JPH0781958A - Small-sized electric furnace for optical fiber processing and production thereof - Google Patents

Small-sized electric furnace for optical fiber processing and production thereof

Info

Publication number
JPH0781958A
JPH0781958A JP22453693A JP22453693A JPH0781958A JP H0781958 A JPH0781958 A JP H0781958A JP 22453693 A JP22453693 A JP 22453693A JP 22453693 A JP22453693 A JP 22453693A JP H0781958 A JPH0781958 A JP H0781958A
Authority
JP
Japan
Prior art keywords
heating element
optical fiber
ceramic
electric furnace
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22453693A
Other languages
Japanese (ja)
Inventor
Mamoru Hirayama
守 平山
Yoshiaki Takeuchi
善明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22453693A priority Critical patent/JPH0781958A/en
Publication of JPH0781958A publication Critical patent/JPH0781958A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve durability by forming closely the metallic layer being a heat generating body on a ceramic supporting body, then applying a pasty ceramic layer on the surface of the metallic layer to form a closed structure. CONSTITUTION:After burning the ceramic supporting body 1 such as a specific shaped high purity Al2O3, the thin film of the heat generating body metal 2 of a Rh/Pt alloy, etc., is formed on the surface by a rotating sputtering, etc. Then, a Pt wire is wrapped at its both ends, and a Pt paste is applied at the Joint part of the heat generating body metal 2 and the Pt wire to form a terminal 4. Then, the ceramic such as pasty high purity Al2O3 is applied uniformly on the surface of the heat generating body metal 2, and air-dried to form the ceramic coating layer having a specific thickness, and a closed structure is formed. Moreover, the around of the closed structure is enclosed with a foamed Al2O3, and a refractory cement 6 is inserted at the end parts to fix, and the small-sized electric furnace for the optical fiber processing is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバを加熱加工
するために使用する光ファイバ加工用小型電気炉および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small electric furnace for processing an optical fiber used for heating an optical fiber and a method for manufacturing the same.

【0002】[0002]

【従来の技術】セラミックス支持体の表面に発熱体であ
る金属層を設けた光ファイバ加工用小型電気炉には、例
えば特開平3−187937号公報に記載のものがあ
る。この金属薄膜ヒータは、カーボンヒータのように不
活性ガス中での使用を必要としないために加熱装置の構
成が簡単になり、かつ温度の応答性に優れているなど多
くの特徴をもっている。しかし、金属薄膜ヒータは、発
熱と同時に発熱体自体の蒸発圧も上昇して発熱体金属が
蒸発消耗する。たとえば、厚さ30μm、外径3mm、長
さ30mmの80−20白金ロジュウムスパッタ膜を発熱体と
したヒータでは、中心温度を1550度にすると約35時間で
発熱体が断線する。
2. Description of the Related Art A small electric furnace for processing an optical fiber, in which a metal layer which is a heating element is provided on the surface of a ceramic support, is disclosed in, for example, Japanese Patent Laid-Open No. 3-187937. Unlike the carbon heater, this metal thin film heater does not need to be used in an inert gas, so that the heating device has a simple structure and has excellent temperature responsiveness. However, in the metal thin film heater, at the same time as heat generation, the evaporation pressure of the heating element itself rises, and the heating element metal evaporates and is consumed. For example, in a heater having an 80-20 platinum rhodium sputtered film having a thickness of 30 μm, an outer diameter of 3 mm and a length of 30 mm as a heating element, the heating element is broken in about 35 hours when the central temperature is 1550 degrees.

【0003】一方、光ファイバ加工用ではないが、発熱
体金属の蒸発を抑えるために発熱体金属を2枚のセラミ
ックスで挟んだ密閉構造ヒータが商品化されている。そ
の作り方は、セラミックス粉末にバインダーとしてポリ
ビニールアルコールその他を加えて練り、加圧成形して
シート状のセラミックスを作る。このセラミックスシー
トの上に、発熱体にするペースト状の金属を塗布または
印刷する。その上に同様のセラミックスシートを重ね合
わせて一体化し、最後に焼成するものである。この密閉
構造ヒータの最高使用温度は約1200度以下であり、1450
度以上の温度が必要な光ファイバ加工用の炉としては使
用できない。この使用温度が低い理由はセラミックスの
純度にある。
On the other hand, although not for optical fiber processing, a hermetically sealed heater having a heating element metal sandwiched between two ceramics has been commercialized in order to suppress evaporation of the heating element metal. As a method of making it, a sheet-shaped ceramic is made by adding polyvinyl alcohol or the like as a binder to the ceramic powder, kneading the mixture, and pressing it. A paste-like metal to be a heating element is applied or printed on the ceramic sheet. The same ceramic sheet is superposed on it and integrated, and finally fired. The maximum operating temperature of this hermetic heater is less than 1200 degrees, 1450
It cannot be used as a furnace for optical fiber processing that requires a temperature of more than 10 degrees. The reason for this low use temperature is the purity of the ceramics.

【0004】セラミックスの焼成は、例えばアルミナの
場合において、純度99.5%以上の高純度の領域では1750
度で24時間ぐらいの焼成条件でなければ焼結できない。
一方、純度が92%前後でよければ、SiO2,MgO,Ca
Oその他の添加物を加えることにより焼結温度が下が
り、1300度で4時間ぐらいの焼成条件で焼結可能とな
る。ここで、従来の密閉構造ヒータの発熱体密閉構造を
図3に示す。
For example, in the case of alumina, the firing of ceramics is 1750 in a high purity region of 99.5% or more in purity.
Sintering can only be done under firing conditions of about 24 hours.
On the other hand, if the purity is around 92%, SiO 2 , MgO, Ca
By adding O and other additives, the sintering temperature is lowered, and it becomes possible to sinter under a firing condition of 1300 ° C. for about 4 hours. Here, FIG. 3 shows a heating element hermetically sealed structure of a conventional hermetically sealed heater.

【0005】図において、この製法では、セラミックス
支持体1と、セラミックス支持体1に挟まれた発熱体金
属2の焼結が同時に進む。このとき、セラミックス支持
体1と発熱体金属2との相互の拡散に伴い、セラミック
ス支持体1と発熱体金属2の化合物である拡散層7が必
ず形成される。その分、純粋な発熱体金属層を失うこと
になるので、それを見越して発熱体金属2を厚く塗布ま
たは印刷しなければならない。しかし、発熱体金属2の
層を厚くすると、セラミックス支持体1との熱膨張係数
や焼きしまりの違いによる歪みで割れが生じやすくな
る。また、拡散や割れは、焼成が高温および長時間にな
るほど激しくなる。したがって、セラミックス支持体1
と発熱体金属2の焼結を同時に進めるこの製法では、高
温で長時間の焼成が必要な高純度のセラミックスを使用
することはできない。すなわち、低い温度で短時間で焼
結できるように純度を落としたセラミックスを使用せざ
るを得ず、炉の最高使用温度は低くなっていた。
In the figure, in this manufacturing method, the ceramic support 1 and the heating element metal 2 sandwiched by the ceramic support 1 are simultaneously sintered. At this time, the diffusion layer 7 which is a compound of the ceramic support 1 and the heating element metal 2 is always formed along with the mutual diffusion of the ceramic support 1 and the heating element metal 2. Since the pure heating element metal layer is lost accordingly, the heating element metal 2 must be thickly applied or printed in anticipation thereof. However, if the layer of the heating element metal 2 is thickened, cracking is likely to occur due to strain due to a difference in thermal expansion coefficient and baking with the ceramic support 1. Diffusion and cracking become more severe as the firing temperature increases and the time increases. Therefore, the ceramic support 1
In this manufacturing method in which the heating element metal 2 and the heating element metal 2 are simultaneously sintered, it is not possible to use high-purity ceramics that need to be fired at a high temperature for a long time. In other words, ceramics of reduced purity had to be used so that it could be sintered at a low temperature in a short time, and the maximum operating temperature of the furnace was low.

【0006】また、光ファイバ加工用の炉として使用す
るには管状の形が最適である。しかし、セラミックスと
発熱体金属の焼結を同時に進める製法では、焼成時に、
管にしたことによる形状歪が加わって発熱体金属の破断
が生じやすく、製造が困難であった。セラミックスの焼
成と発熱体金属の形成を別個の工程にすれば、拡散,割
れ,破断といった問題を個々に解決することができる
が、焼結を同時に進める製法では解決は極めて困難であ
った。
The tubular shape is optimal for use as a furnace for processing optical fibers. However, in the manufacturing method in which the ceramics and the heating element metal are simultaneously sintered, at the time of firing,
Shape distortion due to the use of a tube was likely to occur and the metal of the heating element was likely to break, which made manufacturing difficult. If the firing of ceramics and the formation of the heating element metal are performed in separate steps, problems such as diffusion, cracking, and breakage can be individually solved, but it is extremely difficult to solve them by a manufacturing method in which sintering is simultaneously performed.

【0007】[0007]

【発明が解決しようとする課題】このように、セラミッ
クスと発熱体金属を用いた従来の小型電気炉は、それぞ
れの特徴を有しているものの、一方は耐久寿命が短く、
他方は使用温度が低くて使用できなかった。すなわち、
光ファイバ加熱用の炉として利用できる種々の要求性能
をすべて満たしているものはなかった。
As described above, the conventional small electric furnace using the ceramics and the heating element metal has respective characteristics, but one has a short durability life,
The other one could not be used because its operating temperature was low. That is,
None of them satisfy all the required performances that can be used as a furnace for heating an optical fiber.

【0008】本発明は、使用温度が高く、耐久寿命に優
れた光ファイバ加工用小型電気炉およびその製造方法を
提供することを目的とする。
It is an object of the present invention to provide a small electric furnace for processing an optical fiber, which has a high operating temperature and an excellent durable life, and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】請求項1に記載の発明
は、セラミックス支持体の表面に発熱体である金属層を
密着形成した光ファイバ加工用小型電気炉において、発
熱体である金属層の表面にセラミックス層をコーティン
グして密閉構造にする。
According to a first aspect of the present invention, in a small electric furnace for processing an optical fiber in which a metal layer which is a heating element is closely formed on a surface of a ceramic support, the metal layer which is a heating element is formed. The surface is coated with a ceramic layer to form a closed structure.

【0010】請求項2に記載の発明は、セラミックス支
持体の表面に発熱体である金属層を密着形成する工程を
有する光ファイバ加工用小型電気炉の製造方法におい
て、前記工程の後に、前記発熱体である金属層の表面に
ペースト状の高純度セラミックス層をコーティングする
工程を有する。
According to a second aspect of the present invention, there is provided a method for manufacturing a small electric furnace for processing an optical fiber, which has a step of closely forming a metal layer which is a heating element on a surface of a ceramic support body. The method has a step of coating the surface of the metal layer, which is the body, with a paste-like high-purity ceramic layer.

【0011】[0011]

【作用】本発明の光ファイバ加工用小型電気炉の製造方
法では、あらかじめ本焼成した厚手の高純度セラミック
スを支持体とし、その表面に金属層を密着形成して発熱
体とし、さらにその上に熱処理のいらない高純度のペー
スト状セラミックス層を薄くコーティングし、自然乾燥
させる。これにより、発熱体金属は耐熱性および遮蔽性
の優れたセラミックスにより密閉されるので、最高使用
温度が高く、かつ耐久寿命が長い光ファイバ加工用小型
電気炉を実現することができる。
In the method for manufacturing a small electric furnace for processing an optical fiber according to the present invention, a thick high-purity ceramic that has been main-fired in advance is used as a support, and a metal layer is closely formed on the surface of the support to form a heating element. A high-purity paste-like ceramic layer that does not require heat treatment is thinly coated and naturally dried. As a result, the heating element metal is hermetically sealed with ceramics having excellent heat resistance and shielding properties, so that it is possible to realize a small electric furnace for processing an optical fiber, which has a high maximum operating temperature and a long durable life.

【0012】また、支持体となる高純度のセラミックス
の焼結と発熱体金属の形成が別個に行われ、さらに発熱
体金属層の上に高純度セラミックス層が薄く焼成せずに
形成される。これにより、高温焼成による拡散の弊害が
ない。さらに、発熱体金属層と高純度セラミックス層を
薄くすることができるので、熱的な歪みが緩和されて割
れを生じ難くすることができる。
Further, the sintering of the high-purity ceramic serving as the support and the formation of the heating element metal are separately performed, and the high-purity ceramic layer is formed on the heating element metal layer without thin firing. As a result, there is no adverse effect of diffusion due to high temperature firing. Furthermore, since the heating element metal layer and the high-purity ceramics layer can be thinned, thermal strain is alleviated and cracking is less likely to occur.

【0013】[0013]

【実施例】図1は、本発明の光ファイバ加工用小型電気
炉の実施例構成を示す斜視図である。なお、ここでは、
光ファイバ加工用小型電気炉の一部を切り欠いた状態を
示す。
1 is a perspective view showing the construction of an embodiment of a small electric furnace for processing an optical fiber according to the present invention. In addition, here
The state where some small electric furnaces for optical fiber processing were cut away is shown.

【0014】まず、製作工程に従って各部の構成を説明
する。外径3mm,内径2mm,長さ35mm,純度99.5
%のアルミナ絶縁であるセラミックス支持体1を焼成す
る。次に、その表面に、20重量%ロジューム添加の白金
合金を回転スパッタして厚さ30μmの発熱体金属2を形
成する。次に、その両端に、太さ1mm,長さ80mmの
白金線を2回ずつ巻付け、発熱体金属2と白金線の接触
部分に白金ペーストを塗って端子4を形成する。次に、
発熱体金属2の表面に、純度99.5%のペースト状のアル
ミナを均一に塗布し、自然乾燥させて厚さ約50μmのセ
ラミックスコーティング層3を形成する。次に、その周
りを外径15mm,内径7mm,長さ35mmの発泡アルミ
ナ5で囲み、端部に耐火セメント6を挿入して固定す
る。以上の工程により本実施例の光ファイバ加工用小型
電気炉Aを製作することができる。
First, the structure of each part will be described according to the manufacturing process. Outside diameter 3 mm, inside diameter 2 mm, length 35 mm, purity 99.5
The ceramic support 1, which is a% alumina insulation, is fired. Then, a platinum alloy containing 20% by weight of rhodium is sputtered on the surface thereof to form a heating element metal 2 having a thickness of 30 μm. Next, a platinum wire having a thickness of 1 mm and a length of 80 mm is wound around each of the ends twice, and a platinum paste is applied to a contact portion between the heating element metal 2 and the platinum wire to form the terminal 4. next,
A paste-like alumina having a purity of 99.5% is uniformly applied to the surface of the heating element metal 2 and naturally dried to form a ceramic coating layer 3 having a thickness of about 50 μm. Next, the periphery thereof is surrounded by expanded alumina 5 having an outer diameter of 15 mm, an inner diameter of 7 mm and a length of 35 mm, and a refractory cement 6 is inserted and fixed at the end. The small electric furnace A for processing an optical fiber of this embodiment can be manufactured by the above steps.

【0015】なお、本実施例における発熱体密閉構造を
図2に示す。図に示すように、発熱体金属2はセラミッ
クス支持体1とセラミックスコーティング層3により密
閉される。
FIG. 2 shows the heating element sealing structure in this embodiment. As shown in the figure, the heating element metal 2 is sealed by the ceramic support 1 and the ceramic coating layer 3.

【0016】一方、比較のために、セラミックスコーテ
ィング層3を形成する工程を除いた従来の光ファイバ加
工用小型電気炉Bも製作した。これら2種類の光ファイ
バ加工用小型電気炉について、炉のピーク温度を1550度
にした場合に、白金合金薄膜で形成される発熱体金属2
が断線するまでの耐久寿命の評価を行った。その結果を
図4および図5に示す。なお、炉の長手方向の温度分布
を測定することにより炉のピーク温度を求めると同時
に、温度分布の平坦性を評価するためにピーク温度の90
%以上の温度になる炉の長手方向の長さを「Width 90」
と基準化した。
On the other hand, for the purpose of comparison, a conventional small electric furnace B for processing an optical fiber was also manufactured except the step of forming the ceramic coating layer 3. For these two types of small electric furnaces for optical fiber processing, when the peak temperature of the furnace is set to 1550 degrees, the heating element metal 2 formed of a platinum alloy thin film is used.
The durability life until the wire was broken was evaluated. The results are shown in FIGS. 4 and 5. In addition, the peak temperature of the furnace is obtained by measuring the temperature distribution in the longitudinal direction of the furnace, and at the same time, the peak temperature of 90% is measured to evaluate the flatness of the temperature distribution.
"Width 90" is the length in the longitudinal direction of the furnace that reaches a temperature of at least%.
And standardized.

【0017】図4および図5の縦軸は、炉の印加電流電
圧を示すヒータ電流(A)およびヒータ電圧(V)と、
Width90 の長さ(mm)を表す。横軸は、時間(Hr)
を表す。図4は、本実施例の光ファイバ加工用小型電気
炉Aの寿命試験結果を示すが、62時間を越えた時点で発
熱体金属2が断線したことを示している。図5は、従来
の光ファイバ加工用小型電気炉Bの寿命試験結果を示す
が、34時間を越えた時点で発熱体金属2が断線したこと
を示している。
The vertical axes of FIGS. 4 and 5 are the heater current (A) and the heater voltage (V) indicating the applied current voltage of the furnace,
It represents the length (mm) of Width90. The horizontal axis is time (Hr)
Represents FIG. 4 shows the result of a life test of the small electric furnace A for processing an optical fiber according to the present embodiment, and shows that the heating element metal 2 is broken at the time when it exceeds 62 hours. FIG. 5 shows a result of a life test of the conventional small electric furnace B for processing an optical fiber, and shows that the heating element metal 2 is broken at the time when it exceeds 34 hours.

【0018】いずれの炉もピーク温度を1550度に保って
試験している間に、Width90 が減少しているが、これは
炉の中心部ほど蒸発が進み、温度分布が狭くなることを
示している。本実施例の光ファイバ加工用小型電気炉A
は、従来の光ファイバ加工用小型電気炉Bに比較して明
らかにWidth90 の減少傾向が少なくなっており、発熱体
金属2の蒸発消耗が抑えられていることがわかる。この
ように、本実施例の光ファイバ加工用小型電気炉では、
高純度のセラミックスで発熱体金属2の蒸発を抑える密
閉構造を構成することができるので、最高使用温度が高
く、耐久寿命を大幅に延ばすことができる。
In each of the furnaces, the Width 90 decreased during the test while keeping the peak temperature at 1550 ° C., which means that the evaporation proceeds more toward the center of the furnace and the temperature distribution becomes narrower. There is. Small electric furnace A for optical fiber processing of this embodiment
In comparison with the conventional small electric furnace B for processing an optical fiber, the decrease in Width 90 is obviously smaller, and it can be seen that the evaporation and consumption of the heating element metal 2 is suppressed. As described above, in the small electric furnace for processing an optical fiber according to the present embodiment,
Since the sealed structure that suppresses the evaporation of the heating element metal 2 can be formed of high-purity ceramics, the maximum operating temperature is high and the durable life can be significantly extended.

【0019】なお、本実施例のように、必ずしもセラミ
ックス発熱体の周りを中空の発泡アルミナ5で囲む構造
にする必要はない。また、その場合には耐火セメント6
も不要となる。また、端子4も発熱体金属2に白金線を
巻付けて白金ペーストで固定しなくても、耐熱性があ
り、かつ電気抵抗および熱伝導の少ない端子構成であれ
ばよい。また、セラミックス支持体1も管状のものに限
定されず、用途に応じた形状をとってもよい。
It should be noted that it is not always necessary to have a structure in which the ceramic heat generating element is surrounded by the hollow expanded alumina 5 as in this embodiment. In that case, refractory cement 6
Becomes unnecessary. Further, the terminal 4 does not need to be wound with a platinum wire around the heating element metal 2 and fixed with a platinum paste as long as it has heat resistance and has a low electric resistance and heat conduction. Further, the ceramic support 1 is not limited to the tubular one, and may have a shape according to the application.

【0020】[0020]

【発明の効果】以上説明したように、請求項1に記載の
光ファイバ加工用小型電気炉では、発熱体金属を耐熱性
および遮蔽性の優れた高純度のセラミックスで包む密閉
構造にできるので、発熱とともに生ずる発熱体金属の蒸
発消耗を抑えて耐久寿命を長くすることができる。
As described above, in the small electric furnace for processing an optical fiber according to the first aspect of the present invention, since the heating element metal can have a closed structure in which it is wrapped with high-purity ceramic excellent in heat resistance and shielding property, It is possible to suppress the evaporation and consumption of the heating element metal that occurs with the generation of heat and to extend the durable life.

【0021】請求項2に記載の光ファイバ加工用小型電
気炉の製造方法では、支持体となるセラミックスの焼結
と発熱体金属の形成を別個に行い、さらに高温処理の不
要なセラミックスでコーティングする方法により、発熱
体金属の密閉構造を形成する。したがって、高純度のセ
ラミックスが使用可能となり、炉の使用温度を高くする
ことができる。しかも、拡散,割れ,破断といった問題
を生ずることなく、光ファイバ加工用として最適な管状
の形に炉を構成することができる。
In the method for manufacturing a small electric furnace for processing an optical fiber according to a second aspect of the present invention, the ceramics serving as the support are separately sintered and the heating element metal is formed, and the ceramics that do not require high temperature treatment are coated. The method forms a hermetically sealed structure of heating element metal. Therefore, high-purity ceramics can be used, and the operating temperature of the furnace can be increased. Moreover, the furnace can be configured in a tubular shape most suitable for optical fiber processing without causing problems such as diffusion, cracking, and breakage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光ファイバ加工用小型電気炉の実施例
構成を示す斜視図。
FIG. 1 is a perspective view showing the configuration of an embodiment of a small electric furnace for processing an optical fiber according to the present invention.

【図2】本実施例における発熱体密閉構造を示す断面
図。
FIG. 2 is a cross-sectional view showing a heating element sealing structure in the present embodiment.

【図3】従来の密閉構造ヒータの発熱体密閉構造を示す
断面図。
FIG. 3 is a cross-sectional view showing a heating element sealing structure of a conventional heater having a sealed structure.

【図4】本実施例の光ファイバ加工用小型電気炉の寿命
試験の結果を示すグラフ。
FIG. 4 is a graph showing the results of a life test of the small electric furnace for processing an optical fiber according to the present embodiment.

【図5】従来の光ファイバ加工用小型電気炉の寿命試験
の結果を示すグラフ。
FIG. 5 is a graph showing the results of a life test of a conventional small electric furnace for processing an optical fiber.

【符号の説明】 1 セラミックス支持体 2 発熱体金属 3 セラミックスコーティング層 4 端子 5 発泡アルミナ 6 耐火セメント 7 拡散層[Explanation of symbols] 1 ceramics support 2 heating element metal 3 ceramics coating layer 4 terminals 5 expanded alumina 6 refractory cement 7 diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス支持体の表面に発熱体であ
る金属層を密着形成した光ファイバ加工用小型電気炉に
おいて、 前記発熱体である金属層の表面にセラミックス層をコー
ティングして密閉構造にしたことを特徴とする光ファイ
バ加工用小型電気炉。
1. A small electric furnace for optical fiber processing, wherein a metal layer as a heating element is closely formed on the surface of a ceramic support, and a ceramic layer is coated on the surface of the metal layer as a heating element to form a closed structure. A small electric furnace for optical fiber processing.
【請求項2】 セラミックス支持体の表面に発熱体であ
る金属層を密着形成する工程を有する光ファイバ加工用
小型電気炉の製造方法において、 前記工程の後に、前記発熱体である金属層の表面にペー
スト状の高純度セラミックス層をコーティングする工程
を有することを特徴とする光ファイバ加工用小型電気炉
の製造方法。
2. A method for manufacturing a small electric furnace for optical fiber processing, which comprises a step of closely forming a metal layer, which is a heating element, on the surface of a ceramics support, the surface of the metal layer, which is the heating element, after the step. A method for manufacturing a small electric furnace for processing an optical fiber, which comprises a step of coating a paste-like high-purity ceramics layer on the substrate.
JP22453693A 1993-09-09 1993-09-09 Small-sized electric furnace for optical fiber processing and production thereof Pending JPH0781958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22453693A JPH0781958A (en) 1993-09-09 1993-09-09 Small-sized electric furnace for optical fiber processing and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22453693A JPH0781958A (en) 1993-09-09 1993-09-09 Small-sized electric furnace for optical fiber processing and production thereof

Publications (1)

Publication Number Publication Date
JPH0781958A true JPH0781958A (en) 1995-03-28

Family

ID=16815343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22453693A Pending JPH0781958A (en) 1993-09-09 1993-09-09 Small-sized electric furnace for optical fiber processing and production thereof

Country Status (1)

Country Link
JP (1) JPH0781958A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118525A (en) * 1995-03-06 2000-09-12 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6292259B1 (en) 1995-03-06 2001-09-18 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles
US6509965B2 (en) 1995-03-06 2003-01-21 Ade Optical Systems Corporation Wafer inspection system for distinguishing pits and particles

Similar Documents

Publication Publication Date Title
JP3465193B2 (en) High pressure discharge lamp
JPH09210573A (en) Electric furnace
US3930178A (en) Electrical incandescent filament devices
JP3151166B2 (en) High pressure discharge lamp and method of manufacturing the same
US4556780A (en) Ceramic heater
US6538377B1 (en) Means for applying conducting members to arc tubes
JPH11329361A (en) Lamp cermet and ceramic discharge lamp
JP2000030662A (en) Discharge lamp made of cermet and ceramic
JPH0781958A (en) Small-sized electric furnace for optical fiber processing and production thereof
JP3128325B2 (en) Small electric furnace for optical fiber processing
US6969951B1 (en) High pressure discharge vessel for an alumina high-intensity discharge lamp
JP2628313B2 (en) Gas laser device
JP4090767B2 (en) Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating
JP2002286675A (en) Micro heater and its manufacturing method, and gas sensor
JP4053277B2 (en) Electric furnace
US4795389A (en) Method of making an ion laser tube
JP2000275210A (en) Combustion gas component sensor and manufacture thereof
JP2820423B2 (en) Ceramic heater furnace
JPH02210785A (en) Ceramics heater furnace
JPS5821801B2 (en) Temperature sensing element for high temperature and its manufacturing method
JP3366546B2 (en) Ceramic heater
JP3441130B2 (en) Ceramic heater
JP2701565B2 (en) Thin film thermistor and method of manufacturing the same
JPH04349387A (en) Conductive heating element
JPS58155642A (en) Metallic vapor discharge lamp