JPH0797156B2 - Treatment method of radioactive waste liquid - Google Patents

Treatment method of radioactive waste liquid

Info

Publication number
JPH0797156B2
JPH0797156B2 JP4119287A JP4119287A JPH0797156B2 JP H0797156 B2 JPH0797156 B2 JP H0797156B2 JP 4119287 A JP4119287 A JP 4119287A JP 4119287 A JP4119287 A JP 4119287A JP H0797156 B2 JPH0797156 B2 JP H0797156B2
Authority
JP
Japan
Prior art keywords
waste liquid
cmp
extractant
tru
tbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4119287A
Other languages
Japanese (ja)
Other versions
JPS63208799A (en
Inventor
芳浩 遠藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP4119287A priority Critical patent/JPH0797156B2/en
Publication of JPS63208799A publication Critical patent/JPS63208799A/en
Publication of JPH0797156B2 publication Critical patent/JPH0797156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、超ウラン元素(TRU)を含む放射性廃液を
容易かつ経済的に処理する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for easily and economically treating a radioactive liquid waste containing transuranium element (TRU).

「従来の技術」 周知のように、使用済み核燃料に対しては、再処理によ
りU・Puを回収し、残りの高レベル放射性廃液をガラス
固化する方法が我が国において採択されている。廃棄物
の処理処分という点から、再処理工程で発生する中、低
レベル放射性廃液中に含まれる長寿命α放射体である超
ウラン元素(TRU)を分離し、中、低レベル廃液を非TRU
化するのがもっとも妥当な考え方であり、従来、イオン
交換法や沈澱法によりTRUの除染がなされている。
"Prior Art" As is well known, a method of recovering U / Pu from spent nuclear fuel by reprocessing and vitrifying the remaining high-level radioactive waste liquid has been adopted in Japan. From the viewpoint of waste treatment and disposal, transuranic element (TRU), which is a long-lived α-emitter contained in the low-level radioactive waste liquid generated during the reprocessing process, is separated, and the medium and low-level waste liquids are treated as non-TRU.
The most appropriate way of thinking is to decontaminate TRU, and conventionally, TRU has been decontaminated by the ion exchange method or the precipitation method.

「発明が解決しようとする問題点」 ところで、前記従来の放射性廃液の処理方法において、
放射性廃液は、長期的に毒性を持つTRUが除去されるの
で、これに対する貯蔵管理が極めて容易になる。しか
し、陰イオン交換法や沈澱法ではTRUを除去する操作が
簡便でなく、そのための装置も大掛かりなものとなるた
め、放射性廃液の処理に膨大なコストを要している。
"Problems to be Solved by the Invention" By the way, in the conventional method for treating radioactive waste liquid,
Since radioactive effluent removes toxic TRU in the long term, storage management for it becomes extremely easy. However, the anion exchange method or the precipitation method is not easy to remove TRU, and the equipment therefor becomes large-scaled, so that the treatment of radioactive waste liquid requires enormous cost.

このように、従来の放射性廃液の処理方法では、溶液中
からTRUを効率良く分離除去する手段が簡便でなく、膨
大なコストを要することになる。
As described above, in the conventional method for treating radioactive waste liquid, a means for efficiently separating and removing TRU from the solution is not simple and enormous cost is required.

この発明は上記事情に鑑みてなされたもので、その目的
はTRUを含む放射性廃液からTRUを容易かつ経済的に分離
除去し、α放射体を含む廃液固化体を低減することがで
きる放射性廃液の処理方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to easily and economically separate and remove TRU from a radioactive waste liquid containing TRU, and to reduce a waste liquid solidified product containing an α-emitter. It is to provide a processing method.

「問題点を解決するための手段」 この発明に係る放射性廃液の処理方法は、まず、高酸濃
度にした放射性廃液から陰イオン交換等によりU、Puを
分離除去し、U、Pu除去後のTRUを含む放射性廃液をTBP
(tributylphosphate)とCMP(carbamoyl methylene ph
osphonate)またはCMPO(carbamoyl methylene phosphi
ne oxide)との混合溶液を含浸させた固体支持体(カラ
ム)中を通過させることによりこの固体支持体に液中の
TRUを吸着させて前記廃液からTRUを除去するとともに、
前記固体支持体に吸着したTRUを溶離して回収すること
を特徴とする方法である。
"Means for Solving Problems" The method for treating radioactive waste liquid according to the present invention is such that first, U and Pu are separated and removed from the radioactive waste liquid having a high acid concentration by anion exchange or the like, and after removing U and Pu, TBP containing radioactive waste liquid containing TRU
(Tributylphosphate) and CMP (carbamoyl methylene ph)
osphonate) or CMPO (carbamoyl methylene phosphi
The solid support (column) impregnated with the mixed solution of
While adsorbing TRU and removing TRU from the waste liquid,
The method is characterized in that the TRU adsorbed on the solid support is eluted and recovered.

「作用」 前記構成におけるTBP(tributylphosphate)は、周知の
ように、ランタノイド元素およびアクチノイド元素の硝
酸溶液からの抽出が非常によく研究されており、核燃料
再処理に大規模に利用されている廉価な抽出剤である。
“Action” As is well known, TBP (tributylphosphate) in the above-mentioned structure has been well studied for extraction of lanthanoid element and actinoid element from a nitric acid solution, and is inexpensively used for nuclear fuel reprocessing on a large scale. It is an extractant.

また、CMP(carbamoyl methylene phosphonate)または
CMPO(carbamoyl methylene phosphine oxide)は、3
価、4価、6価のアクチノイド元素の抽出、特に3価の
アクチノイド元素の抽出が可能な化合物(二座配位系有
機リン化合物)として最近注目され始めた抽出剤である
が、大変高価なものである。
Also, CMP (carbamoyl methylene phosphonate) or
CMPO (carbamoyl methylene phosphine oxide) is 3
It is an extractant that has recently begun to attract attention as a compound (a bidentate organophosphorus compound) capable of extracting trivalent, tetravalent, and hexavalent actinide elements, particularly trivalent actinide elements, but it is very expensive. It is a thing.

本発明は、大変高価ではあるが、TRUの抽出効果の高いC
MPまたはCMPOにTBPを混合し、これを抽出剤として用い
れば、抽出効果を損なうことなくCMPまたはCMPOの消費
量を低減できること、さらに、係る抽出剤をイオン交換
樹脂等の固体支持体に含浸させることによって、高価な
抽出剤の流損失を防止するとともに、抽出剤中に抽出さ
せたTRUの固定が容易になること、という一連の知見に
基づいてなされたものである。
The present invention, although very expensive, has a high TRU extraction effect.
If TBP is mixed with MP or CMPO and used as an extractant, the consumption of CMP or CMPO can be reduced without impairing the extraction effect, and further, such extractant is impregnated into a solid support such as an ion exchange resin. This is based on a series of findings that the flow loss of an expensive extractant can be prevented and the TRU extracted in the extractant can be easily fixed.

前記CMPの硝酸溶液中でのウラン;U(VI)およびTRUの抽
出反応式は次のように表すことができる。なお、TRUと
しては、プルトニウム;Pu(IV)と、廃液中に比較的多
量に含まれるアメリシウム;Am(III)とを例に挙げた。
The extraction reaction formulas of uranium; U (VI) and TRU in the nitric acid solution of CMP can be expressed as follows. As the TRU, plutonium; Pu (IV) and americium; Am (III), which are contained in a relatively large amount in the waste liquid, are given as examples.

UO2 2+2NO3 -+2CMP=UO2(NO3・2CMP PU4++4NO3 -+2CMP=Pu(NO3・2CMP Am3++3NO3 -+3CMP=Am(NO3・3CMP また、高酸性度では、硝酸の付加反応が生じ(塩基性の
より強いCMPOにおいては一層顕著に生じる)、Am(II
I)の抽出は次式のようになると考えられる。
UO 2 2+ 2NO 3+ 2CMP = UO 2 (NO 3) 2 · 2CMP PU 4+ + 4NO 3+ 2CMP = Pu (NO 3) 4 · 2CMP Am 3+ + 3NO 3+ 3CMP = Am (NO 3) 3 · 3CMP In addition, at high acidity, addition reaction of nitric acid occurs (more prominently in more basic CMPO), and Am (II
The extraction of I) is considered to be as follows.

Am3++4NO3 -+H++3CMP=Am(NO3・3CMP・HNO3 一般に塩基性の強い抽出剤においては、高硝酸濃度では
金属錯体の抽出よりも酸の付加反応が優先するので、抽
出能力が低下する。しかし、塩基性の弱いCMPでは、ア
ミド基がバッファーとなり、金属錯体が配位するフォス
ホリル基がH+のアタックを受けないため、高酸性度でも
抽出能力が低下しない。ただし、抽出能力自体について
は、第2図に示すように、CMPOの方が強い。また、他の
元素との分離性では、CMPの方が優れている。なお、こ
の第2図においては、CMPとしてはDHDECMP(dihexy−N,
N−diethyl carbamoyl methylene phosphonate)を用
い、CMPOとしてはDHDECMPO(dihexy−N,N−diethyl car
bamoyl methylene phosphine oxide)を用いた。各構造
式は同図中に示した。
Am 3+ + 4NO 3 + H + + 3CMP = Am (NO 3 ) 3・ 3CMP ・ HNO 3 Generally, in a strongly basic extractant, the addition reaction of acid takes precedence over the extraction of metal complex at high nitric acid concentration. Extraction capacity is reduced. However, in weakly basic CMP, the amide group acts as a buffer, and the phosphoryl group coordinated by the metal complex does not undergo H + attack, so the extraction ability does not decrease even at high acidity. However, regarding the extraction capacity itself, as shown in Fig. 2, CMPO is stronger. In addition, CMP is superior in terms of separability from other elements. In addition, in FIG. 2, as CMP, DHDECMP (dihexy-N,
N-diethyl carbamoyl methylene phosphonate) is used, and CMDE is DHDECMPO (dihexy-N, N-diethyl car
bamoyl methylene phosphine oxide) was used. Each structural formula is shown in the figure.

前記のように高い抽出性能を有するCMP(またはCMPO)
にTBPを混合したものを抽出剤として使用してみると、
表1に示すように、TBPとCMP(またはCMPO)とが周知の
相乗効果を発揮し、CMP(またはCMPO)単独には及ばな
いが、この単独使用に近い高抽出性を示す。
CMP (or CMPO) with high extraction performance as described above
When I try to use a mixture of TBP as an extractant,
As shown in Table 1, TBP and CMP (or CMPO) exert a well-known synergistic effect, which is not comparable to CMP (or CMPO) alone, but exhibits high extractability close to that of single use.

この表1は、CMPとして前記DHDECMPを使用し、このDHDE
CMPとTBPおよび(DHDECMP+TBP)の各ジイソプロピルベ
ンゼン希釈溶媒(希釈濃度は表中に記載)を作成し、こ
れら溶媒を使って、アメリシウム(Am)を含む2種の硝
酸溶液中からAmを抽出し、その分配係数を求めたもので
ある。なお、表中の相乗効果係数は、各同濃度単独のCM
PおよびTBPの分配係数の和で(CMP+TBP)の分配係数を
割り算して得られる数値である。
This Table 1 uses the above DHDECMP as CMP,
CMP, TBP, and (DHDECMP + TBP) diisopropylbenzene dilution solvents (dilution concentrations are listed in the table) were prepared, and Am was extracted from two nitric acid solutions containing americium (Am) using these solvents, The distribution coefficient is obtained. The synergistic coefficient in the table is the CM for the same concentration alone.
It is a value obtained by dividing the distribution coefficient of (CMP + TBP) by the sum of the distribution coefficients of P and TBP.

この表1から判るように、まず、同量のCMPとTBPを比較
した場合、CMPの抽出能力(分配係数)は、TBPより102
〜103のオーダで高く、抽出剤として大きな能力を持っ
ている。また、CMP単独量と同量の(CMP+TBP)量を比
較した場合は、CMP単独で用いた場合の方が大きいもの
の、(CMP+TBP)の分配係数と、この(CMP+TBP)中の
CMP濃度と同濃度のCMP単独の分配係数を比較した場合、
TBPを混合した方が2倍近い値を示し、相乗効果により
抽出能力が増大していることが判る。相乗効果は、TBP
の混合量が増える程に増加するが、同一量の(CMP+TB
P)の分配係数、すなわち抽出能力は、TBPの添加量に伴
って減少する。これらは、CMPOの場合でも同様である。
As can be seen from Table 1, when comparing the same amount of CMP and TBP, the extraction capacity (distribution coefficient) of CMP is 10 2
High in the order of ~ 10 3 and has great ability as an extractant. In addition, when comparing the amount of CMP alone and the same amount of (CMP + TBP), the case of using CMP alone is larger, but the distribution coefficient of (CMP + TBP) and this (CMP + TBP)
When comparing the CMP concentration and the distribution coefficient of the same concentration of CMP alone,
When TBP is mixed, the value is almost doubled, which shows that the synergistic effect increases the extraction capacity. The synergistic effect is TBP
It increases as the mixing amount of (CMP + TB
The partition coefficient of P), that is, the extraction capacity, decreases with the amount of TBP added. These are the same in the case of CMPO.

したがって、この(CMPまたはCMPO+TBP)の混合溶媒を
抽出剤として使用する場合、処理すべき廃液中のTRU濃
度等の処理条件によりTBP添加量を決定し、可能な限り
高価なCMPまたはCMPO量を減らし、コストの低減化を図
ることが望ましい。
Therefore, when this mixed solvent of (CMP or CMPO + TBP) is used as an extractant, the amount of TBP added should be determined according to the processing conditions such as TRU concentration in the waste liquid to be treated, and the amount of expensive CMP or CMPO should be reduced as much as possible. It is desirable to reduce costs.

また、前記TBPとCMPまたはCMPOとを混合してなる抽出剤
を含浸させる固体支持体には、抽出剤の含浸量が多く、
抽出剤が溶出しにくい樹脂を使用する。例えば、Amberl
ite XAD−4(商品名;非極性のポリスチレン−DVB樹
脂、巨大網状構造)が好適である。このような固体支持
体に前記抽出剤を含浸させて構成する吸着剤は、まず前
記樹脂をアセトンで洗浄して不純物を除去し、これを減
圧乾燥したものに抽出剤を含浸させて調製する。含浸時
間は数時間で充分である。
Further, the solid support to be impregnated with the extractant obtained by mixing the TBP and CMP or CMPO, the impregnated amount of the extractant is large,
Use a resin that does not easily elute the extractant. For example, Amberl
ite XAD-4 (trade name; nonpolar polystyrene-DVB resin, giant network structure) is preferable. The adsorbent constituted by impregnating the solid support with the extractant is prepared by first washing the resin with acetone to remove impurities and then drying the resin under reduced pressure to impregnate the extractant. An impregnation time of several hours is sufficient.

前記のようにして支持体に含浸された抽出剤は前記支持
体のカラムに通水することにより、その溶解度(〜500p
pm)に応じて溶出されていく。調製した吸着カラムに蒸
留水を通すと、通水初期に多量の抽出剤が流出し、その
後は一定濃度での溶出となる。一定濃度での溶出は抽出
剤の水に対する溶解度によるものであるが、初期の多量
の流出は抽出剤の含浸工程で余剰抽出剤として除去しき
れないものが流出したことによるものである。したがっ
て、抽出液をカラムから抜いた後、カラムをカラムボリ
ュームの10倍程度で洗浄し、この洗浄液を抽出剤を含浸
していないAmberlite XAD−4のカラムに通して、抽出
剤を吸着回収する。このように抽出剤を固体支持体に含
浸させるので、抽出剤の溶解度に見合うだけの少量しか
流失しないので、高価な抽出剤を使用してもコスト高に
なるのを抑えることができる。
The extractant impregnated in the support as described above is passed through the column of the support so that its solubility (up to 500 p
It is eluted according to pm). When distilled water is passed through the prepared adsorption column, a large amount of extractant flows out at the initial stage of passing water, and thereafter elution is carried out at a constant concentration. Elution at a constant concentration is due to the solubility of the extractant in water, but the initial large amount of outflow is due to the outflow of excess extractant that could not be removed as an excess extractant in the impregnation step of the extractant. Therefore, after removing the extract from the column, the column is washed with about 10 times the column volume, and this wash is passed through a column of Amberlite XAD-4 not impregnated with the extract to adsorb and recover the extract. Since the solid support is impregnated with the extractant in this way, only a small amount commensurate with the solubility of the extractant is washed away, so that it is possible to suppress the cost increase even if an expensive extractant is used.

このようにして調製した吸着剤を塔内に充填してカラム
を形成し、このカラム中にU、Pu除去後のTRUを含む放
射性廃液を通過させれば、液中のTRUをカラムに吸着さ
せることができ、これによって容易にTRUの除去を行な
うことができる。カラムに吸着させたTRUは希酸溶液の
洗浄により容易に溶離することができ、TRU廃液を減容
した状態で回収することができる。
A column is formed by packing the adsorbent thus prepared in a column, and if a radioactive waste liquid containing TRU after removal of U and Pu is passed through this column, the TRU in the liquid is adsorbed to the column. This makes it possible to easily remove the TRU. The TRU adsorbed on the column can be easily eluted by washing with a dilute acid solution, and the TRU waste liquid can be recovered in a reduced volume.

以下、この発明を実施例によりさらに詳しく説明する。Hereinafter, the present invention will be described in more detail with reference to Examples.

「実施例」 第1図に本発明方法を実施するに好適な装置の概略構成
図を示す。
[Example] Fig. 1 shows a schematic configuration diagram of an apparatus suitable for carrying out the method of the present invention.

周知のように、放射性廃液は、多量のアメリシウム;Am
を含んでいる。この放射性廃液は、通常、前記Amの他に
U(VI)、Pu(IV)を含んでおり、これらの濃度が高い
場合にはAmの吸着容量に影響を及ぼすことが考えられ
る。そこで、まず、図に示すように、一旦、廃液供給槽
1に貯えた廃液をポンプ2により濃硝酸溶液とともに陰
イオン交換樹脂塔3に流して、U、Pu元素を除去する。
除去したU、Pu成分は希硝酸溶液による逆洗により塔3
内のイオン交換樹脂から溶離し、U・Pu貯留槽4に貯え
て適宜リサイクルする。
As is well known, radioactive waste liquid contains a large amount of Americium;
Is included. This radioactive waste liquid usually contains U (VI) and Pu (IV) in addition to the above-mentioned Am, and it is considered that when the concentration of these is high, the adsorption capacity of Am is affected. Therefore, as shown in the figure, first, the waste liquid once stored in the waste liquid supply tank 1 is caused to flow by the pump 2 together with the concentrated nitric acid solution into the anion exchange resin tower 3 to remove U and Pu elements.
The removed U and Pu components are backwashed with dilute nitric acid solution in tower 3
It is eluted from the ion-exchange resin inside and stored in the U / Pu storage tank 4 for proper recycling.

U、Pu除去後の流出液(Am廃液)は、廃液貯留槽5に一
時貯留し、この貯留槽5からポンプ6により抽出部7に
供給する。抽出部7は、1バッチあたりの廃液処理量を
増すために7a(7a)、7bの2段とし、前段の塔7a、7aに
はTBP+CMP含浸イオン交換樹脂またはTBP+CMPO含浸イ
オン交換樹脂を充填し、後段の塔7bに溶出した抽出剤を
回収・保持するためのバックアップカラムを設ける。こ
のバックアップカラムにより前段の塔7a、7aから溶出し
た抽出剤を吸着し、抽出剤の溶出によるコストの損失を
大きく低減化することができる。前記前段の塔7a、7a内
の抽出剤含浸イオン交換樹脂は、実際には塔内にイオン
交換樹脂を充填した後、図に示すように、TBPとCMPまた
はCMPOを所定の割合で混合してなる抽出剤Eを塔7a、7a
内に流入、循環させることによってイオン交換樹脂に含
浸させ、含浸後は、前記したように、流出液をイオン交
換樹脂カラムから抜き、カラムをカラムボリュームの10
倍程度で洗浄して形成する。前記洗浄液は抽出剤を含浸
していないバックアップカラム(塔7b)に通して、抽出
剤を吸着回収し、再利用する。
The effluent (Am waste liquid) after the removal of U and Pu is temporarily stored in the waste liquid storage tank 5, and is supplied from the storage tank 5 to the extraction unit 7 by the pump 6. The extraction unit 7 has two stages of 7a (7a) and 7b in order to increase the amount of waste liquid treated per batch, and the towers 7a and 7a in the previous stage are filled with TBP + CMP-impregnated ion exchange resin or TBP + CMPO-impregnated ion exchange resin, A backup column for collecting and retaining the eluted extractant is provided in the tower 7b in the latter stage. By this backup column, the extractant eluted from the towers 7a, 7a in the previous stage can be adsorbed, and the cost loss due to the elution of the extractant can be greatly reduced. The extractor-impregnated ion-exchange resin in the first-stage tower 7a, 7a is actually filled with the ion-exchange resin in the tower, and as shown in the figure, TBP and CMP or CMPO are mixed at a predetermined ratio. Extracting agent E becomes towers 7a, 7a
The ion-exchange resin is impregnated by inflowing and circulating it inside, and after impregnation, the effluent is extracted from the ion-exchange resin column as described above, and the column is filled with 10 column volumes.
Double wash to form. The cleaning liquid is passed through a backup column (tower 7b) not impregnated with the extractant, and the extractant is adsorbed and recovered for reuse.

前記構成の抽出部7からのAmが分離除去された流出液
は、一旦FP廃液貯留槽8へ送り、たとえば、硝酸ナトリ
ウムに対する処理を施して、暫定固化処理を行なうこと
ができる。
The effluent from which Am has been separated and removed from the extraction unit 7 having the above-described configuration can be temporarily sent to the FP waste liquid storage tank 8 and subjected to, for example, treatment with sodium nitrate to perform a temporary solidification treatment.

一方、抽出塔7a、7a内のカラムに吸着されたAm等のTRU
は希硝酸溶液による順洗により溶離し、このAmを含む廃
液は、一時廃液貯留槽9に貯え、たとえば、ガラス固化
処理を行ない処分することができる。
On the other hand, TRU such as Am adsorbed on the columns in the extraction towers 7a and 7a
Is eluted by normal washing with a dilute nitric acid solution, and the waste liquid containing Am is temporarily stored in the waste liquid storage tank 9 and can be disposed by, for example, vitrification treatment.

「発明の効果」 以上説明したように、この発明に係る放射性廃液の処理
方法は、抽出剤として、CMPまたはCMPOを主成分とし、T
BPの添加による相乗効果により抽出性能を低下させるこ
となく高価なCMPまたはCMPOの使用量を低減化したTBPと
CMPまたはCMPOとの混合溶液を用い、さらに、この抽出
剤の流損失を防止するために、この抽出剤を固体支持体
に含浸させ、この抽出剤含浸支持体カラムにTPU廃液を
接触させ、廃液中からTPUを除去、回収するものであ
る。
"Effects of the Invention" As described above, the method for treating a radioactive liquid waste according to the present invention has CMP or CMPO as a main component as an extractant, and T
Due to the synergistic effect of the addition of BP, TBP reduces the amount of expensive CMP or CMPO used without lowering the extraction performance.
Using a mixed solution with CMP or CMPO, further, in order to prevent the flow loss of the extractant, the extractant is impregnated into a solid support, and the extractant-impregnated support column is contacted with the TPU waste solution to remove the waste solution. It removes TPU from the inside and collects it.

したがって、この発明に係る放射性廃液の処理方法によ
れば、TRUを含む放射性廃液からTRUを容易かつ経済的に
分離除去し、α放射体を含む廃液固化体を大幅に低減す
ることができ、放射性廃棄物の貯蔵管理コストの低減に
大きく寄与することができる。
Therefore, according to the method for treating radioactive waste liquid according to the present invention, TRU can be easily and economically separated and removed from the radioactive waste liquid containing TRU, and the waste liquid solidified product containing the α-emitter can be significantly reduced. It can greatly contribute to the reduction of waste storage management costs.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明方法に用いて好適な装置の一例を示す
もので、同装置の概略構成図、第2図は本発明方法に用
いる抽出剤の主成分として使用するCMPおよびCMPOによ
る硝酸溶液からのAmの抽出分離性能を示す曲線である。 1……廃液供給槽、2、6……ポンプ、 3……陰イオン交換樹脂塔、4……U・Pu貯留槽、 5……廃液貯留槽、7……抽出部、 7a……抽出塔、7b……バックアップカラム、 8……FP廃液貯留槽、9……廃液貯留槽。
FIG. 1 shows an example of an apparatus suitable for use in the method of the present invention. A schematic configuration diagram of the apparatus is shown in FIG. 2, and FIG. 2 is a curve showing the extraction and separation performance of Am from A. 1 ... Waste liquid supply tank, 2, 6 ... Pump, 3 ... Anion exchange resin tower, 4 ... U / Pu storage tank, 5 ... Waste liquid storage tank, 7 ... Extraction section, 7a ... Extraction tower , 7b ... Backup column, 8 ... FP waste liquid storage tank, 9 ... Waste liquid storage tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高酸濃度にした放射性廃液からU、Puを分
離除去し、U、Pu除去後の超ウラン元素を含む放射性廃
液をTBP(tributylphosphate)とCMP(carbamoyl methy
lene phosphonate)またはCMPO(carbamoyl methylene
phosphine oxide)との混合溶液を含浸させた固体支持
体中を通過させることによりこの固体支持体に超ウラン
元素を吸着させて前記廃液から超ウラン元素を除去する
とともに、前記固体支持体に吸着した超ウラン元素を溶
離して回収することを特徴とする放射性廃液の処理方
法。
1. U and Pu are separated and removed from a radioactive waste liquid having a high acid concentration, and the radioactive waste liquid containing transuranic elements after removal of U and Pu is treated with TBP (tributylphosphate) and CMP (carbamoyl methy).
lene phosphonate) or CMPO (carbamoyl methylene
(Phosphine oxide) is passed through a solid support impregnated with a mixed solution of phosphine oxide to adsorb the transuranic element to the solid support to remove the transuranic element from the waste liquid and to adsorb to the solid support. A method for treating radioactive waste liquid, which comprises eluting and recovering transuranic elements.
JP4119287A 1987-02-24 1987-02-24 Treatment method of radioactive waste liquid Expired - Fee Related JPH0797156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119287A JPH0797156B2 (en) 1987-02-24 1987-02-24 Treatment method of radioactive waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119287A JPH0797156B2 (en) 1987-02-24 1987-02-24 Treatment method of radioactive waste liquid

Publications (2)

Publication Number Publication Date
JPS63208799A JPS63208799A (en) 1988-08-30
JPH0797156B2 true JPH0797156B2 (en) 1995-10-18

Family

ID=12601559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119287A Expired - Fee Related JPH0797156B2 (en) 1987-02-24 1987-02-24 Treatment method of radioactive waste liquid

Country Status (1)

Country Link
JP (1) JPH0797156B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3677013B2 (en) * 2002-06-20 2005-07-27 財団法人産業創造研究所 Method for separating and recovering elements from radioactive liquid waste

Also Published As

Publication number Publication date
JPS63208799A (en) 1988-08-30

Similar Documents

Publication Publication Date Title
US5368736A (en) Process for the separation and purification of yttrium-90 for medical applications
Schulz et al. The truex process and the management of liquid TRU uwaste
US5322644A (en) Process for decontamination of radioactive materials
Wei et al. Development of the MAREC process for HLLW partitioning using a novel silica-based CMPO extraction resin
JP2977744B2 (en) Separation method of trivalent actinides and rare earth elements
DE1215669B (en) Process for processing irradiated nuclear reactor fuel
US3993728A (en) Bidentate organophosphorus solvent extraction process for actinide recovery and partition
Vandegrift et al. Lab-scale demonstration of the UREX+ process
CN85105352A (en) The method of from radioactive liquid waste, separating actinide
Mathur et al. Extraction of Np (IV), Np (VI), Pu (IV) and U (VI) with amides, BEHSO and CMPO from nitric acid medium
US5085834A (en) Method for separating by using crown compounds plutonium from uranium and from fission products in the initial stages for the reprocessing of irradiated nuclear fuels
US3954654A (en) Treatment of irradiated nuclear fuel
JPH0797156B2 (en) Treatment method of radioactive waste liquid
JPS6141994A (en) Method for recovering value uranium in extracting reprocessing process for spent nuclear fuel
JP3310765B2 (en) High-level waste liquid treatment method in reprocessing facility
JPS63198897A (en) Method particularly used for reprocessing irradiated nuclear fuel in order to separate technetium existing in organic solvent together with one kind or more of other metal such as zirconium and uranium or plutonium
JPH0797155B2 (en) Treatment method of radioactive waste liquid
JP2971729B2 (en) Method for co-extraction of uranium, plutonium and neptunium
US5183645A (en) Method for recovering with the aid of a crown compound plutonium (iv) present in solutions, such as aqueous effluents, concentrated solutions of fission products and concentrated solutions of plutonium
JPS63208800A (en) Method of recovering radioactive element extraction agent
JPH09113689A (en) Method for separating americium and curium
JP4036357B2 (en) Modification of actinide extraction solvents containing tridentate ligands
JP2858640B2 (en) Reprocessing of spent nuclear fuel under mild conditions
Zilberman Application of Purex process to highly burned-up NPP fuel in closed nuclear fuel cycle from the viewpoint of long-lived radionuclide localization
JP6058370B2 (en) Alpha nuclide separation method and separation system from sodium chloride-containing waste liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees