JPH07986A - Method and device for treating water - Google Patents

Method and device for treating water

Info

Publication number
JPH07986A
JPH07986A JP5146536A JP14653693A JPH07986A JP H07986 A JPH07986 A JP H07986A JP 5146536 A JP5146536 A JP 5146536A JP 14653693 A JP14653693 A JP 14653693A JP H07986 A JPH07986 A JP H07986A
Authority
JP
Japan
Prior art keywords
carbon layer
activated carbon
backwashing
water
biological activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5146536A
Other languages
Japanese (ja)
Other versions
JP3243061B2 (en
Inventor
Nobuyoshi Umiga
賀 信 好 海
Koji Kanamaru
丸 公 二 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14653693A priority Critical patent/JP3243061B2/en
Publication of JPH07986A publication Critical patent/JPH07986A/en
Application granted granted Critical
Publication of JP3243061B2 publication Critical patent/JP3243061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To efficiently treat raw water by propagating microorganisms having a different time of alternation of generation for an appropriate time and activating the microorganisms. CONSTITUTION:This device is provided with a first biological activated carbon bed 3 in which the microorganisms having a relatively short generation alternation time is propagated and a second biological activated-carbon bed 4 in which the microorganisms having a relatively long generation alternation time is propagated. The first bed 3 is furnished with the air feed pipe 6 and backwashing pipe 8 for backwashing the bed at short time intervals, and the second bed 4 is provided with the air feed pipe 7 and backwashing pipe 9 for backwashing the bed at long time intervals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は汚染された原水を浄化し
て飲料水を生成するために上水道設備などに利用される
水処理装置に係わり、とりわけアンモニア性窒素が変動
する原水に対して安定した処理効果を得ることができる
水処理装置および水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment device used for water supply facilities and the like for purifying contaminated raw water to produce drinking water, and particularly stable to raw water in which ammonia nitrogen changes. The present invention relates to a water treatment device and a water treatment method capable of obtaining the above-mentioned treatment effect.

【0002】[0002]

【従来の技術】一般に上水道の水源は、湖沼および河川
の表流水または伏流水あるいは地下水などから得られ、
これらは原水と呼ばれる。通常、この原水には種々の物
質が溶解されており、また原水中には個体の微粒子、微
生物などが浮游しており、濁り、色および臭気などが混
入しているため、このままでは飲料水の用には供さな
い。そこで近年、原水に対する凝集沈澱、ろ過などの後
に高度浄水処理としてオゾン酸化を行い、原水中に含ま
れる有機物の酸化、脱臭、脱色などを行い、ついで活性
炭を用いてオゾン酸化生成物を除く方法が進められてい
る。特に、原水に対するオゾン処理後の活性炭処理にお
いて、オゾン酸化生成物を栄養源とした微生物が生育
し、活性炭がいわゆる生物活性炭となり、原水中の多く
の有機物が除去される。活性炭が生物活性炭に移行した
場合、活性炭の寿命も10倍以上となるといわれてい
る。
2. Description of the Related Art Generally, water sources for water supply are obtained from surface water or underground water of lakes and rivers, groundwater, etc.
These are called raw water. Usually, various substances are dissolved in this raw water, and individual fine particles, microorganisms, etc. float in the raw water, and turbidity, color, odor, etc. are mixed in. Not for use. Therefore, in recent years, a method of performing ozone oxidation as advanced water purification treatment after coagulating sedimentation of raw water, filtration, etc. to oxidize, deodorize, decolorize organic substances contained in the raw water, and then remove the ozone oxidation product using activated carbon has been proposed. It is being advanced. In particular, in the treatment of activated carbon after the ozone treatment of raw water, microorganisms using ozone oxidation products as nutrient sources grow, the activated carbon becomes so-called biological activated carbon, and many organic substances in the raw water are removed. It is said that when activated carbon is transferred to biological activated carbon, the life of activated carbon will be 10 times or more.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、生物活
性炭の使用については種々の問題がある。特に原水中の
アンモニア濃度が変動する場合、生物活性炭の運用に対
して生物処理が十分対応できず、生物活性炭の実用化に
問題が生じている。
However, there are various problems in using bioactivated carbon. In particular, when the concentration of ammonia in the raw water fluctuates, the biological treatment cannot sufficiently cope with the operation of the biological activated carbon, which causes a problem in the practical application of the biological activated carbon.

【0004】本発明はこのような点を考慮してなされた
ものであり、近年利用されはじめた生物活性炭を用いる
とともに原水中のアンモニア濃度が変動してもこれを確
実に除去することができる水処理装置および水処理方法
を提供することを目的とする。
The present invention has been made in view of the above points, and it is possible to use biologically activated carbon that has recently begun to be used and to reliably remove ammonia even if the concentration of ammonia in the raw water changes. An object is to provide a treatment device and a water treatment method.

【0005】[0005]

【課題を解決するための手段】本発明は、世代交替時間
が比較的短い微生物が増殖する第1の生物活性炭層と、
世代交替時間が比較的長い微生物が増殖する第2の生物
活性炭層と、前記第1の生物活性炭層に設けられ、所定
の第1の間隔で第1の生物活性炭層を逆洗浄する第1の
逆洗装置と、前記第2の生物活性炭層に設けられ、第1
の間隔より長い第2の間隔で第2の生物活性炭層を逆洗
浄する第2の逆洗装置と、を備えたことを特徴とする水
処理装置、および上記記載の水処理装置を用いた水処理
方法において、所定の第1の間隔毎に通水を停止して第
1の逆洗装置により第1の生物活性炭層を逆洗浄すると
ともに、第1の間隔より長い第2の間隔毎に通水を停止
して第2の逆洗装置により第2の生物活性炭層を逆洗浄
することを特徴とする水処理方法である。
The present invention provides a first bioactive carbon layer in which a microorganism having a relatively short generation alternation time grows,
A second bioactive carbon layer in which a microorganism having a relatively long generation alternation time grows, and a first reverse layer provided in the first bioactive carbon layer, which backwashes the first bioactive carbon layer at predetermined first intervals. A washing device and a first bioactive carbon layer,
A second backwashing device for backwashing the second biological activated carbon layer at a second interval longer than the interval of, and water using the water treatment device described above. In the treatment method, the water flow is stopped at a predetermined first interval, the first biowashing device is backwashed by the first backwash device, and the water is passed at a second interval longer than the first interval. The water treatment method is characterized in that the water is stopped and the second bioactive carbon layer is backwashed by the second backwashing device.

【0006】[0006]

【作用】所定の第1間隔毎に原水の流入を停止して第1
の逆洗装置により第1の生物活性炭層を逆洗浄するとと
もに、第1の間隔より長い第2の間隔毎に原水の流入を
停止して第2の逆洗装置により第2の生物活性炭層を逆
洗浄することにより、各生物活性炭層内において内部で
増殖する微生物を適切な期間、維持・活性化することが
できる。
[Function] The inflow of raw water is stopped at predetermined first intervals, and the first
Backwashing the first bioactive carbon layer with the backwashing device described above, stopping the inflow of raw water at every second interval longer than the first interval, and removing the second bioactive carbon layer with the second backwashing device. By backwashing, it is possible to maintain and activate the microorganisms that grow inside each bioactive carbon layer for an appropriate period.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1乃至図3は本発明による水処理装置お
よび水処理方法の第1の実施例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3 are views showing a first embodiment of a water treatment apparatus and a water treatment method according to the present invention.

【0008】まず、図1および図2により本発明の基本
的原理について説明する。
First, the basic principle of the present invention will be described with reference to FIGS.

【0009】本発明は、後述のように水処理装置の生物
活性炭層を2つに分割して、原水中の汚染有機物の除去
とアンモニア性窒素の除去を完全に行わせるものであ
る。橋本、須藤編著「新しい活性汚泥法」(産業用水調
査会)のP.34によれば、微生物の代謝、つまり世代
交替の増殖速度(世代交替時間)は有機物を除去するB
OD資化菌(Phodopseudomonas sp
heroides)では34℃で2.4時間であるが、
硝化菌(Nitrosomonas sp.)は25℃
で12.7時間となっている。
In the present invention, as will be described later, the biological activated carbon layer of the water treatment device is divided into two parts so that the removal of polluted organic substances and the removal of ammoniacal nitrogen in the raw water are carried out completely. P. of “New Activated Sludge Method” (Industrial Water Research Committee), edited by Hashimoto and Sudo. 34, the metabolism of microorganisms, that is, the growth rate of generation alternation (generation alternation time) is B to remove organic matter.
OD assimilating bacteria (Phodopseudomonas sp
for 34 hours at 34 ° C,
Nitrifying bacteria (Nitrosomonas sp.) At 25 ° C
It has been 12.7 hours.

【0010】このように本質的に硝化菌の世代交替の増
殖速度は遅いので、従来のように生物活性炭層を1層に
した場合、活性炭の目ずまり防止および後生生物の生育
防止などのために逆洗を頻繁に行うとBOD資化菌は生
育しても世代交替の遅い硝化菌は洗い流されてしまう。
このためアンモニア性窒素が原水中に存在する場合、あ
るいは原水中のアンモニア性窒素濃度が急に上昇した場
合、原水を確実に処理できない場合があった。その一例
を海賀らの「オゾンと生物活性炭による高度浄水処理プ
ラント実験」水道協会雑誌第60巻第6号2項(平成3
年6月)に基づいて図1に示す。図1に示すように、処
理水中のアンモニア性窒素濃度が変動していることがわ
かる。このようなアンモニア性窒素濃度の変動は処理工
程の管理のみならず、処理後の残留塩素の保持について
も影響を及ぼす。
As described above, the growth rate of generational change of nitrifying bacteria is essentially slow. Therefore, when a single layer of biological activated carbon is used as in the conventional case, it is necessary to prevent the activated carbon from clogging and the growth of metazoans. If backwashing is frequently performed, nitrifying bacteria with a slower generation change will be washed out even if BOD-assimilating bacteria grow.
Therefore, when the ammonia nitrogen exists in the raw water, or when the ammonia nitrogen concentration in the raw water suddenly rises, the raw water may not be treated reliably. An example of this is Kaiga et al., "Advanced water purification plant experiment using ozone and biological activated carbon," Water Supply Association, Vol. 60, No. 6, 2 (Heisei 3).
1) based on June, 1). As shown in FIG. 1, it can be seen that the ammonia nitrogen concentration in the treated water is fluctuating. Such fluctuations in the concentration of ammoniacal nitrogen affect not only the management of the treatment process but also the retention of residual chlorine after treatment.

【0011】これに対して本発明は、世代交替時間の異
なった微生物に合わせて、2つの生物活性炭層を用いた
水処理装置である。生物活性炭層による溶存有機物の除
去を活性炭内で調べた結果を海賀らの「オゾンと生物活
性炭による高度浄水処理プラント実験」水道協会雑誌第
60巻第6号2項(平成3年6月)に基づいて図2に示
す。
On the other hand, the present invention is a water treatment device using two bioactive carbon beds in accordance with microorganisms having different generation alternation times. The results of investigating the removal of dissolved organic matter by a bioactive carbon layer in activated carbon are described in Kaiga et al., "Advanced water purification plant experiment by ozone and bioactive carbon", Volume 60, No. 6, No. 2 of the Waterworks Association (June 1991). Based on FIG.

【0012】図2において、生物活性炭層の前段で凝
集、砂ろ過、オゾン処理を行った。図2に示すように、
紫外吸光で求めた有機物質の除去特性は、生物活性炭層
の上部50cmぐらいで顕著に表われている。生物活性
炭層内の微生物により溶存有機物が代謝され、生物活性
炭層上部に微生物の菌体が増加し、ろ過に対する圧力損
失が増加するため、通常1〜5日に一度逆洗を行い、活
性炭表面に付着増加した余分な菌体を剥離、層内から除
去することが必要となる。さらに長期間放置すると、微
生物菌体を食物として生育する後生生物が活性炭層内に
繁殖する。これら後生生物は自ら移動するため処理水中
へ漏れ出す事もあり、後生生物の世代交替を考え、後生
生物の繁殖に対して早めに逆洗を行うことが行われてい
る。つまり、生物活性炭層の利用に当たっては、有機物
を除去するBOD資化菌、アンモニアを硝化する硝化
菌、および微生物を食べ生育する後生生物の3種につい
て考察することが大切である。このうち、後生生物につ
いてはBOD資化菌と同様の時期に早期に排出すること
にすると、2つの異なる世代交替時間を有する微生物
(BOD資化菌等と硝化菌)に合致した生物活性炭層を
用いる必要がある。
In FIG. 2, coagulation, sand filtration, and ozone treatment were performed before the biological activated carbon layer. As shown in FIG.
The removal characteristics of organic substances obtained by ultraviolet absorption are remarkable in the upper 50 cm of the bioactive carbon layer. Since the dissolved organic matter is metabolized by the microorganisms in the bioactive carbon layer, the microbial cells increase in the upper part of the bioactive carbon layer, and the pressure loss for filtration increases, so backwashing is usually performed once every 1 to 5 days, and It is necessary to remove the extra bacterial cells with increased adhesion and remove them from the layer. If left for a longer period of time, metazoans that grow with microbial cells as food will propagate in the activated carbon layer. Since these metazoans move by themselves and may leak out into the treated water, in consideration of the alternation of metazoans, the backwashing is carried out early for the reproduction of metazoans. That is, in using the bioactive carbon layer, it is important to consider three types of BOD-assimilating bacteria that remove organic substances, nitrifying bacteria that nitrify ammonia, and metazoans that eat and grow microorganisms. Of these, if the metabolites are to be discharged early at the same time as the BOD-assimilating bacteria, a bioactive carbon layer that matches two microorganisms with different generation alternation times (BOD-assimilating bacteria and nitrifying bacteria) will be used. There is a need.

【0013】次に本発明の具体的構成を図3により説明
する。図3に示すように、水処理装置は単一の水槽1
と、水槽1内に配置され世代交替時間が比較的短い生物
が増殖する第1の生物活性炭層3と、水槽1内に配置さ
れ世代交替時間が比較的長い生物が増殖する第2の生物
活性炭層4とを備えている。また第1の生物活性炭層3
の入口側の入口室13には、オゾンにより酸化処理され
た被処理水の流入管2が接続され、第2の生物活性炭層
4の出口側の出口室15には、処理水の流出管5が接続
されている。
Next, a specific structure of the present invention will be described with reference to FIG. As shown in FIG. 3, the water treatment device has a single water tank 1.
And a first bioactive carbon layer 3 arranged in the aquarium 1 where organisms having a relatively short generation alternation time grow, and a second bioactive carbon layer 4 arranged in the aquarium 1 for organisms having a relatively long generation alternation time. It has and. Also, the first biological activated carbon layer 3
The inlet chamber 13 on the inlet side is connected to the inflow pipe 2 of the water to be treated that has been oxidized by ozone, and the outlet chamber 15 on the outlet side of the second biological activated carbon layer 4 is connected to the outflow pipe 5 of the treated water. Are connected.

【0014】またそれぞれの生物活性炭層3及び4に向
って空洗用のエアーを個別に供給できるように、第1の
生物活性炭層3と第2の生物活性炭層4との間の中間室
14および出口室15に、第1のエアー供給管6および
第2のエアー供給管7が各々設けられている。同様に中
間室14および出口室15に、逆洗水を供給するため第
1の逆洗管8および第2の逆洗管9が各々設けられてい
る。また、第1および第2のエアー供給管6,7と第1
および第2の逆洗管8,9には、空洗弁6A,7Aと逆
洗弁8A,9Aが各々取付けられている。
Further, an intermediate chamber 14 between the first bioactive carbon layer 3 and the second bioactive carbon layer 4 is provided so that air for air washing can be individually supplied to the respective bioactive carbon layers 3 and 4. A first air supply pipe 6 and a second air supply pipe 7 are provided in the outlet chamber 15, respectively. Similarly, the intermediate chamber 14 and the outlet chamber 15 are provided with a first backwash pipe 8 and a second backwash pipe 9, respectively, for supplying backwash water. In addition, the first and second air supply pipes 6, 7 and the first
The second backwash pipes 8 and 9 are provided with air wash valves 6A and 7A and backwash valves 8A and 9A, respectively.

【0015】さらにそれぞれの生物活性炭層3、4を逆
洗した場合の排水用として、入口室13および中間室1
4に第1の排水管10および第2の排水管11が各々設
けられ、これら各排水管10,11には排水弁10A,
11Aが各々取付けられている。
Further, the inlet chamber 13 and the intermediate chamber 1 are used for drainage when the respective biological activated carbon layers 3 and 4 are backwashed.
4 is provided with a first drain pipe 10 and a second drain pipe 11, respectively, and these drain pipes 10 and 11 have drain valves 10A,
11A are attached respectively.

【0016】図3に示す水処理装置において、第1の生
物活性炭層3では主に世代交替時間が比較的短いBOD
資化菌が増殖し、第2の生物活性炭層4では主に世代交
替時間が比較的長い硝化菌が増殖する。この場合、生物
活性炭による汚染物質の吸着除去だけでなく、原水中の
汚染有機物あるいはオゾン酸化を受け生物分解性に変化
した溶存有機物が第1の生物活性炭層3内でBOD資化
菌により浄化され、汚染物質の一つであるアンモニア性
窒素が第2の生物活性炭層4内で硝化される。
In the water treatment apparatus shown in FIG. 3, in the first biological activated carbon layer 3, BOD is mainly short in generation alternation time.
The assimilating bacterium grows, and the nitrifying bacterium mainly grows in the second biological activated carbon layer 4 mainly for a relatively long generation alternation time. In this case, not only the adsorption and removal of the pollutants by the bioactive carbon, but also the polluted organic substances in the raw water or the dissolved organic substances which have been changed to biodegradable by ozone oxidation are purified by the BOD assimilating bacteria in the first bioactive carbon layer 3. Ammonia nitrogen, which is one of the pollutants, is nitrified in the second bioactive carbon layer 4.

【0017】次にこのような構成からなる本実施例の作
用について説明する。
Next, the operation of this embodiment having such a configuration will be described.

【0018】世代交替時間の短いBOD資化菌は、第一
の生物活性炭層3の上層部で生物分解性有機物を代謝し
菌体として増殖する。この場合、BOD資化菌は活性炭
粒子を担体として増殖するが、BOD資化菌の菌体が粒
子間を埋め尽くし通水の圧力損失を大きくする。このた
め、1〜5日程度に1度、流入管2からの通水を止め、
空洗弁6Aと逆洗弁8Aを開きエアーと逆洗水を中間室
14内に送り第1の生物活性炭層3の逆洗浄を行う。こ
のとき、生物活性炭層3の活性炭粒子表面に生育付着し
た微生物のBOD資化菌は、粒子から剥離して逆洗排水
となって排水管10から排出される。次に、空洗弁6A
および逆洗弁8Aを閉じ、排水管10の排水弁10Aを
閉じ通常の通水を流入管2から行なうことにより、再び
粒子表面に付着している菌体が増殖をはじめ水を浄化す
ることになる。
The BOD-assimilating bacterium having a short generation alternation time metabolizes biodegradable organic substances in the upper layer of the first bioactive carbon layer 3 and proliferates as microbial cells. In this case, the BOD-assimilating bacterium grows using the activated carbon particles as a carrier, but the cells of the BOD-assimilating bacterium fill the spaces between the particles and increase the pressure loss of the water flow. Therefore, once every 1 to 5 days, stop the flow of water from the inflow pipe 2,
The air wash valve 6A and the backwash valve 8A are opened to send air and backwash water into the intermediate chamber 14 to backwash the first bioactive carbon layer 3. At this time, the BOD-assimilating bacterium of the microorganism that grows and adheres to the surface of the activated carbon particles of the biological activated carbon layer 3 is separated from the particles and becomes backwash drainage and is discharged from the drain pipe 10. Next, the flush valve 6A
By closing the backwash valve 8A and closing the drainage valve 10A of the drainage pipe 10 and performing normal water flow from the inflow pipe 2, bacterial cells adhering to the surface of particles again grow and purify water. Become.

【0019】なお原水中からはいる後生生物の卵、幼生
などが第1の生物活性炭層3内に入り、粒子間表面で増
殖しているBOD資化菌を食べ増殖する。これら後生生
物としては特に線虫、ミミズ、ミジンコなどが挙げられ
る。これらが処理水中に流出すると、肉眼で見えるため
種々の問題を起こすことになる。特に微生物の増殖は季
節的に変化するが、これらの現象を抑えるため後生生物
の世代交替時間より短い間隔で逆洗を行い、後生生物の
卵、幼生などを第3の生物活性炭層に生存できないよう
にする。
Eggs, larvae, etc. of metazoans entering from the raw water enter the first bioactive carbon layer 3 and eat and multiply the BOD-assimilating bacteria growing on the interparticle surface. These metazoans include nematodes, earthworms, daphnia and the like. If these flow out into the treated water, they are visible to the naked eye and cause various problems. In particular, the growth of microorganisms changes seasonally, but in order to suppress these phenomena, backwashing is performed at intervals shorter than the generation replacement time of metazoans so that eggs and larvae of metazoans cannot survive in the third bioactive carbon layer. To

【0020】本実施例においては、第1の生物活性炭層
3内で増殖するBOD資化菌と後生生物の世代交替時間
を比較的短い時間とみなし、第1の生物活性炭層3につ
いての逆洗浄を1〜5日程度の間隔で頻繁に行なうこと
により、BOD資化菌と後生生物を第1の生物活性炭層
3から定期的に排出することができる。
In the present embodiment, the generation alternation time of BOD-assimilating bacteria and metazoans growing in the first bioactive carbon layer 3 is regarded as a relatively short time, and the backwashing of the first bioactive carbon layer 3 is performed. Frequently performed at intervals of about 1 to 5 days, the BOD-assimilating bacteria and metazoans can be regularly discharged from the first biological activated carbon layer 3.

【0021】ところで、第1の生物活性炭層3における
短い間隔の逆洗はBOD資化菌、後生生物にとってはよ
いが、世代交替の遅い硝化菌にとっては都合が悪く、逆
洗によって洗い流されてしまう。河川水を原水とすると
ころでは、下水二次処理水、し尿処理水などの放流によ
り、アンモニア性窒素の大きな変動があり、一般には硝
化菌は育ちにくい。特に硝化菌はアンモニア性窒素、炭
酸塩などを栄養として生育できる菌体であり、BOD資
化菌より栄養源の少ないところで生育する菌となってい
る。
By the way, the backwashing with a short interval in the first biological activated carbon layer 3 is good for BOD-assimilating bacteria and metazoans, but is not convenient for nitrifying bacteria with a late generation change, and is washed away by backwashing. Where river water is used as raw water, sewage secondary treated water, human waste treated water, and the like cause large changes in ammonia nitrogen, and nitrifying bacteria generally do not grow easily. In particular, nitrifying bacteria are bacteria that can grow with ammonia nitrogen, carbonate, etc. as nutrients, and grow in places where there are fewer nutrient sources than BOD-assimilating bacteria.

【0022】本実施例では、図3に示すように、第2の
生物活性炭層4内を溶存有機物濃度のうすい条件とし、
この第2の生物活性炭層4内で硝化菌を増殖する。第2
の生物活性炭層4での硝化菌の増殖はゆっくりと起こる
ため、逆洗浄の回数は第1の生物活性炭層3に比べては
るかに少なく、数カ月に1度あるいは数週間に1度でよ
い。逆洗浄の操作は、第1の生物活性炭層3の場合と略
同様であり、流入管2からの通水を止め、空洗弁7Aお
よび逆洗弁9Aを開く。同時に排水弁11Aを開いて、
第2の生物活性炭層4内の硝化菌を活性炭粒子表面から
剥離して排水弁11Aから排出する。
In this embodiment, as shown in FIG. 3, the inside of the second bioactive carbon layer 4 is made into a thin condition of the concentration of dissolved organic matter,
The nitrifying bacteria are grown in the second bioactive carbon layer 4. Second
Since the nitrifying bacteria grow slowly in the biological activated carbon layer 4, the number of backwashing is far smaller than that in the first biological activated carbon layer 3, and may be once every several months or once every several weeks. The operation of backwashing is substantially the same as in the case of the first bioactive carbon layer 3, the water flow from the inflow pipe 2 is stopped, and the air wash valve 7A and the backwash valve 9A are opened. At the same time, open the drain valve 11A,
The nitrifying bacteria in the second biological activated carbon layer 4 are separated from the surface of the activated carbon particles and discharged from the drain valve 11A.

【0023】本実施例によれば、第1の生物活性炭層3
内で増殖するBOD資化菌により原水中の有機物を、ま
た第2の生物活性炭層4内で増殖する硝化菌により原水
中のアンモニアを各々確実に処理することができる。ま
たBOD資化菌、硝化菌、および第1の生物活性炭層3
内で増殖する後生生物について、各々の世代交替時間に
合わせた逆洗浄を行なうことにより、BOD資化菌、硝
化菌および後生生物を適切なタイミングで適宜外部へ排
出することができる。
According to this embodiment, the first bioactive carbon layer 3
The organic matter in the raw water can be surely treated by the BOD assimilating bacteria growing in the inside, and the ammonia in the raw water can be surely treated by the nitrifying bacteria growing in the second biological activated carbon layer 4. In addition, BOD-assimilating bacteria, nitrifying bacteria, and the first bioactive carbon layer 3
By performing backwashing on the metazoans that grow in the plant, the BOD-assimilating bacteria, nitrifying bacteria, and metazoans can be appropriately discharged to the outside at an appropriate timing.

【0024】次に、図4により本発明の第2の実施例に
ついて説明する。図4に示す第2の実施例は、第1の水
槽1A内に第1の生物活性炭層3を配置するとともに、
第1の水槽1Aを別個独立した第2の水槽1B内に第2
の生物活性炭層4を配置したものであり、他は図3に示
す第1の実施例と略同様である。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment shown in FIG. 4, while arranging the first biological activated carbon layer 3 in the first water tank 1A,
A second water tank 1B, which is a separate and independent second water tank 1A
The biological activated carbon layer 4 of FIG. 3 is arranged, and the other points are substantially the same as those of the first embodiment shown in FIG.

【0025】図4において第1の実施例と同一部分に
は、同一符号を付して詳細な説明を省略する。図4に示
すように、第1の水槽1A内には上方から順に、入口室
13、第1の生物活性炭層3、および第1の中間室14
Aが設けられ、第2の水槽1B内には上方から順に、第
2の中間室14B、第2の生物活性炭層4、および出口
室14が設けられている。また第1の中間室14Aと第
2の中間室14Bとの間は、ポンプ17aを有する連結
管17によって連結されている。
In FIG. 4, the same parts as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted. As shown in FIG. 4, in the first water tank 1A, the inlet chamber 13, the first biological activated carbon layer 3, and the first intermediate chamber 14 are arranged in this order from above.
A is provided, and in the second water tank 1B, a second intermediate chamber 14B, a second biological activated carbon layer 4, and an outlet chamber 14 are provided in order from above. Further, the first intermediate chamber 14A and the second intermediate chamber 14B are connected by a connecting pipe 17 having a pump 17a.

【0026】次に図5により本発明の第3の実施例につ
いて説明する。図5に示す第3の実施例は、中間室14
内に第2の生物活性炭層内の硝化菌に栄養源を供給する
ための栄養源供給配管12を配置したものであり、他は
図3に示す第1の実施例と略同一である。
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment shown in FIG.
A nutrient source supply pipe 12 for supplying a nutrient source to the nitrifying bacteria in the second biological activated carbon layer is arranged therein, and the others are substantially the same as those in the first embodiment shown in FIG.

【0027】本実施例によれば、特に原水中のアンモニ
ア濃度が変動したり、微生物の代謝について必須な条件
であるリン濃度が変動した場合に有効である。また、生
物活性炭の運転立ち上げ、若しくは逆洗浄後の運転立ち
上げ再開時に、増殖の遅い硝化菌を活性化させることが
できる。すなわち、必要時栄養源供給配管12からアン
モニア性窒素源として塩化アンモニウム、硝酸アンモニ
ウム、硫酸アンモニウムなどの塩水溶液を供給したり、
アンモニア水あるいはアンモニアガスを添加することに
より、原水中に長時間アンモニア性窒素が含まれない場
合、この添加した栄養源にて硝化菌を第2の生物活性炭
層4内で最低限生育、訓養させることができる。
This embodiment is particularly effective when the ammonia concentration in the raw water fluctuates or the phosphorus concentration, which is an essential condition for microbial metabolism, fluctuates. In addition, when the operation of the biological activated carbon is started up or restarted after backwashing, it is possible to activate the slow-growing nitrifying bacteria. That is, when necessary, a salt solution such as ammonium chloride, ammonium nitrate, or ammonium sulfate is supplied from the nutrient source supply pipe 12 as an ammonium nitrogen source,
When ammonia water or ammonia gas is not added to the raw water for a long time by adding ammonia water or ammonia gas, nitrifying bacteria are minimally grown and trained in the second biological activated carbon layer 4 by the added nutrient source. Can be made.

【0028】また、この栄養源供給配管12から、他の
栄養源としてリン酸、リン酸ナトリウムなどのリンも添
加することができる。湖沼水などを多く含む河川水で
は、春、秋の湖沼のプランクトン増殖、死滅、沈澱など
によって湖沼水中のリン濃度が大きく変動する。このた
めリン濃度の低下したとき、配管12より栄養源を添加
して硝化菌の活性炭層4内での生育を保つことができ
る。
From the nutrient source supply pipe 12, phosphorus such as phosphoric acid or sodium phosphate can be added as another nutrient source. In river water, which contains a lot of lake water, the phosphorus concentration in the lake water greatly fluctuates due to plankton multiplication, death, and precipitation in the lake in spring and autumn. Therefore, when the phosphorus concentration decreases, a nutrient source can be added from the pipe 12 to maintain the growth of nitrifying bacteria in the activated carbon layer 4.

【0029】次に図6により本発明の第4の実施例につ
いて説明する。図6に示す第4の実施例は、第2の中間
室14B内にアンモニア性窒素またはリンを供給するた
めの栄養源供給配管12を配置したものであり、他は図
4に示す第2の実施例と略同一である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment shown in FIG. 6 is one in which a nutrient source supply pipe 12 for supplying ammoniacal nitrogen or phosphorus is arranged in the second intermediate chamber 14B, and the other is the second embodiment shown in FIG. It is almost the same as the embodiment.

【0030】図6において、入口室13への流入管2、
連結管17、および出口室15からの流出管5の各々
に、アンモニア濃度およびリン濃度を測定する濃度計2
3A、23B、23Cが各々取付けられている。これら
濃度計23A、23B、23Cは、制御装置24に接続
されている。そして、この制御装置24は濃度計23
A、23B、23Cからの信号に基づいて注入器25を
制御して,所定量のアンモニア性窒素またはリンを栄養
源供給配管12から第2の中間室14B内に供給するこ
とができる。この場合、濃度計23Aおよび23Bから
の信号によって連続的に測定して濃度変化を調べ、不足
分を制御装置24で計算し栄養源供給配管12よりアン
モニア性窒素、もしくはリンを添加するとともに、硝化
菌の増殖および活性などを、濃度計23Cによって測定
し制御装置23によりフィードバック制御することによ
り、天候、水運用などによって大きく変動する原水水質
にアンモニア性窒素およびリンを適切に供給することが
できる。
In FIG. 6, the inflow pipe 2 into the inlet chamber 13,
A densitometer 2 for measuring the ammonia concentration and the phosphorus concentration in each of the connecting pipe 17 and the outflow pipe 5 from the outlet chamber 15.
3A, 23B and 23C are attached respectively. These densitometers 23A, 23B and 23C are connected to the control device 24. Then, the controller 24 controls the densitometer 23.
The injector 25 can be controlled based on the signals from A, 23B and 23C to supply a predetermined amount of ammonia nitrogen or phosphorus from the nutrient source supply pipe 12 into the second intermediate chamber 14B. In this case, the concentration change is continuously measured by the signals from the densitometers 23A and 23B, the change in concentration is investigated, the shortage is calculated by the controller 24, and ammonia nitrogen or phosphorus is added from the nutrient source supply pipe 12, and nitrification is performed. By measuring the growth and activity of the bacterium with the densitometer 23C and performing feedback control with the control device 23, ammonia nitrogen and phosphorus can be appropriately supplied to the raw water quality that greatly varies depending on the weather, water operation, and the like.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
世代交替時間が比較的短い微生物が増殖する第1の生物
活性炭層を短い間隔で逆洗浄し、世代交替時間が比較的
長い微生物が増殖する第2の生物活性炭層を長い間隔で
逆洗浄することにより、各生物活性炭層内において内部
で増殖する微生物を適切な期間維持・活性化させること
ができるとともに、適切なタイミングで外部へ排出する
ことができる。このため季節的もしくは天候等によって
大きく変動する原水に対して安定かつ効率的な水処理を
行なうことができる。
As described above, according to the present invention,
By backwashing the first bioactive carbon layer in which microorganisms having a relatively short generation alternation time grow at short intervals, and backwashing the second bioactive carbon layer in which microorganisms having a relatively long generation alternation time grow at long intervals, It is possible to maintain and activate the microorganisms that grow inside each of the biological activated carbon beds for an appropriate period of time and to discharge the microorganisms to the outside at an appropriate timing. Therefore, it is possible to perform stable and efficient water treatment for raw water that greatly changes depending on the season or the weather.

【図面の簡単な説明】[Brief description of drawings]

【図1】アンモニア性窒素の除去と水温との関係を示す
図。
FIG. 1 is a diagram showing a relationship between removal of ammonia nitrogen and water temperature.

【図2】生物活性炭層での吸光度変化を示す図。FIG. 2 is a diagram showing a change in absorbance in a biological activated carbon layer.

【図3】本発明の第1の実施例を示す概略図。FIG. 3 is a schematic diagram showing a first embodiment of the present invention.

【図4】本発明の第2の実施例を示す概略図。FIG. 4 is a schematic diagram showing a second embodiment of the present invention.

【図5】本発明の第3の実施例を示す概略図。FIG. 5 is a schematic diagram showing a third embodiment of the present invention.

【図6】本発明の第4の実施例を示す概略図。FIG. 6 is a schematic diagram showing a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 第1の生物活性炭層 4 第2の生物活性炭層 6 エアー供給管 7 エアー供給管 8 逆洗管 9 逆洗管 3 First biological activated carbon layer 4 Second biological activated carbon layer 6 Air supply pipe 7 Air supply pipe 8 Backwash pipe 9 Backwash pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 3/34 101 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C02F 3/34 101 D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】世代交替時間が比較的短い微生物が増殖す
る第1の生物活性炭層と、 世代交替時間が比較的長い微生物が増殖する第2の生物
活性炭層と、 前記第1の生物活性炭層に設けられ、所定の第1の間隔
で第1の生物活性炭層を逆洗浄する第1の逆洗装置と、 前記第2の生物活性炭層に設けられ、第1の間隔より長
い第2の間隔で第2の生物活性炭層を逆洗浄する第2の
逆洗装置と、を備えたことを特徴とする水処理装置。
1. A first bioactive carbon layer in which microorganisms having a relatively short generation alternation time grow, a second bioactive carbon layer in which microorganisms having a relatively long generation alternation time grow, and provided in the first bioactive carbon layer. A first backwashing device for backwashing the first biological activated carbon layer at a predetermined first interval; and a second backwashing device provided on the second biological activated carbon layer and having a second interval longer than the first interval. A second backwashing device for backwashing the second bioactive carbon layer, the water treatment device.
【請求項2】第2の生物活性炭層の上流側に、第2の生
物活性炭層の微生物に栄養源を供給するための栄養源供
給部を設けたことを特徴とする請求項1記載の水処理装
置。
2. The water according to claim 1, further comprising a nutrient source supply unit for supplying a nutrient source to the microorganisms of the second biological activated carbon layer, upstream of the second biological activated carbon layer. Processing equipment.
【請求項3】第2の生物活性炭層の上流側および下流側
に、第2の生物活性炭層の微生物に供給する栄養源の濃
度計を設け、各濃度計からの信号に基づいて栄養源供給
部からの供給量を制御する制御装置を設けたことを特徴
とする請求項2記載の水処理装置。
3. A concentration meter of a nutrient source for supplying microorganisms of the second biological activated carbon layer is provided on the upstream side and the downstream side of the second biological activated carbon layer, and the nutrient source is supplied based on a signal from each concentration meter. The water treatment device according to claim 2, further comprising a control device for controlling a supply amount from the section.
【請求項4】請求項1記載の水処理装置を用いた水処理
方法において、 所定の第1の間隔毎に通水を停止して第1の逆洗装置に
より第1の生物活性炭層を逆洗浄するとともに、 第1の間隔より長い第2の間隔毎に通水を停止して第2
の逆洗装置により第2の生物活性炭層を逆洗浄すること
を特徴とする水処理方法。
4. A water treatment method using the water treatment apparatus according to claim 1, wherein water flow is stopped at predetermined first intervals and the first bioactive carbon layer is reversed by a first backwashing apparatus. While cleaning, the water flow is stopped every second interval longer than the first interval to stop the second interval.
The method for water treatment characterized in that the second biological activated carbon layer is back-washed by the back-washing device.
JP14653693A 1993-06-17 1993-06-17 Water treatment device and water treatment method Expired - Fee Related JP3243061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14653693A JP3243061B2 (en) 1993-06-17 1993-06-17 Water treatment device and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14653693A JP3243061B2 (en) 1993-06-17 1993-06-17 Water treatment device and water treatment method

Publications (2)

Publication Number Publication Date
JPH07986A true JPH07986A (en) 1995-01-06
JP3243061B2 JP3243061B2 (en) 2002-01-07

Family

ID=15409873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14653693A Expired - Fee Related JP3243061B2 (en) 1993-06-17 1993-06-17 Water treatment device and water treatment method

Country Status (1)

Country Link
JP (1) JP3243061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188529A (en) * 2007-02-05 2008-08-21 Tsukishima Kikai Co Ltd Filtration unit and filter
JP2009172486A (en) * 2008-01-22 2009-08-06 Nippon Oil Corp Wastewater treatment apparatus
WO2017067882A1 (en) * 2015-10-22 2017-04-27 Luxembourg Institute Of Science And Technology (List) System for removing micropollutants from wastewater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188529A (en) * 2007-02-05 2008-08-21 Tsukishima Kikai Co Ltd Filtration unit and filter
JP2009172486A (en) * 2008-01-22 2009-08-06 Nippon Oil Corp Wastewater treatment apparatus
WO2017067882A1 (en) * 2015-10-22 2017-04-27 Luxembourg Institute Of Science And Technology (List) System for removing micropollutants from wastewater
LU92857B1 (en) * 2015-10-22 2017-05-02 Luxembourg Inst Science & Tech List System for removing micropollutants from wastewater

Also Published As

Publication number Publication date
JP3243061B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
Štembal et al. Removal of ammonia, iron and manganese from groundwaters of northern Croatia—pilot plant studies
US3709364A (en) Method and apparatus for denitrification of treated sewage
US7854843B2 (en) Wastewater treatment method
Hasan et al. Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system
KR100661815B1 (en) The sewage treatment system
US3928190A (en) Method of biological purification of sewage
JP3243061B2 (en) Water treatment device and water treatment method
JPH05169090A (en) Device for supplying nitrification bacteria in biological activated carbon treatment tower
CN108178303A (en) A kind of livestock breeding wastewater processing unit of more technology couplings
Jafarinejad Economic analysis: trickling filter/activated sludge or nitrifying trickling filter/activated sludge?
JPH07265891A (en) Water treating device
KR100510975B1 (en) Advanced wastewater and sewage teratment method using intermittent aeration process teratm with granular mediate
Abdelfatah et al. Recent Used Techniques and Promised Solutions for Biofiltration Treatment of Fish Wastewater
Farooq et al. Tertiary treatment of sewage effluent via pilot scale slow sand filtration
JPH08141587A (en) Method and apparatus for treating waste water
JPH0966294A (en) Water treatment apparatus
KR20010109976A (en) Nutrients removing method and apparatus from sewage and industrial waste water
JP2002143887A (en) Method and equipment for cleaning of water
Melcer et al. Upgrading effluent quality for lagoon-based systems
Rich Aerated lagoon technology
Rachmani Cost and Performance Comparison of a Membrane Bioreactor (MBR) Plant and a Bardenpho Plant for Wastewater Treatment
JP2682751B2 (en) Water treatment method
CN217351116U (en) Industrial fish culture water treatment system
CN108191059A (en) A kind of livestock breeding wastewater processing method of more technology couplings
JPH0342099A (en) High degree treatment of organic sewage

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees