JPH0765658A - Method to distinguish earthing trouble due to insulator stain - Google Patents
Method to distinguish earthing trouble due to insulator stainInfo
- Publication number
- JPH0765658A JPH0765658A JP23553393A JP23553393A JPH0765658A JP H0765658 A JPH0765658 A JP H0765658A JP 23553393 A JP23553393 A JP 23553393A JP 23553393 A JP23553393 A JP 23553393A JP H0765658 A JPH0765658 A JP H0765658A
- Authority
- JP
- Japan
- Prior art keywords
- insulator
- earthing
- voltage
- phase voltage
- stain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012212 insulator Substances 0.000 title claims abstract description 27
- 238000011109 contamination Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims 1
- 229910001219 R-phase Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000036191 S Phase Effects 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- 230000001174 ascending Effects 0.000 description 1
- 230000002238 attenuated Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高圧配電線の汚損碍子
による地絡故障を他の地絡故障と容易に識別する碍子汚
損による地絡故障識別方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying a ground fault due to insulator contamination, which easily distinguishes a ground fault due to a contamination insulator on a high-voltage distribution line from other ground faults.
【0002】[0002]
【従来の技術】いままで、碍子の洩れ電流を検出する装
置は碍子の汚損管理、又は、劣化判定を測定するため
に、それぞれの装置を個々に設置するか、現地まで装置
を運搬していた。2. Description of the Related Art Up to now, a device for detecting a leakage current of an insulator has either installed each device individually or carried the device to the site in order to measure the pollution control or deterioration judgment of the insulator. .
【0003】しかし、実際に測定を行う場合には、大き
な労力を必要とするという欠点があった。However, there is a drawback in that a large amount of labor is required when actually measuring.
【0004】具体的には、高圧配電線の停電を伴い、そ
れぞれの装置により個別に碍子を測定するため昇柱作業
を繰り返すことを必要とした。[0004] Specifically, due to the power failure of the high-voltage distribution line, it was necessary to repeat the ascending pillar work in order to measure the insulator individually by each device.
【0005】この改善策として、高調波雑音を利用した
方法がある。しかしこの方法は、外来雑音電波と対象物
からのノイズの区分の判定、設備毎に測定を行なわなく
てはならない等の煩わしさが伴う。As a countermeasure for this, there is a method using harmonic noise. However, this method is troublesome in that it is necessary to determine the distinction between the external noise radio wave and the noise from the object and to measure each equipment.
【0006】[0006]
【発明が解決しようとする課題】解決しようとする問題
点は、設備毎に測定を実施しなければならない点であ
る。The problem to be solved is that measurement must be carried out for each equipment.
【課題を解決するための手段】本発明は、変電所等から
の集中監視により碍子の汚損による地絡故障と他の地絡
故障を識別することを特徴とする。SUMMARY OF THE INVENTION The present invention is characterized in that a ground fault due to contamination of an insulator and another ground fault are identified by centralized monitoring from a substation or the like.
【0007】[0007]
【作 用】汚損碍子による洩れ電流に伴い、変電所にお
いて零相電圧が観測される。その零相電圧と地絡相電圧
の波形測定と解析により汚損碍子による地絡故障を判定
する。[Operation] Zero-phase voltage is observed at the substation due to the leakage current due to the fouling insulator. By measuring and analyzing the waveforms of the zero phase voltage and the ground fault phase voltage, the ground fault due to the pollution insulator is determined.
【0008】[0008]
【実施例】図1は、本発明の1実施例の構成図である。
10は高圧配電線路であり、電源スイッチ11が投入さ
れると変電所の高圧電源12より電源が供給される。配
電線路10の電源スイッチ11側の始端および終端のそ
れぞれには変成器13、14が設置される。変成器1
3、14を介して故障点標定装置15、16に電圧、電
流波形が供給される。17は人工的に汚損させた碍子で
ある。1 is a block diagram of an embodiment of the present invention.
Reference numeral 10 is a high-voltage power distribution line, and when the power switch 11 is turned on, power is supplied from the high-voltage power source 12 in the substation. Transformers 13 and 14 are installed at the start end and the end of the power distribution line 10 on the power switch 11 side, respectively. Transformer 1
Voltage and current waveforms are supplied to the fault locators 15 and 16 via 3 and 14. Reference numeral 17 is an insulator that is artificially soiled.
【0009】一般に高圧配電線路において地絡故障が起
きると零相電圧が発生することがわかっている。汚損碍
子により洩れ電流が流れると地絡故障となり、零相電圧
が発生する。この零相電圧は前記した地絡故障の原因に
よりその大きさ、波形の歪みが変化する。It is generally known that a zero-phase voltage is generated when a ground fault occurs in a high voltage distribution line. If a leakage current flows due to the pollution insulator, a ground fault occurs and a zero-phase voltage is generated. The magnitude and waveform distortion of this zero-phase voltage change due to the cause of the ground fault described above.
【0010】図2は、図1の構成による各相の測定波形
である。配電線路10の終端に人工的に汚損をさせた碍
子17の洩れ電流による地絡故障時のR相電圧波形21
と、S相電圧波形22と、T相電圧波形23であり、零
相電圧波形は24である。地絡故障相はRである。FIG. 2 shows measured waveforms of each phase according to the configuration of FIG. R-phase voltage waveform 21 at the time of a ground fault due to the leakage current of the insulator 17 artificially polluted at the terminal end of the distribution line 10
, The S-phase voltage waveform 22 and the T-phase voltage waveform 23, and the zero-phase voltage waveform is 24. The ground fault phase is R.
【0011】碍子の洩れ電流が流れると零相電圧24が
発生し、その大きさは3周期程度で減衰している。When the leakage current of the insulator flows, a zero-phase voltage 24 is generated, and its magnitude is attenuated in about 3 cycles.
【0012】故障点標定装置15、16は発生した零相
電圧が設定された閾値以上ならば波形の解析を行う。波
形解析部分は図2のR相電圧21の4周期目の1周期で
あり、他の波形も同時刻の1周期について行う。The fault locating devices 15 and 16 analyze the waveform if the generated zero-phase voltage is above a set threshold value. The waveform analysis portion is one cycle of the fourth cycle of the R-phase voltage 21 in FIG. 2, and other waveforms are also processed for one cycle at the same time.
【0013】この1周期の波形をフーリエ級数に展開し
各高調波の実効値を求め、本発明で数1に定義した歪み
率の演算を行う。The waveform of this one cycle is expanded into a Fourier series to obtain the effective value of each harmonic, and the distortion rate defined in the equation 1 in the present invention is calculated.
【0014】[0014]
【数1】 [Equation 1]
【0015】数1における歪み率を図1による構成で汚
損碍子17と置き換えて実施した代表的な地絡故障ごと
に演算した結果を表1に示す。Table 1 shows the result of calculation for each typical ground fault carried out by replacing the distortion rate in the equation 1 with the pollution insulator 17 in the configuration shown in FIG.
【0016】[0016]
【表1】 [Table 1]
【0017】表1により零相電圧の歪み率から金属地絡
との識別が可能であり、地絡相電圧の歪み率よりケーブ
ル地絡との識別が可能となる。From Table 1, it is possible to discriminate from a metal ground fault from the distortion factor of the zero-phase voltage, and from the cable ground fault from the distortion factor of the ground fault phase voltage.
【0018】[0018]
【発明の効果】以上説明したように変電所における電
圧、電流波形を測定し、その高調波解析を行うことによ
り碍子の洩れによる地絡故障と判定できる。従って、変
電所等による集中監視により碍子の汚損状況の判断が可
能となり、大幅な労力の削減が可能となる。As described above, by measuring the voltage and current waveforms at the substation and analyzing the harmonics thereof, it is possible to determine a ground fault due to leakage of the insulator. Therefore, it becomes possible to judge the pollution situation of the insulator by the centralized monitoring by the substation and the like, and it becomes possible to greatly reduce the labor.
【図1】本発明の実施例を示した説明図である。FIG. 1 is an explanatory diagram showing an embodiment of the present invention.
【図2】本発明の演算を行った汚損碍子の洩れ電流発生
時の各相電圧、零相電圧波形図である。FIG. 2 is a waveform diagram of each phase voltage and zero-phase voltage when a leakage current of the fouling insulator is calculated according to the present invention.
10 高圧配電線路 11 電源スイッチ 12 高圧電源 13、14 変成器 15、16 故障点標定装置 17 汚損碍子 21 R相電圧波形(地絡相) 22 S相電圧波形 23 T相電圧波形 24 零相電圧波形 10 High-voltage power distribution line 11 Power switch 12 High-voltage power supply 13, 14 Transformer 15, 16 Fault locator 17 Fouling insulator 21 R-phase voltage waveform (ground fault phase) 22 S-phase voltage waveform 23 T-phase voltage waveform 24 Zero-phase voltage waveform
Claims (2)
の送電端と受電端の電圧・電流を常時監視し、高圧配電
線路に発生した故障を検知し、故障点を標定する装置に
おいて、碍子汚損による地絡故障時に大きく変化する零
相電圧により故障を検知することにより、集中監視によ
る碍子汚損の検出を可能とする、碍子汚損による地絡故
障識別方法。1. A device which is installed in a railway substation, etc., which constantly monitors the voltage and current at the transmitting end and the receiving end of a high-voltage distribution line, detects a failure that has occurred in the high-voltage distribution line, and locates the failure point, A method for identifying a ground fault due to insulator contamination, which enables the detection of insulator contamination through centralized monitoring by detecting a fault with a zero-phase voltage that greatly changes during a ground fault due to insulator contamination.
波形の1周期をフーリエ級数に展開し高調波解析を行
い、高調波の実効値の和と基本波の実効値との比を比較
することのより碍子汚損による地絡故障と他の地絡故障
とを識別することを特徴とする、碍子汚損による地絡故
障識別方法。2. The method according to claim 1, wherein one period of the voltage waveform at the time of a failure is expanded into a Fourier series and harmonic analysis is performed, and the ratio of the sum of the effective values of the harmonics and the effective value of the fundamental wave is compared. A method for identifying ground faults due to insulator contamination, characterized by distinguishing ground faults due to insulator contamination from other ground faults.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23553393A JP2865533B2 (en) | 1993-08-27 | 1993-08-27 | Ground fault fault identification method by insulator fouling |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23553393A JP2865533B2 (en) | 1993-08-27 | 1993-08-27 | Ground fault fault identification method by insulator fouling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0765658A true JPH0765658A (en) | 1995-03-10 |
JP2865533B2 JP2865533B2 (en) | 1999-03-08 |
Family
ID=16987390
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23553393A Expired - Lifetime JP2865533B2 (en) | 1993-08-27 | 1993-08-27 | Ground fault fault identification method by insulator fouling |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2865533B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109375060A (en) * | 2018-11-12 | 2019-02-22 | 上海金智晟东电力科技有限公司 | A kind of distribution network failure wave-form similarity calculation method |
-
1993
- 1993-08-27 JP JP23553393A patent/JP2865533B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109375060A (en) * | 2018-11-12 | 2019-02-22 | 上海金智晟东电力科技有限公司 | A kind of distribution network failure wave-form similarity calculation method |
Also Published As
Publication number | Publication date |
---|---|
JP2865533B2 (en) | 1999-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Combined wavelet transform and regression technique for secondary current compensation of current transformers | |
US7865321B2 (en) | Arcing event detection | |
US20040263179A1 (en) | On-line detection of partial discharge in electrical power systems | |
EA000019B1 (en) | Monitoring of internal partial discharges on a power transformer | |
US6636823B1 (en) | Method and apparatus for motor fault diagnosis | |
CA2234548A1 (en) | Evaluation methods and instrumentation with steel probes used for cathodic protection of underground pipelines | |
CN108508318B (en) | Method and system for judging operation state of unbalanced load of transformer | |
Christie et al. | High impedance fault detection in low voltage networks | |
JPH09127181A (en) | Detecting device for corona discharge of electric power equipment | |
JPH0765658A (en) | Method to distinguish earthing trouble due to insulator stain | |
KR20190067875A (en) | Method and apparatus for predicting the life of a splice | |
JPS59135377A (en) | Method for evaluating grounding fault point of three- phase power transmission distribution line | |
JP4248627B2 (en) | Ground fault inspection device | |
CN111060846B (en) | CT secondary circuit fault on-line monitoring method | |
KR20000037145A (en) | A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service | |
JP2912990B2 (en) | Insulation diagnostic equipment | |
JP4136079B2 (en) | DC current detector | |
Cao et al. | A new double-ended approach to the series arc fault location | |
TWI231079B (en) | Insulation diagnostic device | |
Wei et al. | Identifying ground fault location in high resistance grounded systems for adjustable speed drive at low speed | |
JP4258386B2 (en) | Insulation diagnostic device | |
JP3361195B2 (en) | Method and method for locating intermittent arc light ground fault section in neutral-point ungrounded high-voltage distribution system | |
KR20190056924A (en) | Apparatus for analyzing moisture absorption of power generator stator winding and method thereof | |
CN109884466B (en) | Distribution network grounding line selection method for identifying double negative sequence current vector relation characteristics | |
CN212675075U (en) | Portable fault cable identification instrument |