JPH0772060A - Method for detecting biochemical material and biochemical-material detecting sensor used in the method - Google Patents

Method for detecting biochemical material and biochemical-material detecting sensor used in the method

Info

Publication number
JPH0772060A
JPH0772060A JP5237204A JP23720493A JPH0772060A JP H0772060 A JPH0772060 A JP H0772060A JP 5237204 A JP5237204 A JP 5237204A JP 23720493 A JP23720493 A JP 23720493A JP H0772060 A JPH0772060 A JP H0772060A
Authority
JP
Japan
Prior art keywords
dna
target
probe
initial
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237204A
Other languages
Japanese (ja)
Inventor
Shigeo Okahata
恵雄 岡畑
Kuniharu Ishiro
邦治 居城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Pharmaceutical Co Ltd
Original Assignee
Sogo Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Pharmaceutical Co Ltd filed Critical Sogo Pharmaceutical Co Ltd
Priority to JP5237204A priority Critical patent/JPH0772060A/en
Priority to EP93307198A priority patent/EP0589600A3/en
Publication of JPH0772060A publication Critical patent/JPH0772060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To detect biochemical material quantitatively with high accuracy by forming probe DNA and hybrid for a sample for detecting DNA, and measuring the binding constant based on the time change of the frequency of a frequency converting element caused by the formation. CONSTITUTION:Probe DNA comprising the base sequence peculier to the DNA of biochemical material and the complementary base sequence is chemically bonded and foxed on the electrode of a frequency converting element. The converting element is dipped into water, and the probe DNA and hybrid are formed with a sample as target DNA. As the chemical material, there are nucleic acid and the like such as the DNA and RNA. The probe DNA is obtained by a DNA synthesizer by a phosphoramidite method. Tiol is introduced into the end of the base sequence of the DNA. The converting element is dipped into the aqueous solution of the synthesized material and made to react. The probe DNA and the converting element are bonded. The change with the lapse of time of the converting element caused by the change in weight in hybridization is measured, and the binding constant in hybridization is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生化学物質検出方法お
よび該方法に用いられる生化学物質検出センサーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biochemical substance detection method and a biochemical substance detection sensor used in the method.

【0002】[0002]

【従来の技術および課題】従来、例えば、特開平3−2
10198号公報に記載されているように、DNAハイ
ブリッド形成反応後、電気泳動によって分離したり、放
射性同位元素でラベルして定量する方法によるDNAハ
イブリッドの形成反応の解析および分離定量が行われて
いる。しかしこれらの方法は、ラベル化するために限ら
れた場所でしか行うことができないこと、放射性同位元
素を扱うために特殊技術を要すること、ラベル化などの
ための操作、処理、測定に時間がかかることなどの欠点
があった。
2. Description of the Related Art Conventionally, for example, Japanese Patent Laid-Open No. 3-2
As described in Japanese Patent Publication No. 10198, after the DNA hybridization reaction, separation by electrophoresis or analysis and separation / quantification of the DNA hybridization reaction by a method of labeling with radioisotope and quantifying is performed. . However, these methods can be performed only in a limited place for labeling, require special technology to handle radioisotopes, and require time for operation, processing, and measurement for labeling. There are drawbacks such as this.

【0003】例えば、特開平3−210198号公報に
は、目的DNAに相補的塩基配列を有する抗原で修飾さ
れたDNAがハイブリッド形成した後に酵素修飾抗体を
反応させ酵素反応による産生物を検出する方法が記載さ
れている。しかしながら、これらの方法では、酵素活性
の失活などにより定量性に乏しいこと、酵素修飾抗体作
製などのための操作、処理、測定に時間がかかることな
どの欠点があった。従来、生化学物質のDNAのハイブ
リダイゼーションやDNAへの化学物質のインターカー
レーションなどといったDNAに特有な諸現象を解析す
るための結合定数の算出などは、紫外スペクトルの吸光
度の変化や円二色性スペクトルを測定するなど分光学的
手法を用いて行っているが、機器が高価であったり定量
性に乏しいなどの問題があった。
For example, Japanese Patent Laid-Open No. 3-210198 discloses a method of detecting a product of an enzymatic reaction by reacting an enzyme-modified antibody after hybridizing a DNA modified with an antigen having a complementary base sequence to a target DNA. Is listed. However, these methods have drawbacks such as poor quantification due to inactivation of enzyme activity, and time-consuming operations, treatments, and measurements for producing enzyme-modified antibodies. Conventionally, the calculation of binding constants for analyzing various phenomena peculiar to DNA such as hybridization of biochemical DNA with DNA and intercalation of chemical into DNA has been performed by changing the absorbance of the ultraviolet spectrum or circular dichroism. Although it is performed by using a spectroscopic method such as measuring a sex spectrum, there are problems such as expensive equipment and poor quantitativeness.

【0004】本発明は、特殊技術を要すること、定量性
に乏しいこと、長時間の測定を要すること、高価な測定
機器を用いることなどの従来技術における欠点がなく、
簡便にしかも直接DNAハイブリッドの形成反応を解析
し、さらにはDNAハイブリッド形成における結合定数
を測定して動力学的解析を行ない、かつ形成されたDN
Aハイブリッドを分離定量できる方法であって、DNA
ハイブリッドの形成を高精度にかつ定量的にしかも簡便
にすることにより生化学物質を検出する方法および該方
法に用いられる生化学物質検出センサーを提供すること
を目的とするものである。
The present invention is free from the drawbacks of the prior art such as the need for special techniques, poor quantitativeness, long-time measurement, and the use of expensive measuring equipment.
The DNA formed was analyzed simply by direct analysis of the DNA hybrid formation reaction, and the binding constant in the DNA hybrid formation was measured for kinetic analysis.
A method for separating and quantifying A hybrid, which comprises:
It is an object of the present invention to provide a method for detecting a biochemical substance by facilitating the formation of a hybrid with high accuracy, quantitatively and easily, and a biochemical substance detection sensor used in the method.

【0005】[0005]

【目的を達成するための手段】本発明は、生化学物質の
DNAに特有な塩基配列と相補的な塩基配列よりなるプ
ローブDNAを周波数変換素子の電極上に化学的に結合
・固定化し、固定化された周波数変換素子を水中に浸漬
し、該DNAを検出する試料を該水中に注入し、該試料
を該プローブDNAに特異的な塩基配列を有するターゲ
ットDNAとして該プローブDNAとハイブリッドを形
成させ、該ハイブリッド形成による重量変化に伴う周波
数変換素子の周波数の経時変化を測定して、ハイブリッ
ド形成における結合定数(K)を測定することを特徴と
する生化学物質検出方法;および該方法に用いられる生
化学物質検出センサーを提供するものである。
According to the present invention, a probe DNA having a base sequence complementary to a base sequence peculiar to DNA of a biochemical substance is chemically bonded and immobilized on an electrode of a frequency conversion element to be immobilized. The converted frequency conversion element is immersed in water, a sample for detecting the DNA is injected into the water, and the sample is hybridized with the probe DNA as a target DNA having a base sequence specific to the probe DNA. A method for detecting a biochemical substance, characterized by measuring the change over time in the frequency of a frequency conversion element due to the weight change due to the hybridization to measure the binding constant (K) in the hybridization; A biochemical substance detection sensor is provided.

【0006】本発明方法により検出される生化学物質
は、特異的な塩基配列を有するものおよびそれを構成す
る特異的な塩基を有するものを包含することができる
が、生物、特に各種菌類、各種ウィルスなどの微生物を
構成し、特異的な塩基配列を有する核酸および、該核酸
を構成する塩基もしくは塩基を含む成分を包含すること
ができる。このような核酸の例として、DNA、RNA
があげられる。
The biochemical substance detected by the method of the present invention can include those having a specific base sequence and those having a specific base constituting the biochemical substance. A nucleic acid that constitutes a microorganism such as a virus and has a specific base sequence, and a base or a component containing the base that constitutes the nucleic acid can be included. Examples of such nucleic acids include DNA and RNA
Can be given.

【0007】本発明に用いられる周波数変換素子は、例
えば水晶発振子、表面弾性波素子(SAW)などを包含
することができる。
The frequency conversion element used in the present invention can include, for example, a crystal oscillator and a surface acoustic wave element (SAW).

【0008】本発明におけるプローブDNAは、前記生
化学物質のDNAに特有な塩基配列と相補的な塩基配列
より構成されるものであり、ホスホルアミダイド法によ
りDNA合成機により得られる。または、生物由来のD
NAにホスホルアミダイド法を用いることによっても得
られる。
The probe DNA in the present invention is composed of a base sequence complementary to the base sequence peculiar to the biochemical substance DNA, and can be obtained by a DNA synthesizer by the phosphoramidite method. Or, D of biological origin
It can also be obtained by using the phosphoramidide method for NA.

【0009】本発明におけるターゲットDNAは、前記
生化学物質のDNAであって、前記のプローブDNAに
特異的な塩基配列を有するものであり、該プローブDN
Aの塩基配列と相補的な特有の塩基配列を有する。
The target DNA in the present invention is the above-mentioned biochemical substance DNA having a base sequence specific to the above-mentioned probe DNA.
It has a unique base sequence complementary to the base sequence of A.

【0010】本発明におけるプローブDNAを周波数変
換素子の電極上に化学的に結合・固定化する方法として
は、例えば、周波数変換素子が水晶発振子であり電極が
金電極の場合、該プローブDNAの相補的な塩基配列の
末端にチオール基を導入したものを合成し、その水溶液
中に水晶発振子を一定時間浸漬・反応させ、次いで該水
溶液から水晶発振子を取り出し、乾燥させる方法などが
あげられる。該チオール基としてはS−トリチル−3−
メルカプトプロピルオキシ−β−シアノエチル−N,N
−ジイソプロピルアミノホスホルアミダイドなどが包含
され、該プローブDNAの相補的な塩基配列の末端への
チオール基の導入はホスホルアミダイド法により行うこ
とができる。
As a method of chemically binding and immobilizing the probe DNA on the electrode of the frequency conversion element in the present invention, for example, when the frequency conversion element is a crystal oscillator and the electrode is a gold electrode, the probe DNA A method of synthesizing a thiol group introduced at the end of a complementary base sequence, immersing and reacting a crystal oscillator in the aqueous solution for a certain period of time, then taking out the crystal oscillator from the aqueous solution and drying it . The thiol group is S-trityl-3-
Mercaptopropyloxy-β-cyanoethyl-N, N
-Diisopropylaminophosphoramidide and the like are included, and the introduction of a thiol group to the terminal of the complementary base sequence of the probe DNA can be performed by the phosphoramidite method.

【0011】本発明方法において、プローブDNAの電
極への固定化方法の好ましい態様によれば、該電極が金
電極であり、該プローブDNAが、一本鎖であってその
塩基配列の末端にチオール基を導入したものを合成し、
さらにそれと相補的な塩基配列を有するDNAをハイブ
リッドさせて日本鎖DNAを合成し、該二本鎖DNAの
水溶液中に周波数変換素子を浸漬・反応させ、次いで該
二本鎖DNAの融解点以上に加熱して電極上に固定化さ
れていない一本鎖を脱着させ、次いで該水溶液から周波
数変換素子を取り出し、乾燥することにより電極上に化
学的に結合・固定化される。この固定化方法によれば、
プローブDNAを電極上に均一に固定化することが可能
となると共に、ターゲットDNAとのハイブリッドの形
成の効率を向上させることができる。
In a preferred embodiment of the method for immobilizing probe DNA on an electrode in the method of the present invention, the electrode is a gold electrode, the probe DNA is single-stranded, and a thiol is added to the end of its base sequence. Synthesize what introduced the group,
Further, DNA having a complementary nucleotide sequence is hybridized to synthesize Japanese chain DNA, the frequency conversion element is immersed in and reacted with an aqueous solution of the double stranded DNA, and then the melting point of the double stranded DNA or higher is reached. The single strand that is not immobilized on the electrode is heated to be desorbed, and then the frequency conversion element is taken out of the aqueous solution and dried to be chemically bonded and immobilized on the electrode. According to this immobilization method,
The probe DNA can be uniformly immobilized on the electrode, and the efficiency of hybrid formation with the target DNA can be improved.

【0012】本発明方法において、結合定数(K)の測
定方法の第1の好ましい態様によれば、ハイブリッド形
成に伴う振動数の経時変化が吸着平衡に達した後、該水
晶発振子を該水中から取り出し、別の多量の水中に浸漬
してさらに周波数の経時変化を測定し、ハイブリッド形
成に伴う初期の振動数の減少速度または初期の吸着重量
の増加速度V1 から結合速度定数k1 を求め、上記の多
量の水中に浸漬したときの初期の振動数の増加速度また
は初期の吸着重量の減少速度V2 から解離速度定数k2
を求め、下記式(1)〜(6): 〔プローブ〕+〔ターゲット〕←→〔ds−DNA〕 (1) V1 =k1 〔プローブ〕〔ターゲット〕 (2) k1 =V1 /〔プローブ〕〔ターゲット〕 (3) V2 =k2 〔ds−DNA〕 (4) k2 =V2 /〔ds−DNA〕 (5) K=k1 /k2 (6) [式中、 〔プローブ〕:プローブ濃度(mol/
l) 〔ターゲット〕:ターゲット濃度(mol/l) 〔ds−DNA〕:ハイブリッドされている二重鎖DN
A濃度(mol/l) V1 :初期吸着速度(mol/s) K1 :吸着速度定数(M-1-1) V2 :初期解離速度(mol/s) k2 :解離速度定数(s-1) K:結合定数(M-1) ]により結合定数
(K)が求められる。
In the method of the present invention, according to the first preferred embodiment of the method for measuring the binding constant (K), after the time-dependent change in frequency associated with hybridization reaches adsorption equilibrium, the crystal oscillator is placed in the water. Then, it was immersed in another large amount of water and the change in frequency with time was measured, and the binding rate constant k 1 was obtained from the initial rate of decrease in frequency or the initial rate of increase in adsorbed weight V 1 due to hybridization. , The dissociation rate constant k 2 from the rate of increase in the initial frequency or the rate of decrease in the initial adsorption weight V 2 when immersed in a large amount of water as described above.
Then, the following equations (1) to (6): [probe] + [target] ← → [ds-DNA] (1) V 1 = k 1 [probe] [target] (2) k 1 = V 1 / [Probe] [Target] (3) V 2 = k 2 [ds-DNA] (4) k 2 = V 2 / [ds-DNA] (5) K = k 1 / k 2 (6) [wherein [Probe]: Probe concentration (mol /
l) [Target]: target concentration (mol / l) [ds-DNA]: hybridized double-stranded DN
A concentration (mol / l) V 1 : initial adsorption rate (mol / s) K 1 : adsorption rate constant (M -1 s -1 ) V 2 : initial dissociation rate (mol / s) k 2 : dissociation rate constant ( s −1 ) K: binding constant (M −1 )], the binding constant (K) is obtained.

【0013】本発明方法において、結合定数(K)の測
定方法の第2の好ましい態様によれば、プローブDNA
固定化周波数変換素子を浸漬している水中に、一定量の
ターゲットDNAを注入してハイブリッドを形成させ、
吸着平衡に達したときのターゲットDNAの吸着量を求
める操作をターゲットDNAの注入量を変化させて繰り
返し、ターゲットDNAの注入時のターゲットDNAの
濃度を、ターゲットDNAの初期濃度〔ターゲット〕0
とし、吸着平衡に達したときのターゲットDNAの吸着
量をターゲットDNAの初期濃度〔ターゲット〕0 に対
する飽和吸着量(Δm)として、該初期濃度〔ターゲッ
ト〕0 と飽和吸着量(Δm)との相関関係を求め、下記
式(I): 〔ターゲット〕0 /Δm=(1/Δmmax )〔ターゲット〕0 + (1/Δmmax K) …… (1) (式中、〔ターゲット〕0 、ΔmおよびKは前記の通り
であり、Δmmax はターゲットDNAのプローブDNA
に対する飽和吸着量である)を適用し、〔ターゲット〕
0 と〔ターゲット〕0 /Δmとの相関関係を、〔ターゲ
ット〕0 をX軸とし、〔ターゲット〕0 /ΔmをY軸と
してプロットし、これらのプロットを結ぶ直線の傾きの
逆数からターゲットDNAのプローブDNAに対する飽
和吸着量Δmmax を求め、得られるY軸切片の値から結
合定数(K)が求められる。
According to the second preferred embodiment of the method for measuring the binding constant (K) in the method of the present invention, the probe DNA
A fixed amount of target DNA is injected into water in which the immobilized frequency conversion element is immersed to form a hybrid,
The operation for obtaining the adsorption amount of the target DNA on reaching adsorption equilibrium by changing the injection amount of the target DNA repeated, the concentration of the target DNA during injection of the target DNA, the initial concentration of the target DNA [Target] 0
And the adsorption amount of the target DNA when the adsorption equilibrium is reached is defined as the saturated adsorption amount (Δm) with respect to the initial concentration [target] 0 of the target DNA, and the correlation between the initial concentration [target] 0 and the saturated adsorption amount (Δm) The relationship is calculated and the following equation (I): [target] 0 / Δm = (1 / Δm max ) [target] 0 + (1 / Δm max K) (1) (wherein, [target] 0 , Δm And K are as described above, and Δm max is the probe DNA of the target DNA
Is the saturated adsorption amount for
The correlation between 0 and [target] 0 / Δm was plotted by plotting [target] 0 as the X axis and [target] 0 / Δm as the Y axis, and calculating the reciprocal of the slope of the straight line connecting these plots to obtain the target DNA The saturated adsorption amount Δm max for the probe DNA is obtained, and the binding constant (K) is obtained from the obtained Y-axis intercept value.

【0014】[0014]

【発明の効果】本発明によれば、特殊技術を要するこ
と、定量性に乏しいこと、長時間の測定を要すること、
高価な測定機器を用いることなどの従来技術における欠
点がなく、簡便にしかも直接DNAハイブリッドの形成
反応を解析し、さらにはDNAハイブリッド形成におけ
る結合定数を測定して動力学的解析を行ない、かつ形成
されたDNAハイブリッドを分離定量できる方法であっ
て、DNAハイブリッドの形成を高精度にかつ定量的に
しかも簡便にすることにより生化学物質を検出する方法
および該方法に用いられる生化学物質検出センサーが提
供される。本発明は、DNAハイブリッドの強度、測定
溶液の塩濃度効果、インターカーレーション現象の観察
などの生化学物質に特有な特性についての解析、医薬品
などとして注目されている遺伝子、リポザイムおよびア
ンチセンスなどの核酸化合物の核酸の細胞内への移行効
率を高めること、細胞内の分布制御すること、薬物の設
計、薬物のスクリーニングなどに利用しうる方法を提供
することができる。
EFFECTS OF THE INVENTION According to the present invention, special technology is required, quantitativeness is poor, and long-term measurement is required.
Without the drawbacks of the prior art such as the use of expensive measuring instruments, the DNA hybrid formation reaction can be analyzed easily and directly, and further, the binding constant in the DNA hybrid formation can be measured to carry out the kinetic analysis and formation. A method for separating and quantifying the formed DNA hybrids, and a method for detecting a biochemical substance by facilitating the formation of the DNA hybrids with high accuracy, quantitatively, and a biochemical substance detection sensor used in the method. Provided. INDUSTRIAL APPLICABILITY The present invention provides analysis of characteristics specific to biochemical substances such as strength of DNA hybrid, salt concentration effect of measurement solution, observation of intercalation phenomenon, genes attracting attention as drugs, lipozymes and antisenses. It is possible to provide a method that can be used for enhancing the efficiency of transfer of nucleic acid compounds into cells, controlling intracellular distribution, designing drugs, screening drugs, and the like.

【0015】[0015]

【実施例】以下実施例により本発明をさらに詳しく説明
する。
The present invention will be described in more detail with reference to the following examples.

【0016】実施例1〜3 5′末端にチオール基を導入した10塩基(5′−dG
GGAATTCGT−3′)を持つDNAオリゴマーと
チオール基を持たず該DNAオリゴマーに相補的な10
塩基配列(3′−CCCTTAAGCA−5′)のDN
Aオリゴマーがハイブリッドしている水溶液に水晶発振
子を浸漬し、金電極上に固定化した。エージングにより
相補鎖を脱離した水晶発振子を5.5mlの純水中に浸
漬し500ng水晶発振子に固定化されているDNAオ
リゴマーに相補的なDNAオリゴマー500ngを純水
中に注入してハイブリッド形成させ、吸着平衡に達した
後、水晶発振子を取り出し、別途大量の純水中に浸漬し
て振動数の経時変化を20℃(実施例1)、30℃(実
施例2)、および60℃(実施例3)を測定した。図1
に20℃(実施例1)での測定結果を示した。DNAの
ハイブリダイゼーション形成における温度の効果を調べ
るため各測定温度におけるDNA二重螺旋の結合定数を
算出した。例えば測定温度20℃における結合定数の決
定は、図1において、ハイブリッド形成に伴う初期の吸
着速度V1 をハイブリッド形成曲線の初期における接線
の傾きより求め、該V1 値から前記式を適用して結合速
度定数k1 を求め、大量の純水中に浸漬したときの解離
曲線の初期における接線の傾きより初期解離速度V2
求め、該V2 値から前記式を適用して解離速度定数k2
を求め、得られた結合速度定数k1 および解離速度定数
より前記式を適用して、20℃における結合定数(K)
を求めた。測定温度を30℃(実施例2)または60℃
(実施例3)に変える以外、20℃(実施例1)の場合
と同様の実験を行なった。得られた結果を表1に示す。
Examples 1 to 3 10 bases having a thiol group introduced at the 5'end (5'-dG
GGAATTCGT-3 ') and a DNA oligomer having no thiol group and complementary to the DNA oligomer.
DN of base sequence (3'-CCCTTAAGCA-5 ')
The crystal oscillator was immersed in an aqueous solution in which the A oligomer was hybridized, and immobilized on the gold electrode. A crystal oscillator whose complementary chain has been eliminated by aging is immersed in 5.5 ml of pure water, and 500 ng of a DNA oligomer complementary to the DNA oligomer immobilized on the crystal oscillator of 500 ng is injected into pure water for hybridization. After being formed and reaching the adsorption equilibrium, the crystal oscillator was taken out and separately immersed in a large amount of pure water to change the frequency with time at 20 ° C. (Example 1), 30 ° C. (Example 2), and 60. C (Example 3) was measured. Figure 1
The measurement results at 20 ° C. (Example 1) are shown in FIG. In order to investigate the effect of temperature on the hybridization formation of DNA, the binding constant of the DNA double helix at each measurement temperature was calculated. For example, in order to determine the binding constant at a measurement temperature of 20 ° C., in FIG. 1, the initial adsorption rate V 1 associated with the hybrid formation is determined from the slope of the tangent line of the initial hybrid formation curve, and the above equation is applied from the V 1 value The binding rate constant k 1 is determined, the initial dissociation rate V 2 is determined from the slope of the initial tangent line of the dissociation curve when immersed in a large amount of pure water, and the above equation is applied from the V 2 value to determine the dissociation rate constant k 1. 2
Then, the above equation was applied from the obtained binding rate constant k 1 and dissociation rate constant to obtain the binding constant (K) at 20 ° C.
I asked. Measuring temperature is 30 ° C (Example 2) or 60 ° C
The same experiment as in the case of 20 ° C. (Example 1) was carried out except that (Example 3) was changed. The results obtained are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】実施例4 一定温度60℃に保った5.5mlの純水中に、実施例
1と同様のプローブDNA固定化水晶発振子をつけ、安
定発振後、実施例1と同様のターゲットDNAを180
0ng注入し、平衡に達したときのターゲットDNAの
飽和吸着量(Δm)を求めた。注入量をそれぞれ、18
00ng、3600ngおよび5400ngと変えた以
外、同様の操作を繰り返して得られたターゲットDNA
の濃度に対するターゲットDNAの飽和吸着量(Δm)
の関係を図2に示す。この関係は、ターゲットDNAの
注入量に対するその飽和吸着量が極めて僅かであるた
め、実質上ターゲットDNAの初期濃度〔ターゲット〕
0 とΔmとの関係に相当することから、図2の関係を前
記式(I)に適用し、〔ターゲット〕0 と〔ターゲッ
ト〕0 /Δmとの関係として、X軸にターゲットDNA
濃度をとり、Y軸にターゲットDNA濃度/Δmをとっ
て、プロットしたところ図3に示す結果が得られた。図
3に示されるプロットを結ぶ直線の傾きからターゲット
DNAのプローブDNAに対する飽和吸着量(Δ
max )を求め、図2において上記直線のY軸切片の値
から得られる結合定数(K)の値は、3.4×105
-1であった。
Example 4 A probe DNA-immobilized crystal oscillator similar to that in Example 1 was placed in 5.5 ml of pure water kept at a constant temperature of 60 ° C., and after stable oscillation, the same target DNA as in Example 1 was applied. 180
Saturated adsorption amount (Δm) of the target DNA when 0 ng was injected and equilibrium was reached was determined. Injection volume is 18
Target DNA obtained by repeating the same operation except that the amounts were changed to 00 ng, 3600 ng and 5400 ng
Adsorbed amount of target DNA (Δm)
The relationship of is shown in FIG. This relationship is because the saturated adsorption amount with respect to the injection amount of the target DNA is extremely small, so that the initial concentration of the target DNA [target] is substantially
Since it corresponds to the relationship between 0 and Δm, the relationship of FIG. 2 is applied to the above formula (I), and the relationship between [target] 0 and [target] 0 / Δm is expressed as
When the concentration was taken and the target DNA concentration / Δm was taken on the Y axis and plotted, the results shown in FIG. 3 were obtained. From the slope of the straight line connecting the plots shown in FIG. 3, the saturated adsorption amount of target DNA to probe DNA (Δ
m max ), and the value of the coupling constant (K) obtained from the value of the Y-axis intercept of the straight line in FIG. 2 is 3.4 × 10 5 M
It was -1 .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の第1の好ましい態様における周波
数の経時変化の1例を示すグラフである。
FIG. 1 is a graph showing an example of changes over time in frequency in a first preferred aspect of the method of the present invention.

【図2】本発明方法の第2の好ましい態様におけるター
ゲットDNA濃度に対するターゲットDNAの飽和吸着
量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the target DNA concentration and the saturated adsorption amount of target DNA in the second preferred embodiment of the method of the present invention.

【図3】本発明方法の第2の好ましい態様におけるター
ゲットDNA濃度と該ターゲットDNA/Δmとの関係
を示すグラフである。
FIG. 3 is a graph showing the relationship between the target DNA concentration and the target DNA / Δm in the second preferred embodiment of the method of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 生化学物質のDNAに特有な塩基配列と
相補的な塩基配列よりなるプローブDNAを周波数変換
素子の電極上に化学的に結合・固定化し、固定化された
周波数変換素子を水中に浸漬し、該DNAを検出する試
料を該水中に注入し、該試料を、該プローブDNAに特
異的な塩基配列を有するターゲットDNAとして該プロ
ーブDNAとハイブリッドを形成させ、該ハイブリッド
形成による重量変化に伴う周波数変換素子の周波数の経
時変化を測定して、ハイブリッド形成における結合定数
(K)を測定することを特徴とする生化学物質検出方
法。
1. A probe DNA having a base sequence complementary to a base sequence peculiar to a biochemical substance DNA is chemically bonded and immobilized on an electrode of a frequency conversion element, and the fixed frequency conversion element is submerged in water. A sample for detecting the DNA is injected into the water, the sample is allowed to form a hybrid with the probe DNA as a target DNA having a base sequence specific to the probe DNA, and the weight change due to the hybridization A method for detecting a biochemical substance, which comprises measuring the change over time in the frequency of the frequency conversion element, and measuring the binding constant (K) in hybridization.
【請求項2】 該結合定数(K)の測定が、ハイブリッ
ド形成に伴う振動数の経時変化が吸着平衡に達した後、
該水晶発振子を該水中から取り出し、別の多量の水中に
浸漬してさらに周波数の経時変化を測定し、ハイブリッ
ド形成に伴う初期の振動数の減少速度または初期の吸着
重量の増加速度V1 から結合速度定数k1 を求め、上記
の多量の水中に浸漬したときの初期の振動数の増加速度
または初期の吸着重量の減少速度V2 から解離速度定数
2 を求め、下記式(1)〜(6): 〔プローブ〕+〔ターゲット〕←→〔ds−DNA〕 (1) V1 =k1 〔プローブ〕〔ターゲット〕 (2) k1 =V1 /〔プローブ〕〔ターゲット〕 (3) V2 =k2 〔ds−DNA〕 (4) k2 =V2 /〔ds−DNA〕 (5) K=k1 /k2 (6) [式中、 〔プローブ〕:プローブ濃度(mol/
l) 〔ターゲット〕:ターゲット濃度(mol/l) 〔ds−DNA〕:ハイブリッドされている二重鎖DN
A濃度(mol/l) V1 :初期吸着速度(mol/s) K1 :吸着速度定数(M-1-1) V2 :初期解離速度(mol/s) k2 :解離速度定数(s-1) K:結合定数(M-1) ]により結合定数
(K)を求めることにより行なわれる請求項1記載の方
法。
2. The measurement of the binding constant (K) is carried out after the time-dependent change in frequency associated with hybrid formation reaches adsorption equilibrium.
The crystal oscillator was taken out of the water, immersed in another large amount of water, and the time-dependent change in frequency was measured. From the rate of decrease in the initial frequency or the rate of increase in the initial adsorption weight V 1 associated with hybridization, The binding rate constant k 1 is determined, and the dissociation rate constant k 2 is determined from the initial rate of increase in frequency when immersed in a large amount of water or the initial rate of decrease in adsorbed weight V 2 , and the following equation (1) (6): [probe] + [target] ← → [ds-DNA] (1) V 1 = k 1 [probe] [target] (2) k 1 = V 1 / [probe] [target] (3) V 2 = k 2 [ds-DNA] (4) k 2 = V 2 / [ds-DNA] (5) K = k 1 / k 2 (6) [wherein, [probe]: probe concentration (mol /
l) [Target]: target concentration (mol / l) [ds-DNA]: hybridized double-stranded DN
A concentration (mol / l) V 1 : initial adsorption rate (mol / s) K 1 : adsorption rate constant (M -1 s -1 ) V 2 : initial dissociation rate (mol / s) k 2 : dissociation rate constant ( The method according to claim 1, which is carried out by determining the binding constant (K) from s -1 ) K: binding constant (M -1 ).
【請求項3】 該結合定数(K)の測定が、プローブD
NA固定化周波数変換素子を浸漬している水中に、一定
量のターゲットDNAを注入してハイブリッドを形成さ
せ、吸着平衡に達したときのターゲットDNAの吸着量
を求める操作をターゲットDNAの注入量を変化させて
繰り返し、ターゲットDNAの注入時のターゲットDN
Aの濃度を、ターゲットDNAの初期濃度〔ターゲッ
ト〕0 とし、吸着平衡に達したときのターゲットDNA
の吸着量をターゲットDNAの初期濃度〔ターゲット〕
0 に対する飽和吸着量(Δm)として、該初期濃度〔タ
ーゲット〕0 と飽和吸着量(Δm)との相関関係を求
め、下記式(I): 〔ターゲット〕0 /Δm=(1/Δmmax )〔ターゲット〕0 + (1/Δmmax K) …… (1) (式中、〔ターゲット〕0 、ΔmおよびKは前記の通り
であり、Δmmax はターゲットDNAのプローブDNA
に対する飽和吸着量である)を適用し、〔ターゲット〕
0 と〔ターゲット〕0 /Δmとの相関関係を、〔ターゲ
ット〕0 をX軸とし、〔ターゲット〕0 /ΔmをY軸と
してプロットし、これらのプロットを結ぶ直線の傾きの
逆数からターゲットDNAのプローブDNAに対する飽
和吸着量Δmmax を求め、得られるY軸切片の値から結
合定数(K)を求めることによって行なわれる請求項1
記載の方法。
3. The probe D is used for measuring the binding constant (K).
The amount of target DNA adsorbed when the adsorption equilibrium is reached is calculated by injecting a fixed amount of target DNA into the water in which the NA-immobilized frequency conversion element is immersed to form a hybrid. Target DN at the time of target DNA injection by changing and repeating
The concentration of A is the initial concentration of the target DNA [target] 0, and the target DNA when the adsorption equilibrium is reached.
Adsorption amount of target DNA is the initial concentration of target DNA [Target]
As the saturated adsorption amount (Δm) with respect to 0 , the correlation between the initial concentration [target] 0 and the saturated adsorption amount (Δm) was calculated, and the following formula (I): [target] 0 / Δm = (1 / Δm max ) [Target] 0 + (1 / Δm max K) (1) (wherein [target] 0 , Δm and K are as described above, and Δm max is the probe DNA of the target DNA.
Is the saturated adsorption amount for
The correlation between 0 and [target] 0 / Δm was plotted by plotting [target] 0 as the X axis and [target] 0 / Δm as the Y axis, and calculating the reciprocal of the slope of the straight line connecting these plots to obtain the target DNA The method according to claim 1, wherein the saturated adsorption amount Δm max for the probe DNA is obtained, and the binding constant (K) is obtained from the obtained Y-axis intercept value.
The method described.
【請求項4】 該周波数変換素子が水晶発振子である前
記請求項1〜3のいずれかに記載の方法。
4. The method according to claim 1, wherein the frequency conversion element is a crystal oscillator.
【請求項5】 周波数変換素子と、該周波数変換素子の
電極上に化学的に結合・固定化された生化学物質のDN
Aに特有な塩基配列と相補的な塩基配列よりなるプロー
ブDNAとよりなり、前記請求項1〜4のいずれかに記
載の方法に用いられる生化学検出センサー。
5. A frequency conversion element and a DN of a biochemical substance chemically bonded and immobilized on an electrode of the frequency conversion element.
A biochemical detection sensor comprising a probe DNA having a base sequence complementary to the base sequence unique to A and used in the method according to any one of claims 1 to 4.
【請求項6】 該周波数変換素子が水晶発振子である請
求項5記載のセンサー。
6. The sensor according to claim 5, wherein the frequency conversion element is a crystal oscillator.
JP5237204A 1992-09-14 1993-08-31 Method for detecting biochemical material and biochemical-material detecting sensor used in the method Pending JPH0772060A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5237204A JPH0772060A (en) 1993-08-31 1993-08-31 Method for detecting biochemical material and biochemical-material detecting sensor used in the method
EP93307198A EP0589600A3 (en) 1992-09-14 1993-09-13 Method of detecting biochemical substances and sensor for use in said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5237204A JPH0772060A (en) 1993-08-31 1993-08-31 Method for detecting biochemical material and biochemical-material detecting sensor used in the method

Publications (1)

Publication Number Publication Date
JPH0772060A true JPH0772060A (en) 1995-03-17

Family

ID=17011924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237204A Pending JPH0772060A (en) 1992-09-14 1993-08-31 Method for detecting biochemical material and biochemical-material detecting sensor used in the method

Country Status (1)

Country Link
JP (1) JPH0772060A (en)

Similar Documents

Publication Publication Date Title
Zhai et al. DNA based biosensors
Zhang et al. A pH-engineering regenerative DNA tetrahedron ECL biosensor for the assay of SARS-CoV-2 RdRp gene based on CRISPR/Cas12a trans-activity
US7115229B2 (en) Apparatus and method for monitoring molecular species within a medium
Gau et al. Electrochemical molecular analysis without nucleic acid amplification
Piunno et al. Fiber optic biosensor for fluorimetric detection of DNA hybridization
Ramanaviciene et al. Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode
Paleček et al. DNA hybridization at microbeads with cathodic stripping voltammetric detection
EP0362304B1 (en) Chemical sensors employing catalytic antibodies
US8932868B2 (en) Biosensor using impedimetric real-time monitoring
Zhuang et al. Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction
Rai et al. Electrochemically amplified molecular beacon biosensor for ultrasensitive DNA sequence-specific detection of Legionella sp.
Piunno et al. Considerations for the quantitative transduction of hybridization of immobilized DNA
Lazerges et al. In situ QCM DNA-biosensor probe modification
WO2002099386A2 (en) Microcalorimetric detection of analytes and binding events
US20210172898A1 (en) Electrochemical Measurements of Components in Coatings
Homs DNA sensors
Lim et al. Introduction to food biosensors
Tombelli Piezoelectric biosensors for medical applications
Duman et al. A new approach for immobilization of oligonucleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization
Siontorou et al. Detection of DNA hybridization using self‐assembled bilayer lipid membranes (BLMs)
Parmin et al. Biosensor recognizes the receptor molecules
US7393644B2 (en) Method for real-time detection of polymerase chain reaction
Peeters et al. Real-time monitoring of aptamer functionalization and detection of Ara H1 by electrochemical impedance spectroscopy and dissipation-mode quartz crystal microbalance
Cao et al. Target-driven self-assembly of stacking deoxyribonucleic acids for highly sensitive assay of proteins
Mannelli et al. Bulk acoustic wave affinity biosensor for genetically modified organisms detection