JPH0764558B2 - Alumina porous granular material and refractory material using the granular material as an aggregate - Google Patents

Alumina porous granular material and refractory material using the granular material as an aggregate

Info

Publication number
JPH0764558B2
JPH0764558B2 JP62289945A JP28994587A JPH0764558B2 JP H0764558 B2 JPH0764558 B2 JP H0764558B2 JP 62289945 A JP62289945 A JP 62289945A JP 28994587 A JP28994587 A JP 28994587A JP H0764558 B2 JPH0764558 B2 JP H0764558B2
Authority
JP
Japan
Prior art keywords
alumina
granular material
refractory
aggregate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62289945A
Other languages
Japanese (ja)
Other versions
JPH01131079A (en
Inventor
久志 森元
至 谷口
元秀 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
Showa Denko KK
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical Showa Denko KK
Priority to JP62289945A priority Critical patent/JPH0764558B2/en
Publication of JPH01131079A publication Critical patent/JPH01131079A/en
Publication of JPH0764558B2 publication Critical patent/JPH0764558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/08Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding porous substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は耐圧強度と断熱性に優れるアルミナ質多孔性粒
状物及びこの粒状物を骨材とする耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an alumina-based porous granular material excellent in pressure resistance and heat insulation and a refractory material using the granular material as an aggregate.

(従来の技術) 窯炉の炉壁構築材などとして使われる耐火物は、高温下
で機械的強度の他に、より良好な断熱性を備えることが
強く求められて来た。炉材の断熱性の向上は燃費の節減
や炉体の小形化に寄与するからである。そこで、対応策
として、耐火物の主原料となる骨材の一部を耐熱度の高
いアルミナ質中空粒体(アルミナバブル)などで置き換
えようとする試みがなされて来た。
(Prior Art) A refractory used as a furnace wall building material for a kiln has been strongly required to have better heat insulating property in addition to mechanical strength at high temperature. This is because the improvement of the heat insulation of the furnace material contributes to the reduction of fuel consumption and the downsizing of the furnace body. Therefore, as a countermeasure, attempts have been made to replace a part of the aggregate, which is the main raw material of the refractory, with an alumina hollow particle (alumina bubble) having a high heat resistance.

(発明が解決しようとする問題点) しかしながら、上記のアルミナバブルなどの従来の多孔
性無機質粒体は強度が著しく弱いので、断熱性の向上に
は役立っても、耐火物を成形する際に困難に遭遇する。
即ち耐火物の成形方法としては、水分を含ませた粉粒状
の配合原料を成形型内に突き固め道具(ランマー)を用
いて押し固めながら緊密な充填するラミング法、プレス
機を用いるプレス法,又はスラリー状の配合原料を成形
空間に注入するキャスティング法、或いはスプレーガン
を使って塗布対象物に吹付けるスプレー法などが行われ
ているが、ラミング法によると、例えて言えばピンポン
玉の如き形状のアルミナバブルはランマーあるいはプレ
ス圧によってたやすく圧壊されてしまうし、キャスティ
ング法によると、これらの軽量粒体はスラリー上に浮上
分離してしまうし、スプレー法によると、同様に高比重
の主原料から分離して飛ばされてしまう。
(Problems to be Solved by the Invention) However, since the conventional porous inorganic particles such as the above-mentioned alumina bubbles have remarkably weak strength, they are useful for improving the heat insulating property, but difficult when molding a refractory. Come across.
That is, as a refractory molding method, a ramming method of compacting a powdered and granular compound raw material containing water into a molding die by using a tamping tool (rammer) and tightly filling it, a pressing method using a pressing machine, Alternatively, a casting method of injecting a slurry-form compounded raw material into a molding space, or a spray method of spraying an object to be coated with a spray gun is used. According to the ramming method, for example, a ping-pong ball is used. The shaped alumina bubbles are easily crushed by the rammer or the press pressure, and according to the casting method, these light-weight particles are floated and separated on the slurry, and according to the spray method, they also have the same high specific gravity. It is separated from the raw material and is skipped.

本発明は上記の如き事情に鑑みなされたものであり、従
ってその目的は、良好な耐圧強度と断熱性を備えて、殊
に耐火物骨材に適したアルミ質多孔性粒状物及びこの粒
状物を骨材として配合した、良好な断熱性と成形性とを
併せ備えた耐火物を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an aluminum porous granular material having good pressure resistance and heat insulating properties, and particularly suitable for refractory aggregates, and the granular material. In order to provide a refractory material having a good heat insulating property and a good moldability, which is compounded as an aggregate.

[発明の構成] (問題点を解決するための手段) 第1の発明によるアルミナ質多孔性粒状物は、気孔構造
を有する内部組織が略無孔状の外殻層により覆われた構
成を備えるところに特徴を有し、第2の発明による耐火
物は、気孔構造を有する内部組織が略無孔状の外殻層に
より覆われた構成を備えるアルミナ質多孔性粒状物を骨
材として配合したところに特徴を有する。
[Structure of the Invention] (Means for Solving the Problems) The alumina-based porous granular material according to the first invention has a structure in which the internal structure having a pore structure is covered with a substantially non-porous outer shell layer. The refractory material according to the second aspect of the present invention is characterized in that the alumina-based porous granular material having a structure in which an internal structure having a pore structure is covered with a substantially nonporous outer shell layer is blended as an aggregate. However, it has a feature.

(作用) 第1の本発明によるアルミナ質多孔性粒状物は、その内
部組織が気孔構造を有すると共に、この内部組織は略無
孔状の外殻層によって覆われているので、球殻構造に由
来するすぐれた耐圧強度と、この外殻内に閉じ込められ
た気泡の存在による良好な断熱性とを併せ備えている。
(Function) The alumina-based porous granular material according to the first aspect of the present invention has a spherical shell structure because its internal structure has a pore structure and this internal structure is covered with a substantially non-porous outer shell layer. It has both excellent pressure resistance derived from it and good heat insulation due to the presence of air bubbles trapped in the outer shell.

また、第2の発明による耐火物は、このような特性を有
するアルミナ質多孔性粒状物をその原料配合中に、従来
の非多孔性アルミナ粗粒などの骨材を少なくとも一部を
代替する骨材として配合したことにより、高い断熱性
と、成形時にこの骨材が圧壊されたりスラリー上に分離
したり或は吹き飛ばされることがないといった良好な成
形性とを併せ備えている。
Further, the refractory material according to the second invention is a bone material which substitutes at least a part of aggregate such as conventional non-porous alumina coarse particles in the raw material blending of the alumina porous granular material having such characteristics. By being blended as a material, it has both high heat insulating properties and good moldability such that the aggregate is not crushed, separated into a slurry, or blown off during molding.

尚、第2の発明においては、アルミナ質多孔性粒状物の
かさ比重は1.0〜1.5の範囲にあることが最も好ましい。
かさ比重が1.5以下において耐火物の断熱性向上効果が
最も著しいが、かさ比重が1.0以下ではランマーあるい
はプレス機の押圧力により圧壊され易くなり、また、キ
ャスティング時の骨材の浮上やスプレー時の飛散が起り
易くなるからである。
In the second invention, the bulk specific gravity of the alumina porous granular material is most preferably in the range of 1.0 to 1.5.
When the bulk specific gravity is 1.5 or less, the effect of improving the heat insulating property of the refractory is most remarkable, but when the bulk specific gravity is 1.0 or less, it is easily crushed by the pressing force of the rammer or the press machine, and when the aggregate is floated during casting or sprayed. This is because scattering easily occurs.

(実施例) 以下に本願の各発明を具体化したいくつかの実施例につ
いて説明する。
(Example) Below, several examples which materialized each invention of this application are described.

始めに、アルミナ質多孔性粒状物の概要を述べると、そ
の製法はバイヤー法により製造したアルミナにその0.3
〜5.0重量%のシリカを配合した原料組成物を、単相ま
たは三相交流を電源とする例えば容量500〜200KVA内外
のエルー式電気炉を用いて2000℃以上に加熱し溶融させ
る。そして、この溶融物を噴射ノズルを用いて2〜7kg/
cm2の加圧気流に乗せて大気雰囲気中に噴射する。これ
により、溶融物は空気を巻込んで無数の気泡を包含し且
つ表面張力により球状となって固化する。原料組成物中
のシリカ混入率と、得られる多孔性粒状物のかさ比重及
び断熱特性並びに耐圧強度とは密接に関係があり、シリ
カが0.3重量%以下ではかさ比重が軽くなり過ぎて耐圧
強度が低下する。また、5%以上ではかさ比重が重くな
って断熱性が悪化するうえに、耐火特性も低下する傾向
を呈する。一方、溶融組成物の温度もかさ比重及び多孔
構造の形成等に微妙に影響を与えるので、溶融炉の原料
当り電力は所望のかさ比重及び多孔構造が得られるよう
に制御する。
At first, the outline of the alumina porous granular material is as follows.
A raw material composition containing ~ 5.0% by weight of silica is melted by heating it to 2000 ° C or higher using an Elu-type electric furnace having a single-phase or three-phase alternating current as a power source and having a capacity of 500 to 200 KVA. Then, the melt is used for 2 to 7 kg /
Place in a pressurized air stream of cm 2 and inject into the atmosphere. As a result, the melt is entrained with air, contains numerous bubbles, and becomes spherical due to surface tension and solidifies. The silica mixing ratio in the raw material composition is closely related to the bulk specific gravity and the heat insulating property and the pressure resistance strength of the obtained porous granular material, and when the silica content is 0.3% by weight or less, the bulk density becomes too light and the pressure resistance is low. descend. On the other hand, if it is 5% or more, the bulk specific gravity becomes heavy, the heat insulating property deteriorates, and the fire resistance tends to deteriorate. On the other hand, since the temperature of the molten composition slightly affects the bulk specific gravity and the formation of the porous structure, the power per raw material of the melting furnace is controlled so that the desired bulk specific gravity and the porous structure can be obtained.

このようにして作られたアルミナ質多孔性粒状物は、内
部に多数の独立気泡を含包する気孔構造を有すると共に
外表面は略無孔状の外殻層により覆われた形態となって
いる。
The alumina porous granular material thus produced has a pore structure containing a large number of closed cells inside, and the outer surface is covered with a substantially non-porous outer shell layer. .

表1は3種類のアルミナ質粒状物のデータをまとめて示
している。また、第1図乃至第3図はこれら3種類の断
面顕微鏡写真に基づく断面図である。
Table 1 summarizes the data for the three types of alumina particulates. Further, FIGS. 1 to 3 are sectional views based on these three types of sectional micrographs.

3種類のアルミナ質粒状物のうち試料No.3(第3図)と
して示した比較例は、球形の外殻層1の内部が中空とな
ったいわゆるアルミナバブルに相当するものであり、耐
圧強度の不足等によって成形上の問題を惹起し、耐火物
の骨材としては不適当である。一方、試料No.1(第1
図)及びNo.2(第2図)のものは内部組織が無数の独立
気泡2を有する気孔構造となっていてこれを球形をなす
略無孔状の外殻層1により覆った形態で、本願の第1の
発明に係る実施例である。中でも、試料No.1のものは、
表1に示したようにかさ比重が1.38であって耐火物の断
熱性を著しく向上させながら成形性も十分に維持し得る
ものである。もっとも、試料No.2のものはかさ比重が2.
11と大きいが、断熱性よりも成形性を重視する場合等に
は実用に供しうる。
The comparative example shown as Sample No. 3 (FIG. 3) among the three types of alumina-based particulates corresponds to a so-called alumina bubble in which the inside of the spherical outer shell layer 1 is hollow, and has a compressive strength. It is unsuitable as a refractory aggregate because it causes a problem in molding due to lack of the like. On the other hand, sample No. 1 (first
(Fig.) And No. 2 (Fig. 2) have a pore structure in which the internal structure has a large number of closed cells 2 and are covered with a substantially non-porous outer shell layer 1 having a spherical shape. It is an example according to the first invention of the present application. Among them, the sample No. 1 is
As shown in Table 1, the bulk specific gravity is 1.38, and the formability can be sufficiently maintained while significantly improving the heat insulating property of the refractory material. However, the sample No. 2 has a bulk specific gravity of 2.
Although it is as large as 11, it can be put to practical use when importance is attached to formability rather than heat insulation.

次に、表2は上記試料No.1のアルミナ質多孔性粒状物を
骨材として用いた本願第2の発明の不定形耐火物での実
施例を示し、アルミナ質多孔性粒状物の含有率を0〜3
8.3重量%の範囲で様々に変化させ作製した一連の試作
耐火物の原料配合及び特性値をまとめてある。これらの
耐火物の作製は従来の一般的な不定形耐火物の製法に準
じて行なうこととし、骨材としてのアルミナ質多孔性粒
状物の成形時耐圧力を評価するために、原料配合物の成
形はラミング法により行った。また、表2の如く各配合
例毎に夫々焼成温度を1400〜1600℃の範囲で変化させて
複数種の耐火物を試作した。
Next, Table 2 shows an example of the amorphous refractory of the second invention of the present application using the alumina porous granular material of Sample No. 1 as an aggregate, and the content rate of the alumina porous granular material is shown. 0 to 3
The raw material composition and characteristic values of a series of trial refractories manufactured by variously changing the range of 8.3% by weight are summarized. These refractory materials should be produced according to the conventional general refractory material manufacturing method, and in order to evaluate the pressure resistance during molding of the alumina porous granular material as an aggregate, The molding was performed by the ramming method. Further, as shown in Table 2, a plurality of types of refractory materials were manufactured by changing the firing temperature in the range of 1400 to 1600 ° C. for each formulation example.

表2のデータから明らかなように、アルミナ質多孔性粒
状物を全く配合していない比較例(従来の不定形耐火
物)に比べると、骨材の一部をアルミナ質多孔性粒状物
に置換えた実施例1〜5では、熱伝導率を少なくとも10
%以上低下させることができた。
As is clear from the data in Table 2, a part of the aggregate was replaced with the alumina porous particles as compared with the comparative example (conventional amorphous refractory material) containing no alumina porous particles. In Examples 1 to 5, the thermal conductivity was at least 10
% Or more.

次に表3は第2の発明を定形耐火物に適用したいくつか
の実施例を示している。ここで使用したアルミナ質多孔
性粒状物は表1に示した試料No.1のものである。また、
有機バインダーとしては、カルボキシメチルセルローズ
(CMC)等を使用している。この実施例における原料配
合は、通常のアルミナ質定形耐火物の配合を基準とし、
粗粒状高純度アルミナの一部を多孔質アルミナ球で代替
した配合によっている。そして、この表の実施例1〜3
にみられるように、高純度アルミナに対するアルナミ質
多孔性粒状物の含有量を40〜60%の範囲に設定して作ら
れた定形耐火物は、熱間曲げ強度の低下を全く招かず
に、通常のアルミナ質耐火物(比較例)に比べて目立っ
て断熱性が向上し、且つかさ比重もかなり低下させるこ
とができた。
Next, Table 3 shows some examples in which the second invention is applied to a standard refractory material. The alumina-based porous granular material used here is that of sample No. 1 shown in Table 1. Also,
Carboxymethyl cellulose (CMC) or the like is used as the organic binder. The raw material formulation in this example is based on the formulation of a normal alumina-based shaped refractory material,
A part of coarse granular high purity alumina is replaced by porous alumina spheres. And Examples 1-3 of this table
As can be seen in Fig. 2, the shaped refractory made by setting the content of the aluminum porous particles to the high-purity alumina in the range of 40 to 60% does not cause a decrease in hot bending strength at all, Compared with the usual alumina refractory (comparative example), the heat insulating property was remarkably improved, and the bulk specific gravity could be considerably reduced.

尚、本願第1の発明によるアルミナ質多孔性粒状物はそ
の特異な多孔質組織により吸音材或は遮音材としての特
性も併せ備えているので、その気孔率及び溶融外殻層の
厚さを使用目的に応じて任意に変化させることによっ
て、耐火物としての使用分野を超えて例えば建築資材な
どとして用いれば、その軽量,強度,吸音等の諸特性を
同時に活用することができる。
Since the alumina porous granular material according to the first invention of the present application also has a characteristic as a sound absorbing material or a sound insulating material due to its unique porous structure, its porosity and the thickness of the molten shell layer are By arbitrarily changing it according to the purpose of use, if it is used as a building material, for example, beyond the field of use as a refractory, its various characteristics such as light weight, strength, and sound absorption can be utilized at the same time.

[発明の効果] 以上に記述によって明らかなように、第1の発明に係る
アルミナ質多孔粒状物は、その内部組織が気孔構造を有
すると共に、その外表部が略無孔状の外殻層で覆われた
構造を備えるので、高耐熱性、高強度性、断熱性、軽量
性、吸音性等の特異な性質を有し、各種耐火物や断熱材
或いは建築資材等に広汎に利用することができる。
[Effects of the Invention] As is clear from the above description, the alumina-based porous granular material according to the first invention is a shell layer having a pore structure in its internal structure and a substantially non-porous outer surface portion. Since it has a covered structure, it has unique properties such as high heat resistance, high strength, heat insulation, lightweight, sound absorption, and can be widely used for various refractories, heat insulating materials, building materials, etc. it can.

また、斯かるアルミナ質多孔性粒状物を骨材として用い
た第2の発明の耐火物によれば、良好な断熱性が得ら
れ、しかも骨材が十分な耐圧強度を有するので、ラミン
グ法やプレス機により成形する際にランマーやプレス機
が及ぼす衝撃力に耐えて骨材の圧壊を防止でき、またキ
ャスティング法による場合にはスラリー状の原料配合物
から粒状骨材が分離浮上するおそれがなく、更にスプレ
ー法による場合にも粒状骨材だけが飛散する不具合を生
じない等の効果を奏する。
Further, according to the refractory material of the second invention using such an alumina porous granular material as an aggregate, good heat insulation is obtained, and since the aggregate has sufficient compressive strength, a ramming method or It is possible to withstand impact force exerted by a rammer or a press when molding with a press machine and prevent crushing of the aggregate, and in the case of the casting method, there is no possibility that the granular aggregate separates from the slurry-like raw material mixture and floats. Further, even in the case of using the spray method, there is an effect that the problem that only the granular aggregate is scattered does not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は第1の発明の実施例を示すアルミナ
質多孔性粒状物の断面図、第3図は内部の気孔構造組織
が不充分な従来のアルミナバブルの断面図を示す。 図中、1は外殻層、2は独立気泡である。
1 and 2 are cross-sectional views of an alumina porous granular material showing an embodiment of the first invention, and FIG. 3 is a cross-sectional view of a conventional alumina bubble having insufficient internal pore structure. In the figure, 1 is an outer shell layer and 2 is closed cells.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北田 元秀 岐阜県可児郡御嵩町中812番地の94 (56)参考文献 特開 昭51−64513(JP,A) 特公 昭51−36240(JP,B2) 特公 昭59−19070(JP,B2) 特公 昭54−22800(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohide Kitada 94, 812 Chuo, Mitake-cho, Kani-gun, Gifu Prefecture (56) References JP-A-51-64513 (JP, A) , B2) JP 59-19070 (JP, B2) JP 54-22800 (JP, B2)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】気孔構造を有する内部組織が略無孔状の外
殻層により覆われた構成を備えるアルミナ質多孔性粒状
物。
1. An alumina-based porous granular material having a structure in which an internal structure having a pore structure is covered with a substantially non-porous outer shell layer.
【請求項2】気孔構造を有する内部組織が略無孔状の外
殻層により覆われた構成を備えるアルミナ質多孔性粒状
物を骨材として配合したことを特徴とする耐火物。
2. A refractory material characterized in that an alumina-based porous granular material having a structure in which an internal structure having a pore structure is covered with a substantially non-porous outer shell layer is blended as an aggregate.
【請求項3】アルミナ質多孔性粒状物のかさ比重が1.0
〜1.5であることを特徴とする特許請求の範囲第2項に
記載の耐火物。
3. The bulk specific gravity of the alumina porous granular material is 1.0.
The refractory material according to claim 2, characterized in that
JP62289945A 1987-11-16 1987-11-16 Alumina porous granular material and refractory material using the granular material as an aggregate Expired - Lifetime JPH0764558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62289945A JPH0764558B2 (en) 1987-11-16 1987-11-16 Alumina porous granular material and refractory material using the granular material as an aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62289945A JPH0764558B2 (en) 1987-11-16 1987-11-16 Alumina porous granular material and refractory material using the granular material as an aggregate

Publications (2)

Publication Number Publication Date
JPH01131079A JPH01131079A (en) 1989-05-23
JPH0764558B2 true JPH0764558B2 (en) 1995-07-12

Family

ID=17749769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62289945A Expired - Lifetime JPH0764558B2 (en) 1987-11-16 1987-11-16 Alumina porous granular material and refractory material using the granular material as an aggregate

Country Status (1)

Country Link
JP (1) JPH0764558B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9515242D0 (en) * 1995-07-25 1995-09-20 Ecc Int Ltd Porous mineral granules
DE102005045180B4 (en) * 2005-09-21 2007-11-15 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Spherical corundum grains based on molten aluminum oxide and a process for their preparation
DE102005061291B4 (en) 2005-12-20 2008-01-03 Heraeus Electro-Nite International N.V. Ceramic perforated brick and metallurgical vessel
JP2010150090A (en) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd alpha-ALUMINA POWDER
DE102010047095A1 (en) * 2010-10-01 2012-04-05 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Polycrystalline Al 2 O 3 bodies based on molten aluminum oxide
US20220111434A1 (en) * 2020-10-08 2022-04-14 Wagstaff, Inc. Material, apparatus, and method for refractory castings

Also Published As

Publication number Publication date
JPH01131079A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
US4297309A (en) Process of using and products from fume amorphous silica particulates
TWI731002B (en) Methods for producing refractory composite particles and feeder elements for the foundry industry and such feeder elements
CA2842515A1 (en) Feeder and shapeable compositions for production thereof
CN110183213B (en) Tundish dry-type working lining added with waste refractory material and preparation method thereof
CN1050591C (en) Fired microporous carbon-aluminium brick
JPH0764558B2 (en) Alumina porous granular material and refractory material using the granular material as an aggregate
KR100847051B1 (en) Deoxidizer for steel and method of preparation thereof
CN111205074B (en) Foamed ceramic containing cordierite framework and preparation method thereof
CN1704384A (en) Periclase-olivine light thermal-insulated fireproof materials and method for preparing same
US11148973B2 (en) Insulating, refractory molded body, especially plate, and process for its manufacture and its usage
JPS5988378A (en) Lightweight refractories and manufacture
CN1257766A (en) Magnesium tundish paint for conticasting steel
US6132574A (en) Bottom lining for electrolytic cells and process for its manufacture
JP2007320827A (en) Method of producing aggregate
KR100504164B1 (en) Manufacture of heat reserving materials using Cu-making slag
JP2554975B2 (en) Fine spherical inorganic foam having thick skin and method for producing the same
JPH11246279A (en) Lightweight ceramics and its production
JPH04367349A (en) Manufacture of spherical molding sand
RU2250884C2 (en) Ceramic mass for production of acid-resistant substances
JPH0541590B2 (en)
CN115353397A (en) High-strength light acid-resistant castable and preparation method thereof
RU1793479C (en) Current-conducting material
CN115925433A (en) Forsterite composite brick and preparation method thereof
JPH0317781B2 (en)
JPH07101758A (en) High hardness artificial lightweight aggregate obtained by incorporating glass fine powder into coal ash

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 13