JPH0768137A - Separation membrane module - Google Patents

Separation membrane module

Info

Publication number
JPH0768137A
JPH0768137A JP24206893A JP24206893A JPH0768137A JP H0768137 A JPH0768137 A JP H0768137A JP 24206893 A JP24206893 A JP 24206893A JP 24206893 A JP24206893 A JP 24206893A JP H0768137 A JPH0768137 A JP H0768137A
Authority
JP
Japan
Prior art keywords
flat plate
liquid
separation membrane
membrane
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP24206893A
Other languages
Japanese (ja)
Inventor
Yasushi Maeda
恭志 前田
Masahiko Endo
雅彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Japan Ltd
Original Assignee
Dow Chemical Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Japan Ltd filed Critical Dow Chemical Japan Ltd
Priority to JP24206893A priority Critical patent/JPH0768137A/en
Priority to AU75459/94A priority patent/AU7545994A/en
Priority to PCT/JP1994/001441 priority patent/WO1995006514A1/en
Publication of JPH0768137A publication Critical patent/JPH0768137A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes

Abstract

PURPOSE:To provide a separation membrane module, with which the flow of a liquid to be treated in the module can be stabilized and the width of its flow passages can be appropriately set. CONSTITUTION:The separation membrane module is provided with the following components: the plural inorganic flat-plate membranes 3; the casing 1 which contains these flat-plate membranes 3 and in which they are positioned parallel to each other and arranged in parallel; the flow passages 4 which are formed between every adjacent two of the flat-plate membranes 3 and provided with the supporting means 5 supporting the surfaces of the flat-plate membranes 3 on the sides of the casing 1; the supply port 6 for the liquid to be treated and the discharge port 8 for the non-permeating liquid, both of which are communicated with the flow passages 4; and the recovery means of the permeating liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分離膜モジュールに関
するものであり、詳しくは、無機平板膜を用いて精密濾
過、限外濾過、逆浸透濾過などの各種の分離操作を行う
分離膜モジュールにおいて、特定の膜補強構造によって
分離効率と耐圧性能の高められた分離膜モジュールに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation membrane module, and more particularly to a separation membrane module for performing various separation operations such as microfiltration, ultrafiltration and reverse osmosis filtration using an inorganic flat plate membrane. The present invention relates to a separation membrane module whose separation efficiency and pressure resistance are enhanced by a specific membrane reinforcing structure.

【0002】[0002]

【従来の技術】精密濾過、限外濾過、逆浸透濾過などの
分離操作を行う分離膜モジュールの中、排水処理や浄化
処理などのスラッジ等を含む流体の分離に使用される分
離膜モジュールにおいては、モジュール内の目詰まりが
少なく且つ耐熱性、耐薬品性に優れているという理由か
ら、セラミックス等から形成した無機平板膜の利用が種
々検討されている。
2. Description of the Related Art Among separation membrane modules that perform separation operations such as microfiltration, ultrafiltration and reverse osmosis filtration, among separation membrane modules used for separation of fluids containing sludge and the like for wastewater treatment and purification treatment, The use of an inorganic flat plate film made of ceramics or the like has been variously studied because the module has less clogging and is excellent in heat resistance and chemical resistance.

【0003】特開平4−247288号公報、特開平4
−334530号公報には、処理層内に複数の平板膜を
平行且つ並列に配置して各平板膜の間に平行な流路を形
成し、当該流路に供給された被処理水から水を選択的に
分離する濾過装置が記載されている。斯かる装置におい
ては、膜表面へのスラッジ等の付着を防止するため、流
路入口に爆気装置や流動装置などを付設している。
Japanese Unexamined Patent Publication Nos. 4-247288 and 4
In JP-A-334530, a plurality of flat plate membranes are arranged in parallel and in parallel in a treatment layer to form parallel flow channels between the flat plate membranes, and water is supplied from the water to be treated supplied to the flow channels. A filter device for selective separation is described. In such an apparatus, in order to prevent sludge and the like from adhering to the surface of the membrane, an explosive device, a flow device, etc. are attached to the inlet of the flow path.

【0004】[0004]

【発明が解決しようとする課題】上記の爆気装置などに
よって被処理液の流れを制御し且つ膜表面に衝撃を与え
ることは、スラッジ等の付着を防止する一手段ではある
が、被処理液の種類によっては流路の閉塞や膜表面への
付着を十分に抑制することが難しい。従って、高濁質分
を含む流体の処理においては、閉塞を防止するという観
点から、各平板膜の間の流路幅を大きくしたり、流速を
高めることが有効である。しかしながら、流路幅を大き
くするなどした場合には、膜表面への負荷が増大して平
板膜が揺動し、流体の流れが不安定となって分離効率の
低下を招くことがあり、しかも、膜に損傷を与える虞も
ある。また、実用上は高圧の逆洗に耐え得る構造も必要
とされる。
Controlling the flow of the liquid to be treated and giving an impact to the film surface by the above-described detonation device is one means for preventing the sludge from adhering, but the liquid to be treated is Depending on the type, it is difficult to sufficiently suppress the blockage of the flow channel and the adhesion to the membrane surface. Therefore, in the treatment of a fluid containing a high turbidity component, it is effective to increase the flow channel width between the flat plate membranes or increase the flow velocity from the viewpoint of preventing clogging. However, when the flow channel width is increased, the load on the membrane surface increases, the flat plate membrane oscillates, and the fluid flow may become unstable, leading to a reduction in separation efficiency. There is also a risk of damaging the membrane. Further, in practice, a structure that can withstand high pressure backwash is also required.

【0005】本発明は、平板膜における耐圧強度を向上
し得るモジュール構造を主眼に種々検討の結果なされた
ものであり、その目的は、無機平板膜を用いて精密濾
過、限外濾過、逆浸透濾過などの各種の分離操作を行う
分離膜モジュールにおいて、モジュール内の被処理液の
流れを安定化させることが出来、且つ、流路幅を適宜に
設定して閉塞を防止し得る、分離効率が高く耐久性に優
れた分離膜モジュールを提供することにある。
The present invention has been made as a result of various studies focusing on a module structure capable of improving the pressure resistance of a flat plate membrane. The purpose of the present invention is to perform microfiltration, ultrafiltration, reverse osmosis using an inorganic flat plate membrane. In a separation membrane module that performs various separation operations such as filtration, the flow of the liquid to be treated in the module can be stabilized, and the flow passage width can be appropriately set to prevent clogging. An object is to provide a separation membrane module having high durability.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の要旨
は、複数の無機平板膜と、これら平板膜を平行且つ並列
に位置させて収容した筐体と、前記各平板膜の間に形成
された流路と、前記筐体に設けられ且つ前記流路に通じ
る被処理液の供給口および非透過液の排出口と、前記各
平板膜を透過した透過液の回収手段とを備えた分離膜モ
ジュールであって、前記流路には、前記平板膜の表面を
前記筐体側に支持させる支持手段が設けられていること
を特徴とする分離膜モジュールに存する。
That is, the gist of the present invention is formed between a plurality of inorganic flat plate membranes, a housing in which these flat plate membranes are arranged in parallel and in parallel, and each flat plate membrane. Separation membrane including a flow path, a supply port for the liquid to be treated and a non-permeate liquid discharge port provided in the casing and communicating with the flow path, and a means for collecting the permeated liquid that has permeated the flat plate membranes. The module is a separation membrane module characterized in that the flow path is provided with a supporting means for supporting the surface of the flat plate membrane on the housing side.

【0007】[0007]

【作用】上記の支持手段は、各平板膜の表面に受ける流
体の圧力を筐体側に支持させてこれら平板膜を補強し、
そして、各平板膜の揺動を防止し、且つ、各平板におけ
る耐圧強度を向上させる。
The above-mentioned supporting means reinforces the flat plate membranes by supporting the pressure of the fluid received on the surface of each flat plate membrane on the housing side.
Then, the swinging of each flat plate film is prevented, and the pressure resistance strength of each flat plate is improved.

【0008】[0008]

【実施例】本発明に係る分離膜モジュールの実施例を図
面に基づいて説明する。図1は本発明に係る分離膜モジ
ュールの一例を示す全体外観図である。図2は本発明に
係る分離膜モジュールの内部構造を示すII−II矢視図で
ある。図3〜図5は、本発明に係る分離膜モジュールの
内部構造の他の例を示す、II−II矢視に相当する図面で
ある。図6は、本発明の分離膜モジュールに使用される
平板膜の構造の一例を示す要部斜視図である。図7〜図
10は、本発明の分離膜モジュールに使用される平板膜
の構造の他の例を示す要部斜視図である。
Embodiments of the separation membrane module according to the present invention will be described with reference to the drawings. FIG. 1 is an overall external view showing an example of a separation membrane module according to the present invention. FIG. 2 is a II-II arrow view showing the internal structure of the separation membrane module according to the present invention. 3 to 5 are views corresponding to II-II arrows showing other examples of the internal structure of the separation membrane module according to the present invention. FIG. 6 is a perspective view of an essential part showing an example of the structure of a flat plate membrane used in the separation membrane module of the present invention. 7 to 10 are perspective views of main parts showing another example of the structure of the flat plate membrane used in the separation membrane module of the present invention.

【0009】先ず、本発明の一実施例を説明する。本発
明の分離膜モジュールは、図1に示されるように、複数
の無機平板膜(3)と、これら平板膜(3)を平行且つ
並列に位置させて収容した筐体(1)と、各平板膜
(3)の間に形成された流路(4)と、筐体(1)に設
けられ且つ流路(4)に通じる被処理液の供給口(6)
および非透過液の排出口(8)と、各平板膜(3)を透
過した透過液の回収手段とを備えている。そして、本発
明の分離膜モジュールにおいて、流路(4)には、平板
膜(3)の表面を筐体(1)側に支持させる支持手段
(5)が設けられている。
First, an embodiment of the present invention will be described. As shown in FIG. 1, the separation membrane module of the present invention includes a plurality of inorganic flat plate membranes (3), a housing (1) for accommodating the flat plate membranes (3) in parallel and in parallel, and A channel (4) formed between the flat plate membranes (3) and a supply port (6) for the liquid to be treated which is provided in the housing (1) and communicates with the channel (4).
And a non-permeate discharge port (8) and a means for collecting the permeate that has permeated each flat plate membrane (3). Further, in the separation membrane module of the present invention, the channel (4) is provided with a supporting means (5) for supporting the surface of the flat plate membrane (3) on the housing (1) side.

【0010】上記の平板膜(3)としては、排水処理や
浄化処理などを含む各種の用途に使用するため、耐熱
性、耐薬品性に優れる無機平板膜が使用される。具体的
には、酸化アルミニウム、珪酸アルミニウム、カーボ
ン、酸化ジルコニウム、酸化チタン、炭化珪素、二酸化
珪素またはこれらの混合物などのセラミックスにて形成
された多孔構造の薄膜が好適である。斯かる薄膜は、ゾ
ルゲル法、泥漿成形焼結法、分相溶出法、化学蒸着法な
どの従来公知の各種の製造方法によって例えば方形平板
状に製造される。
As the flat plate film (3), an inorganic flat plate film having excellent heat resistance and chemical resistance is used because it is used for various purposes including drainage treatment and purification treatment. Specifically, a thin film having a porous structure formed of ceramics such as aluminum oxide, aluminum silicate, carbon, zirconium oxide, titanium oxide, silicon carbide, silicon dioxide, or a mixture thereof is suitable. Such a thin film is manufactured into, for example, a rectangular plate shape by various conventionally known manufacturing methods such as a sol-gel method, a sludge molding sintering method, a phase separation elution method, and a chemical vapor deposition method.

【0011】また、図6に示されるように、平板膜
(3)は、表面に緻密な活性層を備え、内部に多孔構造
の粗密層を備える。緻密層は実質的に分離を行う機能を
有し、また、粗密層は分離した透過液を円滑に取り出す
機能を有する。そして、これら緻密層と粗密層とは、膜
自体の強度を向上させるため、通常は一体的な構造とさ
れている。緻密層の仕様は、当該モジュールの用途に応
じて適宜に設定されるが、例えば、精密濾過膜として使
用する場合にはその細孔径を0.05〜10μ程度、限
外濾過膜として使用する場合にはその分画分子量を10
00〜100万程度とされる。斯かる構造の平板膜
(3)は、通常、約2〜20mmの厚みに形成される。
Further, as shown in FIG. 6, the flat plate membrane (3) has a dense active layer on the surface and a porous dense layer inside. The dense layer has a function of substantially separating, and the coarse layer has a function of smoothly taking out the separated permeated liquid. The dense layer and the dense layer are usually formed as an integral structure in order to improve the strength of the film itself. The specifications of the dense layer are appropriately set according to the application of the module, for example, when used as a microfiltration membrane, the pore size is about 0.05 to 10 μ, and when used as an ultrafiltration membrane. The molecular weight cut-off is 10
It is set to about 100 to 1,000,000. The flat plate film (3) having such a structure is usually formed to have a thickness of about 2 to 20 mm.

【0012】また、平板膜(3)の周縁の中、被処理液
に曝される側縁(34)は、通常、上記の活性層と一体
的に形成されており、そして、周縁の少なくとも一部
は、当該平板膜内部の透過液を外部へ排出するため、内
部の粗密層が露出した流出部(31)となっている。上
記の側縁(34)については、各種の樹脂材料や平板部
材にて封止することもできるが、特に活性層と共にセラ
ミックスにて形成した場合には、蒸気滅菌や強い薬剤に
よる洗浄が可能である。
The side edge (34) of the flat plate membrane (3) exposed to the liquid to be treated is usually formed integrally with the above-mentioned active layer, and at least one of the peripheral edges is formed. The part serves as an outflow part (31) in which the dense layer inside is exposed in order to discharge the permeated liquid inside the flat plate membrane to the outside. The side edge (34) can be sealed with various resin materials or flat plate members, but especially when it is formed of ceramics together with the active layer, steam sterilization or cleaning with a strong chemical is possible. is there.

【0013】筐体(1)の形状は、モジュールとして各
種機器に組み込み容易な適宜な形状であればよく、例え
ば、図1に示されるように、対向する2面に開口部を備
えた六面体の略箱状に形成される。そして、一方の開口
部を供給口(6)、他方の開口部を排出口(8)とされ
る。また、筐体(1)内に平行且つ並列に配置された各
平板膜(3)の間が流路(4)となっており、供給口
(6)から供給された被処理液は、流路(4)を通過す
る間に固形成分が各平板膜(3)によって選択的に分離
され、非透過液として排出口(8)から排出される。な
お、流路(4)の間隙幅は、例えば約0.5〜10mmと
され、斯かる幅は被処理液に応じて適宜に設定すること
が出来る。
The shape of the housing (1) may be any suitable shape that can be easily incorporated into various devices as a module. For example, as shown in FIG. 1, a hexahedron having openings on two opposing surfaces. It is formed in a substantially box shape. One opening is used as the supply port (6) and the other opening is used as the discharge port (8). A flow path (4) is formed between the flat plate membranes (3) arranged in parallel and in parallel in the housing (1), and the liquid to be treated supplied from the supply port (6) flows. While passing through the path (4), the solid components are selectively separated by each flat plate membrane (3) and discharged from the discharge port (8) as a non-permeate. The gap width of the channel (4) is, for example, about 0.5 to 10 mm, and such a width can be appropriately set according to the liquid to be treated.

【0014】上記の透過液の回収手段は、各平板膜
(3)に透過液の取り出し流路を付設するなどの種々の
構造とすることが出来る。しかしながら、本実施例にお
いては、簡単な構造であって且つ各平板膜(3)から透
過液を効率的に取り出すため、流路(4)の流れ方向に
沿って各平板膜(3)の両端縁部側に各々設けられた捕
集室(2)にて構成される。斯かる捕集室(2)は、通
常、仕切壁(20)によって流路(4)を区画すること
によって形成される。仕切壁(20)は、筐体(1)内
にて所定間隔に配置される各平板膜(3)の平行な両端
縁部近傍を支持する機能をも有しており、平板部材や各
種の樹脂、セラミックス等の封止材にて構成されてい
る。そして、各捕集室(2)内には上記の流出部(3
1)が配置されている。また、各捕集室(2)には透過
液の取り出し口(7)が付設されている。なお、筐体
(1)の内面および仕切壁(20)は、耐熱性、耐薬品
性を高めるため、セラミックスにて形成されているのが
好ましい。
The means for collecting the permeated liquid may have various structures such as providing each flat plate membrane (3) with a passage for taking out the permeated liquid. However, in this example, in order to efficiently take out the permeated liquid from each flat plate membrane (3) with a simple structure, both ends of each flat plate membrane (3) are arranged along the flow direction of the flow path (4). It is composed of a collection chamber (2) provided on the edge side. Such a collection chamber (2) is usually formed by partitioning the flow path (4) by a partition wall (20). The partition wall (20) also has a function of supporting the vicinity of both parallel edge portions of each flat plate film (3) arranged at a predetermined interval in the housing (1), and the flat plate member and various It is composed of a sealing material such as resin or ceramics. Then, in each collection chamber (2), the outflow portion (3
1) is arranged. Further, each collection chamber (2) is provided with an outlet (7) for the permeated liquid. The inner surface of the housing (1) and the partition wall (20) are preferably made of ceramics in order to improve heat resistance and chemical resistance.

【0015】本発明の分離膜モジュールは、支持手段
(5)によって各平板膜(3)の揺動防止および耐圧強
度の向上を図り、流路(4)の幅を処理条件に応じて適
宜に設定することを可能したものである。具体的には、
図2に示されるように、支持手段(5)は流路(4)に
挿入された介装部材にて構成される。斯かる介装部材と
しては、ステンレス等の金属、または、ポリプロピレ
ン、ポリウレタン等のプラスチックにて形成された波板
(5a)が使用され、そして、波板(5a)は、流路
(4)において当該波板の波の頂部(又は底部)が供給
口(6)から排出口(8)に向けて連続するように配置
される。
In the separation membrane module of the present invention, the supporting means (5) is used to prevent the flat plate membrane (3) from swinging and to improve the pressure resistance, and the width of the flow channel (4) is appropriately adjusted according to the processing conditions. It is possible to set. In particular,
As shown in FIG. 2, the supporting means (5) is composed of an interposing member inserted in the flow path (4). As such an interposition member, a corrugated plate (5a) formed of a metal such as stainless steel or a plastic such as polypropylene or polyurethane is used, and the corrugated plate (5a) is used in the flow path (4). The top (or bottom) of the wave of the corrugated plate is arranged so as to be continuous from the supply port (6) toward the discharge port (8).

【0016】次に、本発明の分離膜モジュールにおける
分離操作を説明する。本発明の分離膜モジュールは、通
常、各種の濾過装置に組み込まれて使用され、スラッジ
を含む排水などの被処理液が液送ポンプ(図示せず)を
通じて供給口(6)から当該モジュール内に所定圧力で
供給される。供給された被処理液は、各平板膜(3)の
間に形成された流路(4)を通過する間、平板膜(3)
の膜表面に接触し、膜表面の緻密層によって被処理液中
の高濁質分を含まない例えば水のみが選択的に透過され
る。
Next, the separation operation in the separation membrane module of the present invention will be described. The separation membrane module of the present invention is usually used by being incorporated in various filtration devices, and a liquid to be treated such as wastewater containing sludge is fed into the module from a supply port (6) through a liquid feed pump (not shown). It is supplied at a predetermined pressure. The supplied liquid to be treated passes through the flow passages (4) formed between the flat plate membranes (3) and the flat plate membranes (3).
The membrane is in contact with the membrane surface, and the dense layer on the membrane surface selectively permeates, for example, only water that does not contain high suspended matter in the liquid to be treated.

【0017】その際、本発明の分離膜モジュールにおい
ては、流路(4)に挿入された波板(5a)にて支持手
段(5)が構成されており、斯かる支持手段(5)によ
って各平板膜(3)を補強することが出来る。すなわ
ち、波板(5a)は、各平板膜(3)の表面に受ける流
体の圧力を筐体(1)側に支持させる。従って、各平板
膜(3)は、流路(4)内への異物の進入などによって
各流路(4)間に圧力変動が生じた場合にも揺動や振動
を起こすことが無い。その結果、各流路(4)内の被処
理液の流れを安定化させることが出来、所定の分離効率
を維持することが出来る。
In that case, in the separation membrane module of the present invention, the supporting means (5) is constituted by the corrugated plate (5a) inserted in the flow path (4), and by such supporting means (5). Each flat plate membrane (3) can be reinforced. That is, the corrugated plate (5a) supports the pressure of the fluid received on the surface of each flat plate film (3) on the housing (1) side. Therefore, the flat plate membranes (3) do not oscillate or vibrate even when a pressure fluctuation occurs between the flow paths (4) due to entry of foreign matter into the flow paths (4). As a result, the flow of the liquid to be treated in each flow path (4) can be stabilized, and a predetermined separation efficiency can be maintained.

【0018】更に、各平板膜(3)は、支持手段(5)
によって補強されているため、各平板膜(3)の表面に
高い圧力を受けたり上記のような圧力変動に際しても大
きく歪むことが無く、従って、破損することが無い。ま
た、支持手段(5)を構成する波板(5a)は、一の平
板膜(3)が僅かに揺動した際にも、斯かる平板膜
(3)の変位を吸収することが出来、他の平板膜(3)
へ作用する押圧力を緩衝することが出来る。
Further, each flat plate membrane (3) has a supporting means (5).
Since it is reinforced by, the surface of each flat plate membrane (3) is not subject to a high pressure and is not greatly distorted even when the pressure changes as described above, and therefore is not damaged. Further, the corrugated plate (5a) constituting the supporting means (5) can absorb the displacement of the flat plate film (3) even when the flat plate film (3) slightly swings, Other flat plate membranes (3)
The pressing force acting on can be buffered.

【0019】また、平板膜(3)の内部に透過された透
過液、例えばスラッジの除去された水は、各平板膜
(3)の周縁に設けられた流出部(31)を通じて捕集
室(2)に集められる。そして、捕集室(2)内の透過
液は、取り出し口(7)を介し、通常は吸引ポンプ(図
示せず)を使用して取り出される。また、平板膜(3)
を透過しなかった高濁質分を含む非透過液は、排出口
(8)から当該モジュールの外部へ取り出される。
The permeated liquid that has permeated into the flat plate membranes (3), for example, water from which sludge has been removed, passes through the outflow portion (31) provided at the peripheral edge of each flat plate membrane (3) to collect chamber ( Collected in 2). Then, the permeated liquid in the collection chamber (2) is taken out through the take-out port (7), usually using a suction pump (not shown). Also, flat plate film (3)
The non-permeated liquid containing a high turbidity component that has not permeated through the column is taken out of the module through the outlet (8).

【0020】本発明の分離膜モジュールに関して特に注
目すべき点は、支持手段(5)によって各平板膜(3)
における耐圧強度を向上させることが出来るため、流路
(4)の幅を被処理液に応じて適宜に設定できることで
ある。すなわち、高濁質分(スラッジ等の浮遊物や膜表
面付着物)の大きさや含有量に応じて流路(4)の幅を
設定した場合、流路(4)の閉塞を防止でき、安定した
分離機能を維持することが出来る。しかも、各平板膜
(3)において耐圧強度が高いため、高圧の逆洗も可能
であり、モジュールの耐久性を一層高めることが出来
る。
Particularly noteworthy with respect to the separation membrane module of the present invention is that each flat plate membrane (3) is supported by the supporting means (5).
Since it is possible to improve the withstand pressure strength in, the width of the channel (4) can be appropriately set according to the liquid to be treated. That is, when the width of the flow channel (4) is set according to the size and content of high suspended matter (suspended matter such as sludge or film surface adhered matter), clogging of the flow channel (4) can be prevented and stable. The separated function can be maintained. Moreover, since the flat plate membranes (3) have high pressure resistance, high-pressure backwashing is possible, and the durability of the module can be further enhanced.

【0021】更に、本発明の分離膜モジュールにおいて
は、各平板膜(3)における耐圧強度が高いため、流路
(4)の間隙幅をさほど拡大することなく、高濁質分を
含む被処理液を一層高い圧力にて供給することも出来
る。換言すれば、モジュールの単位体積当たりの平板膜
(3)の設置数を増やして膜面積を増大させ、処理能力
を向上させることが出来る。従って、本発明の分離膜モ
ジュールにおいては、従来のモジュールに比べ、一層小
型化することが出来る。
Further, in the separation membrane module of the present invention, since the flat plate membrane (3) has a high pressure resistance, the treated sample containing a high turbidity content can be treated without enlarging the gap width of the flow channel (4) so much. It is also possible to supply the liquid at a higher pressure. In other words, the number of flat plate membranes (3) installed per unit volume of the module can be increased to increase the membrane area and improve the throughput. Therefore, the separation membrane module of the present invention can be made smaller than the conventional module.

【0022】次に、本発明の他の実施例を説明する。本
発明の他の実施例は、図3に示されるように、上記の構
成において、支持手段(5)を構成する介装部材とし
て、ステンレス等の金属からなる網状部材(5b)を使
用したものである。網状部材(5b)が流路(4)に挿
入されている場合にも、図2に示される実施例と同様に
被処理液の流れを安定化させることが出来、且つ、平板
膜(3)における耐圧強度を向上させることが出来る。
また、平板膜(3)へ作用する押圧力をも十分に緩衝す
ることが出来る。
Next, another embodiment of the present invention will be described. In another embodiment of the present invention, as shown in FIG. 3, the mesh member (5b) made of metal such as stainless steel is used as the interposing member constituting the supporting means (5) in the above structure. Is. Even when the mesh member (5b) is inserted in the flow path (4), the flow of the liquid to be treated can be stabilized in the same manner as the embodiment shown in FIG. 2, and the flat plate membrane (3). It is possible to improve the withstand pressure strength.
Moreover, the pressing force acting on the flat plate membrane (3) can be sufficiently buffered.

【0023】また、支持手段(5)を構成する介装部材
としては、図4に示されるように、ステンレス等の金属
やポリプロピレン、ポリウレタン等のプラスチックにて
形成された棒状部材(5c)を使用することも出来る。
斯かる棒状部材(5c)を使用する場合には、各流路
(4)内の少なくとも1箇所に配置される。介装部材を
棒状部材(5c)にて構成した場合にも、図2又は図3
に示される実施例と同様に被処理液の流れを安定化させ
ることが出来、且つ、平板膜(3)における耐圧強度を
向上させることが出来る。しかも、各流路(4)におけ
る抵抗を低減することが出来、被処理液を一層低い圧力
にて供給することが出来る。
As the interposing member constituting the supporting means (5), as shown in FIG. 4, a rod-shaped member (5c) made of metal such as stainless steel or plastic such as polypropylene or polyurethane is used. You can also do it.
When using such a rod-shaped member (5c), it is arrange | positioned in at least 1 place in each flow path (4). 2 or 3 even when the interposition member is formed of the rod-shaped member (5c).
It is possible to stabilize the flow of the liquid to be treated and improve the pressure resistance of the flat plate film (3) as in the example shown in FIG. Moreover, the resistance in each channel (4) can be reduced, and the liquid to be treated can be supplied at a lower pressure.

【0024】ところで、流路(4)に挿入された介装部
材においては、各平板膜(3)の平坦な表面に比べ、被
処理液に含まれるスラッジ等が付着し易い。そこで、図
1〜図4に示される各実施例においては、斯かる付着を
防止するため、上記の各介装部材に対し、親水処理が施
されているのが好ましい。親水処理としては、コロナ放
電処理、プラズマ処理、水性高分子のグラフト重合な
ど、表面改質のための従来公知の種々の手法を用いるこ
とが出来る。親水処理の施された上記の各介装部材にお
いては、スラッジ等の高濁質物の付着が少ないため、安
定した分離機能を一層長時間にわたって発揮させること
が出来、また、逆洗操作の頻度を低減させることが出来
る。
By the way, in the interposition member inserted in the flow path (4), sludge and the like contained in the liquid to be treated are more likely to adhere than the flat surface of each flat plate film (3). Therefore, in each of the embodiments shown in FIGS. 1 to 4, in order to prevent such adhesion, it is preferable that the above-mentioned interposition members are subjected to a hydrophilic treatment. As the hydrophilic treatment, various conventionally known methods for surface modification such as corona discharge treatment, plasma treatment, and graft polymerization of an aqueous polymer can be used. In each of the above-mentioned interposed members that have been subjected to the hydrophilic treatment, since the adherence of highly suspended substances such as sludge is small, the stable separation function can be exerted for a longer period of time, and the frequency of backwashing operation can be increased. It can be reduced.

【0025】次に、本発明の更に他の実施例を説明す
る。本発明の更に他の実施例においては、図5に示され
るように、支持手段(5)が各平板膜(3)に一体的に
形成された突起(3d)にて構成されている。斯かる突
起(3d)は、平板膜(3)の構造を簡単にするため、
通常は当該平板膜の一方の面に対し、供給口(6)から
排出口(8)へ向けて直線状に形成され、また、各平板
膜(3)において少なくとも1箇所に形成される。更
に、突起(3d)の頂部には、隣接する平板膜(3)の
表面に摺動などによる損傷を与えないように、ポリエチ
レン、ポリウレタン等の軟弾性材を介装するのが好まし
い。その他の構成は、図1に示される実施例と同様であ
る。このように、各平板膜(3)に一体的に形成された
突起(3d)にて支持手段(5)が構成されている場合
には、図1〜図4に示される実施例と同様の効果が得ら
れると共に、モジュールの構造を簡素化することが出来
る。
Next, still another embodiment of the present invention will be described. In still another embodiment of the present invention, as shown in FIG. 5, the supporting means (5) is composed of a protrusion (3d) integrally formed on each flat plate membrane (3). Such a protrusion (3d) simplifies the structure of the flat plate film (3),
Usually, it is linearly formed on one surface of the flat plate membrane from the supply port (6) to the discharge port (8), and is formed at least at one position on each flat plate film (3). Further, it is preferable to interpose a soft elastic material such as polyethylene or polyurethane on the top of the protrusion (3d) so as not to damage the surface of the adjacent flat plate film (3) by sliding or the like. Other configurations are similar to those of the embodiment shown in FIG. In this way, when the supporting means (5) is constituted by the protrusions (3d) integrally formed on each flat plate film (3), the same as in the embodiment shown in FIGS. The effect can be obtained and the structure of the module can be simplified.

【0026】本発明の更に他の実施例としては、平板膜
(3)に関する幾つかの構成を挙げることが出来る。図
1〜図5に示される上記の各実施例において、各平板膜
(3)は、通常、表面を緻密な活性層とされ、且つ、内
部を表面よりも粗密な多孔構造の層とされている。これ
に対し、本発明の更に他の実施例は、図7に示されるよ
うに、上記の各実施例の平板膜(3)において、透過液
の取り出しを一層円滑に行うため、各平板膜(3)の内
部が当該平板膜の厚み方向の中心に向かうに従い粗密な
多孔構造の層(33)とされている。斯かる構成によ
り、平板膜(3)内の透過液に対する抵抗を低減するこ
とが出来るため、透過液を流出部(31)より一層円滑
に取り出すことが出来、分離効率を向上することが出来
る。
As still another embodiment of the present invention, some constitutions relating to the flat plate film (3) can be mentioned. In each of the above-described examples shown in FIGS. 1 to 5, each flat plate film (3) is usually formed as a dense active layer on the surface and a layer having a porous structure which is coarser inside than the surface. There is. On the other hand, in still another embodiment of the present invention, as shown in FIG. 7, in the flat plate membrane (3) of each of the above-mentioned embodiments, the permeated liquid is taken out more smoothly. The inside of 3) is a layer (33) having a coarse and dense porous structure as it goes toward the center of the plate film in the thickness direction. With such a configuration, the resistance to the permeated liquid in the flat plate membrane (3) can be reduced, so that the permeated liquid can be taken out from the outflow portion (31) more smoothly and the separation efficiency can be improved.

【0027】また、平板膜(3)における透過液の取り
出しを一層円滑に行うための他の構造としては、図8に
示す構造を挙げることが出来る。すなわち、図1〜図5
に示される上記の各実施例において、平板膜(3)の内
部には、透過液の捕集路が形成されていてもよい。斯か
る捕集路は、例えば平板膜(3)を成形する際に細線を
引き抜くなどして作製した孔(35)にて構成される。
As another structure for more smoothly taking out the permeated liquid from the flat plate membrane (3), the structure shown in FIG. 8 can be cited. That is, FIGS.
In each of the above-mentioned examples shown in FIG. 2, a permeated liquid collecting passage may be formed inside the flat plate membrane (3). Such a collection path is composed of a hole (35) produced by, for example, drawing a thin wire when the flat plate membrane (3) is formed.

【0028】更に、平板膜(3)における他の構造とし
ては、図9に示す構造を挙げることが出来る。図9に示
される実施例は、図8中の孔(35)に代え、網状部材
(36)を配置して捕集路を形成したものである。斯か
る構造においては、透過液の取り出し効率が良好になる
と共に、捕集路を有する平板膜(3)を一層容易に製作
することが出来る。具体的には、平板膜(3)は、一対
の薄膜材(30a)、(30a)を貼着して構成されて
いる。これら薄膜材(30a)は表面側を緻密な活性層
とされ且つ裏面側を表面側よりも粗密な多孔構造の層と
されており、しかも、捕集路は双方の薄膜材(30
a)、(30a)の間に網状部材(36)を介装して形
成されている。また、平板膜(3)の流出部(31)に
相当しない側縁(37a)は、通常、エポキシ樹脂など
の封止材にて液密に構成されている。
Further, as another structure of the flat plate film (3), the structure shown in FIG. 9 can be mentioned. In the embodiment shown in FIG. 9, instead of the hole (35) in FIG. 8, a mesh member (36) is arranged to form a collecting passage. In such a structure, the efficiency of taking out the permeated liquid becomes good, and the flat plate membrane (3) having the collecting passage can be manufactured more easily. Specifically, the flat plate film (3) is formed by attaching a pair of thin film materials (30a) and (30a). These thin film materials (30a) have a front surface side as a dense active layer and a back surface side as a layer having a porous structure which is coarser than the front surface side, and moreover, the collecting path is provided for both thin film materials (30a).
A mesh member (36) is interposed between a) and (30a). The side edge (37a) of the flat plate film (3) which does not correspond to the outflow portion (31) is usually liquid-tightly made of a sealing material such as epoxy resin.

【0029】また、上述の各実施例において、各平板膜
(3)は、流路(4)の少なくとも上流側に位置する当
該平板膜の縁部が先端に向かうに従い薄く形成されてい
てもよい。すなわち、上記の構造の平板膜(3)を一例
に挙げた場合、図10に示されるように、平板膜(3)
は、表面側に緻密な活性層を有し且つ表面側よりも粗密
な多孔構造の層を裏面側に有し、しかも、縁部が裏面側
へ屈曲された一対の薄膜材(30b)、(30b)を貼
着して構成されている。そして、これら薄膜材(30
b)の間に網状部材(36)が介装されている。また、
平板膜(3)の流出部(31)に相当しない側縁(37
b)は、エポキシ樹脂などの封止材にて液密に構成され
ている。各平板膜(3)を上記のように構成した場合、
流路(4)の少なくとも入口は、上流側(供給口(6)
側)へ向けて開かれたテーパーに形成されるため、スラ
ッジ等の高濁質分を含む被処理液を目詰まり無く一層円
滑に導入することが出来る。
Further, in each of the above-mentioned embodiments, each flat plate membrane (3) may be formed so that the edge of the flat plate membrane located at least at the upstream side of the flow path (4) becomes thinner toward the tip. . That is, when the flat plate film (3) having the above structure is taken as an example, as shown in FIG.
Is a pair of thin film materials (30b) having a dense active layer on the front surface side and a layer having a porous structure which is coarser than the front surface side on the back surface side, and whose edges are bent to the back surface side. 30b) is attached. Then, these thin film materials (30
A mesh member (36) is interposed between b). Also,
The side edge (37) not corresponding to the outflow part (31) of the flat plate membrane (3)
In b), a sealing material such as an epoxy resin is liquid-tight. When each flat plate membrane (3) is configured as described above,
At least the inlet of the flow path (4) is on the upstream side (supply port (6)
Since it is formed in a taper opened toward the side), the liquid to be treated containing highly suspended matter such as sludge can be introduced more smoothly without clogging.

【0030】本発明の分離膜モジュールは、精密濾過、
限外濾過、逆浸透濾過などの各種の分離操作を行うこと
が出来るが、特定の膜補強構造によって流路の幅を適宜
に設定することが出来、高圧の逆洗も可能であるため、
例えば浄水処理、排水処理、浄化槽の汚泥の処理などの
各種の水処理、食品、発酵、生化学医薬などの微生物を
含む水処理など、高濁質分の濃度に拘らず各分野におい
て広く使用することが出来る。
The separation membrane module of the present invention comprises a microfiltration,
Although various separation operations such as ultrafiltration and reverse osmosis filtration can be performed, the width of the flow path can be appropriately set by a specific membrane reinforcing structure, and high-pressure backwash is also possible,
For example, it is widely used in various fields regardless of the concentration of high turbidity, such as water treatment, wastewater treatment, various water treatments such as treatment of sludge in septic tanks, water treatment containing microorganisms such as food, fermentation and biochemical medicine. You can

【0031】[0031]

【発明の効果】以上説明したように、本発明の分離膜モ
ジュールによれば、モジュール内の被処理液の流れを安
定化させることが出来、高い分離効率が得られる。ま
た、流路幅を適宜に設定して閉塞を防止することが出
来、しかも、高圧の逆洗を行うことが出来るため、優れ
た耐久性を発揮する。更に、高濁質分を含む被処理液を
一層高い圧力にて供給し得るため、単位体積当たりの膜
面積を増大させることにより小型化を図ることも出来
る。従って、本発明の分離膜モジュールによれば、各種
の用途に広く使用することが可能である。
As described above, according to the separation membrane module of the present invention, the flow of the liquid to be treated in the module can be stabilized and high separation efficiency can be obtained. Further, the flow passage width can be appropriately set to prevent clogging, and high-pressure backwash can be performed, so that excellent durability is exhibited. Furthermore, since the liquid to be treated containing a high suspended matter can be supplied at a higher pressure, it is possible to reduce the size by increasing the membrane area per unit volume. Therefore, the separation membrane module of the present invention can be widely used in various applications.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る分離膜モジュールの一例を示す全
体外観図である。
FIG. 1 is an overall external view showing an example of a separation membrane module according to the present invention.

【図2】本発明に係る分離膜モジュールの内部構造を示
すII−II矢視図である。
FIG. 2 is a II-II arrow view showing the internal structure of the separation membrane module according to the present invention.

【図3】本発明に係る分離膜モジュールの内部構造の他
の例を示す、II−II矢視に相当する図面である。
FIG. 3 is a drawing showing another example of the internal structure of the separation membrane module according to the present invention, taken along the line II-II.

【図4】本発明に係る分離膜モジュールの内部構造の他
の例を示す、II−II矢視に相当する図面である。
FIG. 4 is a drawing corresponding to II-II arrow showing another example of the internal structure of the separation membrane module according to the present invention.

【図5】本発明に係る分離膜モジュールの内部構造の他
の例を示す、II−II矢視に相当する図面である。
FIG. 5 is a view corresponding to II-II arrow showing another example of the internal structure of the separation membrane module according to the present invention.

【図6】本発明の分離膜モジュールに使用される平板膜
の構造の一例を示す要部斜視図である。
FIG. 6 is a main part perspective view showing an example of the structure of a flat plate membrane used in the separation membrane module of the present invention.

【図7】本発明の分離膜モジュールに使用される平板膜
の構造の他の例を示す要部斜視図である。
FIG. 7 is a main part perspective view showing another example of the structure of the flat plate membrane used in the separation membrane module of the present invention.

【図8】本発明の分離膜モジュールに使用される平板膜
の構造の他の例を示す要部斜視図である。
FIG. 8 is a main part perspective view showing another example of the structure of the flat plate membrane used in the separation membrane module of the present invention.

【図9】本発明の分離膜モジュールに使用される平板膜
の構造の他の例を示す要部斜視図である。
FIG. 9 is a main part perspective view showing another example of the structure of the flat plate membrane used in the separation membrane module of the present invention.

【図10】本発明の分離膜モジュールに使用される平板
膜の構造の他の例を示す要部斜視図である。
FIG. 10 is a perspective view of a principal part showing another example of the structure of the flat plate membrane used in the separation membrane module of the present invention.

【符号の説明】[Explanation of symbols]

1: 筐体(1) 2: 捕集室(2)(回収手段) 3: 平板膜(3) 3d:突起 30a、30b :薄膜材 35:孔(捕集路) 36:網状部材(捕集路) 4: 流路(4) 5: 支持手段(5) 5a、5b、5c:介装部材 6: 供給口(6) 8: 排出口(8) 1: Case (1) 2: Collection chamber (2) (collection means) 3: Flat plate membrane (3) 3d: Protrusions 30a, 30b: Thin film material 35: Hole (collection path) 36: Net member (collection) Path) 4: flow path (4) 5: support means (5) 5a, 5b, 5c: interposition member 6: supply port (6) 8: discharge port (8)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の無機平板膜と、これら平板膜を平
行且つ並列に位置させて収容した筐体と、前記各平板膜
の間に形成された流路と、前記筐体に設けられ且つ前記
流路に通じる被処理液の供給口および非透過液の排出口
と、前記各平板膜を透過した透過液の回収手段とを備え
た分離膜モジュールであって、前記流路には、前記平板
膜の表面を前記筐体側に支持させる支持手段が設けられ
ていることを特徴とする分離膜モジュール。
1. A plurality of inorganic flat plate membranes, a housing in which these flat plate membranes are arranged in parallel and in parallel, a flow path formed between the respective flat plate films, and a housing provided in the housing. A separation membrane module comprising a supply port for a liquid to be treated and a discharge port for a non-permeated liquid that communicates with the flow channel, and a means for collecting the permeated liquid that has permeated each of the flat plate membranes, wherein the flow channel includes: A separation membrane module comprising a supporting means for supporting the surface of the flat plate membrane on the housing side.
JP24206893A 1993-09-02 1993-09-02 Separation membrane module Withdrawn JPH0768137A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24206893A JPH0768137A (en) 1993-09-02 1993-09-02 Separation membrane module
AU75459/94A AU7545994A (en) 1993-09-02 1994-09-01 Separation membrane module
PCT/JP1994/001441 WO1995006514A1 (en) 1993-09-02 1994-09-01 Separation membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24206893A JPH0768137A (en) 1993-09-02 1993-09-02 Separation membrane module

Publications (1)

Publication Number Publication Date
JPH0768137A true JPH0768137A (en) 1995-03-14

Family

ID=17083809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24206893A Withdrawn JPH0768137A (en) 1993-09-02 1993-09-02 Separation membrane module

Country Status (3)

Country Link
JP (1) JPH0768137A (en)
AU (1) AU7545994A (en)
WO (1) WO1995006514A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070685A (en) * 1998-08-27 2000-03-07 Daicel Chem Ind Ltd Metbod for washing solid-liquid separation membrane
US7163671B2 (en) 2000-02-29 2007-01-16 Chugai Seiyaku Kabushiki Kaisha Long-term stabilized formulations
KR100722332B1 (en) * 2006-11-06 2007-05-28 주식회사 퓨어엔비텍 A block type membrane module frame
EP2415514A1 (en) * 2009-03-31 2012-02-08 Kubota Corporation Membrane separation device
WO2016175355A1 (en) * 2015-04-28 2016-11-03 김대건 Membrane module for water treatment and membrane module driving device using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317853A1 (en) * 2003-04-16 2004-11-04 A3 Abfall-Abwasser-Anlagentechnik Gmbh filtration module
EP1922137B1 (en) 2005-09-09 2017-07-26 Tangenx Technology Corporation Laminated cassette device
WO2013103083A1 (en) * 2012-01-05 2013-07-11 住友重機械工業株式会社 Membrane separation method and membrane separation apparatus
US9656192B2 (en) 2012-09-21 2017-05-23 Wta Vogtland Gmbh Stack of membrane filter pockets commonly potted at their corners
JP2017000964A (en) * 2015-06-11 2017-01-05 日東電工株式会社 Separation membrane element and membrane separator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109405A (en) * 1979-02-15 1980-08-22 Daicel Chem Ind Ltd Membrane element
JPH0239548Y2 (en) * 1982-10-08 1990-10-23
AT386134B (en) * 1986-07-22 1988-07-11 Vogelbusch Gmbh PLATE MODULE, MEMBRANE SEPARATING DEVICE WITH SUCH PLATE MODULES AND METHOD FOR PRODUCING A PLATE MODULE
JPS6372306A (en) * 1986-09-17 1988-04-02 Fuji Photo Film Co Ltd Filter cartridge
JPH0457373B2 (en) * 1988-05-27 1992-09-11 Ngk Insulators Ltd
JPH0639250A (en) * 1992-07-23 1994-02-15 Kubota Corp Filter element
JPH06134267A (en) * 1992-10-28 1994-05-17 Noritake Co Ltd Plate-shaped ceramic filter
JP3342724B2 (en) * 1993-01-25 2002-11-11 株式会社クボタ Membrane separation device
JPH06277461A (en) * 1993-03-26 1994-10-04 Kurita Water Ind Ltd Membrane separation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070685A (en) * 1998-08-27 2000-03-07 Daicel Chem Ind Ltd Metbod for washing solid-liquid separation membrane
US7163671B2 (en) 2000-02-29 2007-01-16 Chugai Seiyaku Kabushiki Kaisha Long-term stabilized formulations
KR100722332B1 (en) * 2006-11-06 2007-05-28 주식회사 퓨어엔비텍 A block type membrane module frame
WO2008056863A1 (en) * 2006-11-06 2008-05-15 Pure-Envitech Co., Ltd. Block type membrane module frame
EP2415514A1 (en) * 2009-03-31 2012-02-08 Kubota Corporation Membrane separation device
EP2415514A4 (en) * 2009-03-31 2013-10-30 Kubota Kk Membrane separation device
US8764982B2 (en) 2009-03-31 2014-07-01 Kubota Corporation Membrane separation device
WO2016175355A1 (en) * 2015-04-28 2016-11-03 김대건 Membrane module for water treatment and membrane module driving device using same

Also Published As

Publication number Publication date
AU7545994A (en) 1995-03-22
WO1995006514A1 (en) 1995-03-09

Similar Documents

Publication Publication Date Title
KR100240857B1 (en) Disposable membrane module with low-dead volume
AU703488B2 (en) Separation systems and methods
US7294267B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same and method of operating the same
US4867876A (en) Filter plate, filter plate element, and filter comprising same
US6368505B1 (en) Cross-flow filter cartridge
US4956085A (en) Filter plate, filter plate element and filter comprising same
US20050126980A1 (en) Cross-flow filtration unit
US6190557B1 (en) Spiral wound type membrane element, running method and washing method thereof
WO1994015693A1 (en) Filtration cassette article, and filter comprising same
JPH11501866A (en) Filtration cassette and filter with this laminated
WO2003097220A1 (en) Membrane separation device and membrane separation method
US4340475A (en) Membrane separation cell
JPH0768137A (en) Separation membrane module
JP2002113338A (en) Separation membrane element and module using the same
JPH10230145A (en) Spiral membrane element
JPH11244672A (en) Flat membrane element and flat membrane module using the same
US20020014449A1 (en) Separation systems and methods
EP1359993B1 (en) Hollow fiber membrane cassette
JP3694536B2 (en) Membrane module
JPH10230140A (en) Spiral membrane element
JP3264028B2 (en) Membrane separation device
JP2004524140A5 (en)
JPH06277461A (en) Membrane separation device
JP2001321645A (en) Filter membrane element and method for manufacturing permeated water
JPH11300175A (en) Fluid medium filtering and separating device having at least one permeated material outlet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001107