining temperature to 300 ° C and 700 ° C. Zirconium phosphate molded bodies I and J were obtained. The resulting molded mold bodies I, were examined the properties for J, respectively the specific surface area of 98m 2 / g, a 34m 2 / g, respectively breaking strength 0.4 kg / mm, 1.2k
It was g / mm, and the absorption peak appearing at 1635 cm -1 in the infrared spectrum was confirmed for the zirconium phosphate molded body J, but not for the zirconium phosphate molded body I.

【0034】比較例5〜6の結果より、リン酸ジルコニ
ウム成型乾燥物の焼成温度を本発明の範囲の焼成温度よ
り低くすると、比表面積は大きくなるものの、破壊強度
は劣り、赤外線スペクトルの1635cm-1に現れる吸
収ピークについては確認できず、逆に高くすると、破壊
強度は強くなるが、比表面積は著しく小さくなり、触媒
坦体として要求される値を満足できないことが判る。
From the results of Comparative Examples 5 to 6, when the calcining temperature of the dried zirconium phosphate molded product is lower than the calcining temperature within the range of the present invention, the specific surface area increases, but the breaking strength is inferior and the infrared spectrum is 1635 cm −. The absorption peak appearing in 1 cannot be confirmed, and conversely, when it is increased, the fracture strength is increased, but the specific surface area is remarkably reduced, and it is understood that the value required as the catalyst carrier cannot be satisfied.

【0035】(比較例7)水酸化ジルコニウム粉体に水
と正リン酸と炭酸ジルコニウムアンモニウム溶液とを加
え、加温ジャケット付ニーダー中で混練した以外は、実
施例1に示す方法とほぼ同様の方法でリン酸ジルコニウ
ム成型体Kを得た。得られた該成型体Kについて性状を
求めたところ、比表面積は86m2 /gであり、破壊強
度は0.3kg/mmであり、赤外線スペクトルの16
35cm-1に吸収ピークがあることが確認された。
Comparative Example 7 Almost the same as the method shown in Example 1 except that water, orthophosphoric acid and ammonium zirconium carbonate solution were added to zirconium hydroxide powder and kneaded in a kneader with a heating jacket. A zirconium phosphate molded body K was obtained by the method. When the properties of the obtained molded body K were determined, the specific surface area was 86 m 2 / g, the breaking strength was 0.3 kg / mm, and the infrared spectrum of 16
It was confirmed that there was an absorption peak at 35 cm -1 .

【0036】比較例7の結果より、水酸ジルコニウム粉
体に水と正リン酸と炭酸ジルコニウムアンモニウム溶液
とを一度に全て加える製造方法では、破壊強度が著しく
劣ることが明きらかであり、触媒坦体として要求される
値を満足できないことが判る。
From the results of Comparative Example 7, it is clear that the breaking strength is remarkably inferior in the production method in which water, orthophosphoric acid and ammonium zirconium carbonate solution are added all at once to the zirconium hydroxide powder. It is understood that the value required as a carrier cannot be satisfied.

【0037】[0037]

【発明の効果】本発明で開示したように、水酸化ジルコ
ニウム粉体に適量の水とリン酸とを添加して混練した
後、塩基性ジルコニウム塩を添加して成型し、乾燥し、
焼成して得られたリン酸ジルコニウム成型体は、無機質
補強材などの耐酸性を阻害する要因となる物質を含むこ
となく、赤外線スペクトルで1635cm-1に特有の吸
収ピークを有し、80m2 /g以上の高比表面積と0.
5kg/mm以上の優れた破壊強度を有する。
As disclosed in the present invention, an appropriate amount of water and phosphoric acid are added to a zirconium hydroxide powder and kneaded, and then a basic zirconium salt is added, followed by molding and drying.
The zirconium phosphate molded product obtained by firing has an absorption peak peculiar to 1635 cm −1 in the infrared spectrum, without containing a substance such as an inorganic reinforcing material that inhibits acid resistance, and 80 m 2 / high specific surface area of not less than g and 0.
It has an excellent breaking strength of 5 kg / mm or more.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ジルコニウム粉体とリン酸と塩基
性ジルコニウム塩とよりなる混合成型物を焼成してなる
成型体であって、その比表面積が80m2 /g以上であ
り、赤外線スペクトルで1635cm-1に吸収ピークを
有することを特徴とする触媒担体用リン酸ジルコニウム
成型体。
1. A molded product obtained by firing a mixed molded product of zirconium hydroxide powder, phosphoric acid and a basic zirconium salt, and having a specific surface area of 80 m 2 / g or more, and an infrared spectrum. A zirconium phosphate molding for a catalyst carrier, which has an absorption peak at 1635 cm -1 .
【請求項2】 水酸化ジルコニウム粉体にリン酸と水を
添加して混練した後、塩基性ジルコニウム塩溶液を添加
して可塑化するまで混練し、成型して乾燥し、次いで4
00〜600℃の温度範囲において焼成することを特徴
とする触媒担体用リン酸ジルコニウム成型体の製造方
法。
2. Zirconium hydroxide powder is added with phosphoric acid and water and kneaded, then a basic zirconium salt solution is added and kneaded until plasticized, molded and dried, and then 4
A method for producing a zirconium phosphate molded body for a catalyst carrier, which comprises calcination in a temperature range of 00 to 600 ° C.
【請求項3】 リン酸の添加量が、成型体中の全ジルコ
ニウムのZrO2 換算量に対してP25換算量で2〜5
重量%の範囲であり、塩基性ジルコニウム塩溶液の添加
量が、水酸化ジルコニウム粉体のZrO2 換算量に対し
ZrO2 換算量で10〜30重量%の範囲であることを
特徴とする請求項2に記載の触媒担体用リン酸ジルコニ
ウム成型体の製造方法。
Amount of wherein phosphoric acid is in terms of P 2 O 5 weight relative to ZrO 2 in terms of total zirconium in the molded materials 25
In the range of weight percent, the claims amount of basic zirconium salt solution, and wherein the relative terms of ZrO 2 of zirconium hydroxide powder is in the range of 10 to 30 wt% in terms of ZrO 2 amount 2. The method for producing a zirconium phosphate molded body for a catalyst carrier according to 2.
JP15647694A 1994-06-16 1994-06-16 Zirconium phosphate molded article for catalyst carrier and method for producing the same Expired - Fee Related JP3531217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15647694A JP3531217B2 (en) 1994-06-16 1994-06-16 Zirconium phosphate molded article for catalyst carrier and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15647694A JP3531217B2 (en) 1994-06-16 1994-06-16 Zirconium phosphate molded article for catalyst carrier and method for producing the same

Publications (2)

Publication Number Publication Date
JPH081004A true JPH081004A (en) 1996-01-09
JP3531217B2 JP3531217B2 (en) 2004-05-24

Family

ID=15628595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15647694A Expired - Fee Related JP3531217B2 (en) 1994-06-16 1994-06-16 Zirconium phosphate molded article for catalyst carrier and method for producing the same

Country Status (1)

Country Link
JP (1) JP3531217B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166150A (en) * 2000-08-17 2002-06-11 Inst Fr Petrole Distribution apparatus causing multiphase mixing and reaction vessel relevant thereto
EP1623758A1 (en) * 2003-04-18 2006-02-08 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166150A (en) * 2000-08-17 2002-06-11 Inst Fr Petrole Distribution apparatus causing multiphase mixing and reaction vessel relevant thereto
JP4721086B2 (en) * 2000-08-17 2011-07-13 イエフペ エネルジ ヌヴェル Distributors and associated reactors that produce multiphase mixing
EP1623758A1 (en) * 2003-04-18 2006-02-08 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
EP1623758A4 (en) * 2003-04-18 2007-08-22 Mitsubishi Heavy Ind Ltd Catalyst for dimethyl carbonate synthesis
US7674742B2 (en) 2003-04-18 2010-03-09 Mitsubishi Heavy Industries, Ltd. Catalyst for dimethyl carbonate synthesis
US7790914B2 (en) 2003-04-18 2010-09-07 Mitsubishi Heavy Industries, Ltd. Method for dimethyl carbonate synthesis

Also Published As

Publication number Publication date
JP3531217B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
KR100418225B1 (en) Catalyst and process for removing organohalogen compounds
KR100322627B1 (en) Catalyst for removing organic halogen compounds, preparation method thereof and removal method of organic halogen compounds
EP1214971B1 (en) Process for the preparation of a catalyst for removing dioxin
CN109310949A (en) Monoblock type processing system for the mix waste gas including nitrogen oxides, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbon and perfluorochemical
JP3531217B2 (en) Zirconium phosphate molded article for catalyst carrier and method for producing the same
JP3312870B2 (en) Catalyst for removing organic halogen compound, method for preparing the same, and method for removing organic halogen compound
US6858562B1 (en) Catalyst for decomposing organic harmful substances and method for decomposing organic halides by use thereof
JPH04271835A (en) Catalyst for reducing nitrogen oxide from waste gas
JP2000000471A (en) Waste gas treating catalyst, waste gas treatment and treating device
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JPH08238418A (en) Decomposition treatment method for organic halogen compound
JPH0857323A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof
JP4578624B2 (en) Method for producing exhaust gas treatment catalyst
JP2002066336A (en) Organic halogen compound decomposition catalyst and its preparation process and application
JP3707503B2 (en) Decomposition catalyst for volatile organochlorine compounds
JP4182697B2 (en) Catalyst for decomposing chlorinated organic compounds and process for producing the same
KR102121551B1 (en) Complex Metal Oxides Catalyst for Removal of Volatile Organic Compounds
JP2004130156A (en) Photocatalyst carrying granule and its manufacturing method
JP3598539B2 (en) Catalyst for decomposition of volatile organic chlorine compounds
JP2000042409A (en) Catalyst for decomposing organochlorine compound and treatment of combustion exhaust gas
JP3329393B2 (en) Zirconia molded carrier for chlorofluorocarbon gas decomposition catalyst and method for producing the same
JP2004130179A (en) Catalyst and method for decomposing chlorinated organic compound
JP3570136B2 (en) Method for treating gas containing organic halogen compound and catalyst for decomposing organic halogen compound
JPH10216480A (en) Treatment of waste gas and catalyst for treating waste gas
JPH0857322A (en) Catalyst for decomposition of volatile organic halogen compound and production thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040223

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees