JPH0759996B2 - Humidity controller - Google Patents

Humidity controller

Info

Publication number
JPH0759996B2
JPH0759996B2 JP1263457A JP26345789A JPH0759996B2 JP H0759996 B2 JPH0759996 B2 JP H0759996B2 JP 1263457 A JP1263457 A JP 1263457A JP 26345789 A JP26345789 A JP 26345789A JP H0759996 B2 JPH0759996 B2 JP H0759996B2
Authority
JP
Japan
Prior art keywords
heat exchanger
moisture
humidity controller
heat
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1263457A
Other languages
Japanese (ja)
Other versions
JPH03125830A (en
Inventor
和幸 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1263457A priority Critical patent/JPH0759996B2/en
Publication of JPH03125830A publication Critical patent/JPH03125830A/en
Publication of JPH0759996B2 publication Critical patent/JPH0759996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば空調室内における湿度を調整するた
めの湿度調節機に関するものである。
Description: TECHNICAL FIELD The present invention relates to a humidity controller for adjusting humidity in an air-conditioned room, for example.

(従来の技術) 室内空気の除湿や加湿を行う装置の従来例として、例え
ば特願平1-6652号の湿度調節機を挙げることができる。
第8図にその構成模式図を示しているが、この湿度調節
機は、水の透過を遮断すると共に水蒸気を透過する多孔
質材料で構成された2つの熱交換器90、91を連結配管92
によって相互に連結して環状の循環径路を構成すると共
に、この循環径路内に、大気中の水蒸気分圧に対する飽
和水蒸気圧力の高低差に応じて水分の吸収・排出を行う
塩化リチウム水溶液等の吸放湿性溶液を充填し、一方の
熱交換器90を、この熱交換器90内の吸放湿性溶液の飽和
水蒸気圧力がこの熱交換器90周辺の大気中の水蒸気分圧
よりも高くなる温度で維持する一方、他方の熱交換器91
を、この熱交換器91内の吸放湿性溶液の飽和水蒸気圧力
がこの熱交換器91周辺の大気中の水蒸気分圧よりも低く
なる温度で維持すると共に、ポンプ93で上記循環径路内
を上記吸放湿性溶液が循環すべく構成している。また上
記放湿側の熱交換器90に加熱用のヒータを設ける場合に
は、第9図に示すように面状熱交換器94にヒータ95を一
体成形したり、第10図に示すように、チュープ状熱交換
器96の外面に発熱塗料製のヒータ97を付設したりしてい
る。
(Prior Art) As a conventional example of a device for dehumidifying or humidifying indoor air, for example, a humidity controller disclosed in Japanese Patent Application No. 1-6652 can be cited.
A schematic diagram of the structure is shown in FIG. 8. In this humidity controller, two heat exchangers 90 and 91 made of a porous material that blocks water permeation and water vapor permeation are connected to a pipe 92.
To form an annular circulation path, and in this circulation path, the absorption of lithium chloride aqueous solution, etc., which absorbs and discharges water according to the difference in the saturated steam pressure with respect to the partial pressure of water vapor in the atmosphere is absorbed. It is filled with a moisture-releasing solution, and one of the heat exchangers 90 is heated at a temperature at which the saturated steam pressure of the moisture-absorbing and desorbing solution in the heat exchanger 90 becomes higher than the partial pressure of water vapor in the atmosphere around the heat exchanger 90. While maintaining the other heat exchanger 91
Is maintained at a temperature at which the saturated steam pressure of the moisture absorbing / releasing solution in the heat exchanger 91 becomes lower than the partial pressure of steam in the atmosphere around the heat exchanger 91, and the inside of the circulation path is pumped by the pump 93. The moisture absorbing / releasing solution is configured to circulate. When a heater for heating is provided in the heat exchanger 90 on the moisture releasing side, the heater 95 is integrally formed with the planar heat exchanger 94 as shown in FIG. 9, or as shown in FIG. A heater 97 made of exothermic paint is attached to the outer surface of the tube-shaped heat exchanger 96.

(発明が解決しようとする課題) しかしながら上記第9図又は第10図の従来のヒータ取付
構造では、ヒータ95、97を付設する分だけ熱交換器94、
96の表面積が減少し、熱交換効率が低下してしまうとい
う問題がある。またヒータ95、97の発熱量の一部が熱交
換器94、96内の吸放湿性溶液に伝達されず、周囲空気に
放熱してしまうため、ヒータの加熱効率が低下するとい
う問題もある。
(Problems to be Solved by the Invention) However, in the conventional heater mounting structure of FIG. 9 or FIG. 10, the heat exchanger 94,
There is a problem that the surface area of 96 is reduced and the heat exchange efficiency is reduced. Further, a part of the heat generation amount of the heaters 95, 97 is not transferred to the moisture absorbing / releasing solution in the heat exchangers 94, 96 and is radiated to the ambient air, so that there is a problem that the heating efficiency of the heaters is reduced.

この発明は上記に鑑みなされたものであって、その目的
は、多孔質材料製の熱交換器にヒータを取付けながら、
熱交換効率と加熱効率とを高く維持することができる湿
度調節機を提供することにある。
The present invention has been made in view of the above, and an object thereof is to attach a heater to a heat exchanger made of a porous material,
It is to provide a humidity controller that can maintain high heat exchange efficiency and heating efficiency.

(課題を解決するための手段) そこでこの発明の第1請求項記載の湿度調節機において
は、水蒸気を透過する多孔質材料で構成された2つの熱
交換器1、2を連結配管3、3で相互に連結して環状の
循環径路を構成すると共に、この循環径路内に、雰囲気
中の水蒸気分圧に対する飽和水蒸気圧力の高低差に応じ
て水分の吸収、排出を行う塩化リチウム水溶液等の吸放
湿性溶液を充填し、上記一方の熱交換器1を、この熱交
換器1内の吸放湿性溶液の飽和水蒸気圧力がこの熱交換
器1周辺の雰囲気中の水蒸気分圧よりも高くなる温度で
維持する一方、他方の熱交換器2を、この熱交換器2内
の吸放湿性溶液の飽和水蒸気圧力がこの熱交換器2周辺
の雰囲気中の水蒸気分圧よりも低くなる温度で維持する
と共に、上記循環径路内を上記吸放湿性溶液が循環すべ
く構成して一方の熱交換器1側で放湿すると共に、他方
の熱交換器2側で吸湿するようにした湿度調節機であっ
て、上記放湿側の熱交換器1をチューブ状に形成し、こ
のチューブ状の熱交換器1内に線状のヒータ6を配設し
ている。
(Means for Solving the Problem) Therefore, in the humidity controller according to the first aspect of the present invention, the two heat exchangers 1 and 2 made of a porous material permeable to water vapor are connected to the connecting pipes 3 and 3. To form an annular circulation path, and the circulation path absorbs and absorbs water according to the difference in the saturated steam pressure with respect to the partial pressure of water vapor in the atmosphere. The temperature at which the saturated steam pressure of the moisture absorbing / releasing solution in the heat exchanger 1 becomes higher than the partial pressure of water vapor in the atmosphere around the heat exchanger 1 by filling the moisture releasing solution with the one heat exchanger 1. While maintaining the other heat exchanger 2 at a temperature at which the saturated steam pressure of the moisture absorbing / releasing solution in the heat exchanger 2 becomes lower than the partial pressure of steam in the atmosphere around the heat exchanger 2. At the same time, the moisture absorption / desorption property is dissolved in the circulation path. A humidity controller configured such that a liquid is circulated so that one side of the heat exchanger 1 releases moisture and the other side of the heat exchanger 2 absorbs moisture. Is formed in a tube shape, and the linear heater 6 is arranged in the tube-shaped heat exchanger 1.

また第2請求項記載の湿度調節機においては、上記チュ
ーブ状の熱交換器1は螺旋状に巻回されている。
In the humidity controller according to the second aspect, the tubular heat exchanger 1 is spirally wound.

さらに第3請求項記載の湿度調節機においては、往き側
及び復り側の一対の上記連結配管3、3を、相互に熱交
換可能に配置している。
Furthermore, in the humidity controller according to the third aspect of the present invention, the pair of connecting pipes 3 and 3 on the forward side and the backward side are arranged so that heat exchange is possible with each other.

またさらに第4請求項記載の湿度調節機においては、上
記連結配管3、3は架橋ポリエチレン製で構成されてい
る。
Further, in the humidity controller according to the fourth aspect, the connecting pipes 3 are made of crosslinked polyethylene.

そして第5請求項記載の湿度調節機においては、上記一
対の連結配管3、3を内外2重に形成している。
In the humidity controller according to the fifth aspect of the present invention, the pair of connecting pipes 3 and 3 are formed in double inside and outside.

(作用) 上記第1請求項記載の湿度調節機においては、高温の温
度状態となる一方の熱交換器(以下、第1熱交換器とい
う)1内の吸放湿性溶液ではその飽和水蒸気圧力が周囲
空気の水蒸気分圧よりも高くなって水分の放出力が生
じ、したがって多孔質材料で構成された第1熱交換器1
を水蒸気が透過して周囲空気に付与され、周囲空気の加
湿が行われる。そしてこの第1熱交換器1内の吸放湿性
溶液は循環径路を循環することにより、次には低温温度
状態の他方の熱交換器(以下、第2熱交換器という)2
内に流入することとなり、このときには飽和水蒸気圧力
が雰囲気の水蒸気分圧よりも低くなって水分の吸収力が
生じ、この結果、雰囲気中の水蒸気が多孔質材料で構成
された第2熱交換器2を透過して吸放湿性溶液に吸収さ
れる。なお上述と逆の吸放湿サイクル運転も可能であ
る。
(Operation) In the humidity controller according to the first aspect, the saturated vapor pressure of the moisture absorptive and desorptive solution in one heat exchanger (hereinafter, referred to as a first heat exchanger) 1 that is in a high temperature state is The partial pressure of water vapor in the ambient air becomes higher than the partial pressure of water vapor, resulting in the output of moisture, and thus the first heat exchanger 1 made of a porous material.
Water vapor permeates through and is given to the ambient air to humidify the ambient air. The moisture absorptive and desorptive solution in the first heat exchanger 1 circulates in the circulation path, and next, the other heat exchanger in the low temperature state (hereinafter referred to as the second heat exchanger) 2
In this case, the saturated steam pressure becomes lower than the steam partial pressure of the atmosphere at this time, and a water absorption force is generated. As a result, the steam in the atmosphere is made into a second heat exchanger composed of a porous material. 2 is absorbed by the moisture absorbing / releasing solution. A moisture absorption / desorption cycle operation that is the reverse of the above is also possible.

このように、第1熱交換器1と第2熱交換器2との間を
吸放湿性溶液が循環することによって、周囲空気の加
湿、或いは除湿が連続して行われる。そして上記構成に
おいては、第1熱交換器1の内部の吸放湿性溶液の飽和
水蒸気圧力が外気の水蒸気分圧よりも低く、したがって
第1熱交換器1側での放湿が生じないような状態になる
おそれがある場合に、第1熱交換器1内部の吸放湿性溶
液を上記ヒータ6で直接に加熱して放湿をより確実に行
わせることができ、上記したような吸放湿サイクルを継
続して確実に行うことが可能になる。
In this way, the moisture absorbing / releasing solution circulates between the first heat exchanger 1 and the second heat exchanger 2 to continuously humidify or dehumidify the ambient air. In the above configuration, the saturated steam pressure of the moisture absorbing / releasing solution inside the first heat exchanger 1 is lower than the steam partial pressure of the outside air, so that the first heat exchanger 1 side does not release moisture. In the case where there is a possibility of being in a state, the moisture absorbing / releasing solution inside the first heat exchanger 1 can be directly heated by the heater 6 to more reliably release moisture. It becomes possible to continue the cycle and carry out reliably.

しかも、ヒータ6はチューブ状の熱交換器1の内部に配
置されているために、従来のように熱交換器1の表面積
が減少することもなく、熱交換器1の熱交換効率も高く
維持されることになる。同時にヒータ6による吸放湿性
溶液の加熱効率も向上することになる。
Moreover, since the heater 6 is arranged inside the tubular heat exchanger 1, the surface area of the heat exchanger 1 does not decrease as in the conventional case, and the heat exchange efficiency of the heat exchanger 1 is maintained high. Will be done. At the same time, the heating efficiency of the moisture absorbing / releasing solution by the heater 6 is also improved.

また第2請求項記載の湿度調節機においては、チューブ
状の熱交換器1を螺旋状に巻回して構成したので、構成
容積に対する熱交換器1、2の表面積を広くして、熱交
換器1、2をコンパクトに形成することが可能になる。
Further, in the humidity controller according to the second aspect, since the tubular heat exchanger 1 is spirally wound, the surface areas of the heat exchangers 1 and 2 with respect to the constituent volume are widened, and the heat exchanger is increased. It becomes possible to form 1 and 2 compactly.

さらに第3請求項記載の湿度調節機においては、一対の
連結配管3、3を相互に熱交換可能に配置しているの
で、低温側の第2熱交換器2で低温となった後に、高温
側の第1熱交換器1で加熱される一方、高温側の第1熱
交換器1で高温となった後に、低温側の第2熱交換器2
で冷却される吸放湿性溶液が、それぞれ反対側の熱交換
器1又は2に向かって連結配管3、3を熱交換しながら
流通することになり、加熱必要温度幅及び冷却必要温度
幅がそれそれ減少することになるので、一層熱効率が向
上する。
Further, in the humidity controller according to the third aspect, since the pair of connecting pipes 3, 3 are arranged so as to be capable of heat exchange with each other, the temperature becomes high after the temperature becomes low in the second heat exchanger 2 on the low temperature side. The first heat exchanger 1 on the high temperature side heats the second heat exchanger 2 on the low temperature side after the first heat exchanger 1 on the high temperature side has reached a high temperature.
The moisture absorbing and desorbing solution cooled by means of flowing through the connecting pipes 3 and 3 while exchanging heat toward the heat exchangers 1 or 2 on the opposite sides, respectively. Since it is reduced, the thermal efficiency is further improved.

またさらに第4請求項記載の湿度調節機においては、架
橋ポリエチレンで連結配管3、3を形成したので、連結
配管3、3の耐食性が向上すると共に、さらに可撓性に
富むことから連結配管3、3の配設が容易になる。
Further, in the humidity controller according to the fourth aspect, since the connecting pipes 3 and 3 are formed of cross-linked polyethylene, the connecting pipes 3 and 3 have improved corrosion resistance and are more flexible, so that the connecting pipe 3 is improved. The arrangement of 3 becomes easy.

そして第5請求項記載の湿度調節機においては、一方の
通路21の周囲を他方の通路22が囲むことになるために、
連結配管3、3での熱交換器効率がさらに向上すること
になる。
In the humidity controller according to the fifth aspect, since the one passage 21 is surrounded by the other passage 22,
The heat exchanger efficiency in the connecting pipes 3 and 3 is further improved.

(実施例) 次にこの発明の湿度調節機の具体的な実施例について、
図面を参照しつつ詳細に説明する。
(Example) Next, about a specific example of the humidity controller of the present invention,
A detailed description will be given with reference to the drawings.

第1図は、この発明の湿度調節機の一実施例の構成を示
す模式図である。図のように、この湿度調節機は第1熱
交換器1、第2熱交換器2の2つの熱交換器を有してお
り、これらの熱交換器1、2は水蒸気を透過する多孔質
材料、例えば多孔質弗素材料にて構成されている。そし
て両熱交換器1、2は、環状の循環径路を構成すべく連
結配管3によってポンプ4を介して相互に連結されてい
る。この循環径路内には、例えば塩化リチウム水溶液や
臭化リチウム水溶液等の吸放湿性溶液が充填されてい
る。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the humidity controller of the present invention. As shown in the figure, this humidity controller has two heat exchangers, a first heat exchanger 1 and a second heat exchanger 2, and these heat exchangers 1 and 2 are porous materials that allow water vapor to pass through. It is made of a material, for example, a porous fluorine material. Both heat exchangers 1 and 2 are connected to each other via a pump 4 by a connecting pipe 3 so as to form an annular circulation path. A moisture absorbing / releasing solution such as an aqueous solution of lithium chloride or an aqueous solution of lithium bromide is filled in the circulation path.

第7図には、上記吸放湿性溶液として用いられる臭化リ
チウム水溶液の濃度−圧力線図を示している。図のよう
に、この水溶液においては、溶液温度が高い程、飽和水
蒸気圧が大きく、したがって大気中においてこの水溶液
を、大気中の水蒸気分圧よりも溶液の水蒸気分圧の方が
高くなる温度状態としたときには、図中Aで示す平衡曲
線に沿う濃度変化、すなわち大気中に水分を放出するこ
とによる濃度の上昇と飽和水蒸気圧の低下とを生じる。
一方、大気中の水蒸気分圧よりも溶液の水蒸気分圧の方
が低くなる低温の温度状態としたときには、図中Bで示
す平衡曲線に沿う濃度変化、すなわち大気中の水分の吸
収による濃度の低下と飽和水蒸気圧の上昇とを生じる。
FIG. 7 shows a concentration-pressure diagram of the lithium bromide aqueous solution used as the moisture absorbing / releasing solution. As shown in the figure, in this aqueous solution, the higher the solution temperature is, the larger the saturated water vapor pressure is. Therefore, the temperature state in which the water vapor partial pressure of the solution is higher in the atmosphere than in the atmosphere When, the concentration changes along the equilibrium curve indicated by A in the figure, that is, the concentration rises and the saturated vapor pressure decreases due to the release of water into the atmosphere.
On the other hand, in a low temperature state in which the water vapor partial pressure of the solution is lower than the water vapor partial pressure in the atmosphere, the concentration change along the equilibrium curve shown by B in the figure, that is, the concentration due to absorption of moisture in the air It causes a decrease and an increase in saturated water vapor pressure.

そこで上記構成の湿度調節機においては、第1及び第2
熱交換器1、2を第2図に示すようなチューブ状の上記
多孔質弗素材料製のパイプ5で構成すると共に、このパ
イプ5を第1図に図示した螺旋状に巻回して略平板状に
形成し、各熱交換器1、2を構成してある。そして両熱
交換器1、2内には線状のヒータ6、6が各々に内蔵さ
れており、各ヒータ6、6は、両熱交換器1、2間に温
度差を選択的に発生させ得るように電源7、7に接続さ
れている。このヒータ6、6は、耐化学薬品性の高いフ
ロロトロン(ダイキン工業株式会社の商標)やカーボン
系の材質で形成されている。また第3図に示すように、
ヒータ6、6のリード線8が上記パイプ5を貫通する部
分は、耐熱温度が80℃〜100℃の弗素系接着剤9でシー
ルされている。このため例えば第1熱交換器1側のヒー
タ6に通電し、第2熱交換器2側のヒータ6への通電を
遮断することによって、第1熱交換器1は、吸放湿性溶
液の水蒸気分圧が大気中の水蒸気分圧よりも高くなる温
度に加熱され、一方第2熱交換器2を、吸放湿性溶液の
水蒸気分圧が大気中の水蒸気分圧よりも低くなる温度の
大気中に置くことによって、第1熱交換器1側では溶液
中の水分が、この熱交換器1を構成する多孔質材料を透
過して周囲に放出され、したがってこの第1熱交換器1
周辺の大気への加湿が行われると同時に、第2熱交換器
2側では周囲の大気中の水蒸気が、この熱交換器2を構
成する多孔質材料を透過して内部の吸放湿性溶液に吸収
され、したがってこの第2熱交換器2周辺の大気の除湿
が行われる。そして両熱交換器1、2間を吸放湿性溶液
を循環させることによって、一方の熱交換器1での加湿
と他方の熱交換器2での除湿とが連続的に行われる。な
おこのような吸放湿性溶液の循環を強制的に行うため
に、第1図に示すように、循環ポンプ4を連結配管3に
介設しているが、吸放湿性溶液が高低温度差に基づく自
然対流で上記循環径路内を循環するように各熱交換器
1、2及び連結配管3を配置構成した場合には、循環ポ
ンプ4は必ずしも設ける必要はない。またヒータ6、6
を両熱交換器1、2に設ける場合に限らず、少なくとも
放湿側となるいずれか一方の熱交換器1、2に設けてあ
れば上記構成の湿度調節機は作動し得る。さらに両熱交
換器1、2をチューブ状に形成する場合に限らず、放湿
側となる熱交換器1だけをチューブ状に形成することも
できる。
Therefore, in the humidity controller having the above configuration, the first and second
The heat exchangers 1 and 2 are composed of a tubular pipe 5 made of the above-mentioned porous fluorine material as shown in FIG. 2, and the pipe 5 is wound in a spiral shape shown in FIG. And each of the heat exchangers 1 and 2 is configured. Further, linear heaters 6 and 6 are built in the heat exchangers 1 and 2, respectively, and the heaters 6 and 6 selectively generate a temperature difference between the heat exchangers 1 and 2. Connected to the power supplies 7, 7 to obtain. The heaters 6, 6 are made of fluorotron (trademark of Daikin Industries, Ltd.) or carbon-based material having high chemical resistance. Also, as shown in FIG.
The portions of the heaters 6 and 6 where the lead wires 8 penetrate the pipe 5 are sealed with a fluorine-based adhesive 9 having a heat resistant temperature of 80 ° C to 100 ° C. Therefore, for example, by energizing the heater 6 on the side of the first heat exchanger 1 and cutting off the energization of the heater 6 on the side of the second heat exchanger 2, the first heat exchanger 1 causes the water vapor of the hygroscopic solution to move. The second heat exchanger 2 is heated to a temperature at which the partial pressure is higher than the partial pressure of water vapor in the atmosphere, while the partial pressure of water vapor in the moisture absorbing / releasing solution is lower than the partial pressure of water vapor in the atmosphere. By placing it on the first heat exchanger 1, the water in the solution permeates the porous material forming the heat exchanger 1 and is discharged to the surroundings.
At the same time that the surrounding atmosphere is humidified, at the same time as the second heat exchanger 2 side, the water vapor in the surrounding atmosphere permeates the porous material forming the heat exchanger 2 and becomes a moisture absorbing / releasing solution inside. The air around the second heat exchanger 2 is absorbed and thus dehumidified. By circulating the moisture absorbing / releasing solution between the two heat exchangers 1 and 2, humidification in one heat exchanger 1 and dehumidification in the other heat exchanger 2 are continuously performed. In order to forcibly circulate such a moisture absorptive and desorptive solution, a circulation pump 4 is provided in the connecting pipe 3 as shown in FIG. When the heat exchangers 1 and 2 and the connecting pipe 3 are arranged so as to circulate in the circulation path by natural convection based on the above, the circulation pump 4 is not necessarily provided. Also, heaters 6 and 6
Is not limited to the case where the heat exchangers 1 and 2 are provided, but the humidity controller having the above configuration can be operated if provided at least on one of the heat exchangers 1 and 2 on the moisture release side. Further, the heat exchangers 1 and 2 are not limited to being formed in a tube shape, but only the heat exchanger 1 on the moisture releasing side may be formed in a tube shape.

第4図には、上記のような湿度調節機を装備したセパレ
ート形空気調和機の室内機10及び室外機16の断面図を示
している。この室内機10のケーシング前面(図において
左側の面)には、吸込口11と、この吸込口11の下側に吹
出口12とが設けられており、内部に吸込口11から吹出口
12に至る空気流通路13が形成されている。この空気流通
路13上には、上記吸込口11の背後の位置に室内熱交換器
14が立設されると共に、この室内熱交換器14よりも吹出
口12側に送風ファン15が配設されている。そして室外機
16には室外熱交換器17と室外ファン18とが配設されてい
る。また上記湿度調節機における第1熱交換器1は室内
熱交換器14の背部に、第2熱交換器2は室外熱交換器17
の下部にそれぞれ配置され、上記連結配管3、3は開閉
弁20・・20を介して上記両熱交換器1、2に接続されて
いる。そしてこの連結配管3、3は可撓性に富む架橋ポ
リエチレン製で、第5図に示すように、2本の連結配管
3、3は互いにその側部において接触して熱交換可能に
形成されている。このような材質で構成された連結配管
3、3は、内部を流れる吸放湿性溶液に対する耐食性を
有すると共に、連結配管3、3が変形した場合にも連結
配管3、3が閉塞してしまうのを防止し得ることにな
る。
FIG. 4 shows a cross-sectional view of the indoor unit 10 and the outdoor unit 16 of the separate type air conditioner equipped with the humidity controller as described above. A suction port 11 and a blowout port 12 are provided below the suction port 11 on the front surface of the casing of the indoor unit 10 (on the left side in the drawing).
An air flow passage 13 leading to 12 is formed. An indoor heat exchanger is provided on the air flow passage 13 at a position behind the suction port 11.
14 is installed upright, and a blower fan 15 is arranged closer to the outlet 12 than the indoor heat exchanger 14. And outdoor unit
An outdoor heat exchanger 17 and an outdoor fan 18 are arranged at 16. The first heat exchanger 1 and the second heat exchanger 2 in the humidity controller are on the back of the indoor heat exchanger 14 and the outdoor heat exchanger 17, respectively.
, And the connection pipes 3 and 3 are connected to the heat exchangers 1 and 2 via the on-off valves 20. The connecting pipes 3 and 3 are made of highly flexible cross-linked polyethylene, and as shown in FIG. 5, the two connecting pipes 3 and 3 are formed in contact with each other at their side portions so that heat can be exchanged. There is. The connection pipes 3 and 3 made of such a material have corrosion resistance to the moisture absorptive and desorptive solution flowing inside, and the connection pipes 3 and 3 are blocked even when the connection pipes 3 and 3 are deformed. Can be prevented.

またこのように連結配管3、3を熱交換可能にすること
によって、湿度調節機の運転効率が向上するが、それは
次のような理由による。すなわち上記一方の通路21に高
温側の第1熱交換器1で加熱された高温の吸放湿性溶液
が低温側の第2熱交換器2へ向かって流れ、他方の通路
22に低温側の第2熱交換器2で冷却された後に高温側の
第1熱交換器1へ向かって低温の吸放湿性溶液が流れる
場合に、両熱交換器1、2で熱交換される前の吸放湿性
溶液が上記両通路21、22を流通する間に、低温の上記溶
液が加温されると同時に、高温の上記溶液が冷却されて
互いに熱交換し合うことになり、この結果、加熱に必要
な温度幅及び冷却に必要な温度幅がそれぞれ減少するこ
とになるためである。
Further, by making the connecting pipes 3 and 3 capable of exchanging heat in this way, the operation efficiency of the humidity controller is improved because of the following reasons. That is, the high-temperature moisture-absorption / desorption solution heated in the first heat exchanger 1 on the high temperature side flows toward the second heat exchanger 2 on the low temperature side in the one passage 21 and the other passage 21
When the low temperature moisture absorbing / releasing solution flows toward the first heat exchanger 1 on the high temperature side after being cooled by the second heat exchanger 2 on the low temperature side, heat is exchanged between the two heat exchangers 1, 2. While the moisture absorptive and desorptive solution before flowing through both the passages 21 and 22, the low temperature solution is heated and at the same time, the high temperature solution is cooled and exchanges heat with each other. As a result, the temperature range required for heating and the temperature range required for cooling are both reduced.

上記連結配管3、3は第6図に示すように2重同心状に
形成することもでき、この場合には内方の連結配管3の
内部に一方の通路21が形成され、内方と外方との連結配
管3、3間に他方の通路22が形成されている。したがっ
て上記一方の通路21が全周にわたって他方の通路22で囲
まれていることにより、第1、第2熱交換器1、2への
流入に先立つ両通路21、22の相互間で行われる熱交換の
熱交換効率が一層向上する。
The connecting pipes 3 and 3 may be formed in a double concentric manner as shown in FIG. 6, and in this case, one passage 21 is formed inside the connecting pipe 3 on the inner side, and the inner and outer sides are formed. The other passage 22 is formed between the connecting pipes 3 and 3. Therefore, since the one passage 21 is surrounded by the other passage 22 over the entire circumference, heat generated between the two passages 21 and 22 prior to the inflow to the first and second heat exchangers 1 and 2 is increased. The heat exchange efficiency of exchange is further improved.

上記構成の空気調和機において、まず暖房運転時の作動
状態について説明すると、送風ファン15を作動すること
によって、吸込口11から吸込まれた室内空気は、室内熱
交換器14通過時に加熱され、その後、吹出口12から室内
へと吹出されて室内の暖房が行われる。そしてこの際
に、上記第1熱交換器1は室内熱交換器14通過後の加熱
空気の流通路内に位置することから、高温の温度状態に
維持され、この結果、前記したように、この第1熱交換
器1内の吸放湿性溶液の水蒸気分圧は上記流通空気にお
ける水蒸気分圧よりも高い状態となることによって水分
の放出が行われ、流通空気の加湿が行われる。一方、屋
外に配設されている第2熱交換器2は、この空間内に流
入する低温の外気によって、内部の吸放湿性溶液の水蒸
気分圧が外気の水蒸気分圧よりも低い低温の温度状態と
なり、この結果、外気から水分を吸収する。また上記ポ
ンプ4による強制循環によって上記循環径路内に吸放湿
性溶液が循環し、この結果、第1熱交換器1内で高温状
態となって室内への吹出空気に放湿した吸放湿性溶液
は、その後、第2熱交換器2内へと移動して低温状態と
なり、この結果、この第2熱交換器2側では外気からの
吸湿を生じるサイクルが連続的に生じることとなる。
In the air conditioner having the above configuration, first, the operating state during heating operation will be described.By operating the blower fan 15, the indoor air sucked from the suction port 11 is heated when passing through the indoor heat exchanger 14, and thereafter. The air is blown into the room from the air outlet 12 to heat the room. At this time, since the first heat exchanger 1 is located in the flow passage of the heated air after passing through the indoor heat exchanger 14, it is maintained at a high temperature state. As a result, as described above, The water vapor partial pressure of the moisture absorptive and desorptive solution in the first heat exchanger 1 becomes higher than the water vapor partial pressure of the circulating air, whereby moisture is released and the circulating air is humidified. On the other hand, the second heat exchanger 2 arranged outdoors has a low temperature temperature at which the vapor partial pressure of the moisture absorptive and desorptive solution inside is lower than the vapor partial pressure of the outside air due to the low temperature outside air flowing into this space. As a result, water is absorbed from the outside air. In addition, the hygroscopic and hygroscopic solution is circulated in the circulation path by the forced circulation by the pump 4, and as a result, the hygroscopic and hygroscopic solution has become hot in the first heat exchanger 1 and is radiated to the air blown into the room. After that, moves to the inside of the second heat exchanger 2 and becomes a low temperature state, and as a result, a cycle in which moisture is absorbed from the outside air continuously occurs on the side of the second heat exchanger 2.

一方、上記構成の空気調和機で冷房運転を行う場合に
は、室内熱交換器14通過時に冷却され、室内へと吹出さ
れる流通空気によって第1熱交換器1は低温温度状態に
保持され、この結果、内部の吸放湿溶液への水分の吸収
が行われることとなって、流通空気の除湿が行われる。
そしてこのとき同時に、第2熱交換器2は高温の外気に
より高温温度状態となされることによって外気への放湿
が行われ、上記暖房運転時とは逆サイクルでの吸放湿状
態で運転されることとなる。
On the other hand, when performing the cooling operation in the air conditioner having the above-mentioned configuration, the first heat exchanger 1 is kept in the low temperature state by the circulating air that is cooled when passing through the indoor heat exchanger 14 and is blown out into the room. As a result, moisture is absorbed in the moisture absorbing / releasing solution inside, and the circulating air is dehumidified.
At this time, at the same time, the second heat exchanger 2 is brought into the high temperature state by the high temperature outside air to release the moisture to the outside air, and is operated in the absorbing and releasing state in the cycle reverse to the heating operation. The Rukoto.

以上の湿度調節機を備えた空気調和機においては、例え
ば冷房運転時に第2熱交換器2内部の吸放湿性溶液の飽
和水蒸気圧力が外気の水蒸気分圧よりも低く、したがっ
てこの第2熱交換器2側での放湿が生じないおそれがあ
る場合に、ヒータ6によって上記第2熱交換器2を加熱
して温度上昇させることにより、この第2熱交換器2側
での放湿をより確実に行わせることができ、この結果、
冷房運転時の室内空気からの除湿を継続して確実に行う
ことが可能となる。また逆に暖房運転時に第1熱交換器
1から放湿する場合には、第1熱交換器1をヒータ6に
よって加熱して吸放湿性溶液の飽和水蒸気圧力を上昇さ
せて、上記放湿をより確実に行うことが可能になる。
In the air conditioner equipped with the above humidity controller, for example, the saturated steam pressure of the moisture absorbing / releasing solution inside the second heat exchanger 2 is lower than the steam partial pressure of the outside air during the cooling operation, and thus the second heat exchange is performed. When there is a possibility that moisture will not be released on the side of the heat exchanger 2, the second heat exchanger 2 is heated by the heater 6 to raise its temperature, so that the heat released on the side of the second heat exchanger 2 can be further improved. It can be done reliably, and as a result,
It is possible to continue and reliably dehumidify the indoor air during the cooling operation. On the contrary, when the first heat exchanger 1 is dehumidified during the heating operation, the first heat exchanger 1 is heated by the heater 6 to increase the saturated steam pressure of the moisture absorbing / desorbing solution to release the moisture. It becomes possible to perform it more reliably.

以上のように本発明の実施例に係る湿度調節機において
は、ヒータ6、6はパイプ5内に内蔵されているので、
ヒータ6、6で発生する熱量を有効に利用でき、吸放湿
性溶液の加熱効率が高くなると共に、熱交換器1、2の
表面積を充分に確保し得ることになる。またチューブ状
のパイプ5を螺旋状に巻回して両熱交換器1、2を構成
したので、構成容積に対する熱交換器1、2の表面積を
広くすることができ、コンパクトな熱交換器1、2を提
供できる。
As described above, in the humidity controller according to the embodiment of the present invention, since the heaters 6, 6 are built in the pipe 5,
The amount of heat generated by the heaters 6, 6 can be effectively used, the heating efficiency of the moisture absorptive and desorptive solution can be increased, and the surface areas of the heat exchangers 1, 2 can be sufficiently secured. Further, since the tube-shaped pipe 5 is spirally wound to form the both heat exchangers 1 and 2, the surface area of the heat exchangers 1 and 2 with respect to the constituent volume can be increased, and the compact heat exchanger 1, 2 can be provided.

さらに、上記一対の連結配管3、3は熱交換可能に配置
されているので、連結配管3、3内を吸放湿性溶液が流
通する時に、連結配管3、3を流れる上記溶液を、熱交
換により第1、第2熱交換器1、2での熱交換に先立っ
て冷却、加熱することができ、熱効率が一層向上する。
Further, since the pair of connecting pipes 3 and 3 are arranged so as to be capable of heat exchange, when the moisture absorbing / releasing solution flows through the connecting pipes 3 and 3, the solution flowing through the connecting pipes 3 and 3 is heat-exchanged. Thereby, the heat can be cooled and heated prior to the heat exchange in the first and second heat exchangers 1 and 2, and the thermal efficiency is further improved.

以上、この発明の具体的な実施例についての説明を行っ
たが、上記各実施例はこの発明を限定するものではな
く、この発明の範囲内で種々の変更が可能であり、例え
ば熱交換器1、2の構成材料や吸放湿性溶液は、それぞ
れ上記説明文中のもの以外の同様の機能、特性を有する
その他の材料、その他の溶液を用いて構成することがで
きる。また上記の湿度調節機は、例えば2つの熱交換器
1、2をそれぞれ室内外に配置して空気調和機とは独立
した装置として構成することや、空気調和機以外の装置
に内装して構成することが可能であり、また上記各実施
例ではセパレート形空気調和機を例に挙げて説明した
が、その他の形式の空気調和機においてこの発明を適用
して構成することが可能である。
Although the specific embodiments of the present invention have been described above, the above embodiments are not intended to limit the present invention, and various modifications can be made within the scope of the present invention. For example, a heat exchanger. The constituent materials 1 and 2 and the moisture absorptive and desorptive solution can be configured by using other materials and other solutions having the same functions and characteristics other than those described above. In addition, the above-described humidity controller is configured, for example, by arranging the two heat exchangers 1 and 2 inside and outside, respectively, to be configured as a device independent of the air conditioner, or is configured by being installed in a device other than the air conditioner. Further, although the separate type air conditioners have been described in the above embodiments as examples, the present invention can be applied to other types of air conditioners.

(発明の効果) 以上説明したように第1請求項記載の湿度調節機におい
ては、放湿側の熱交換器の吸放湿性溶液の飽和水蒸気圧
力が外気の水蒸気分圧よりも低く、したがって放湿が生
じないような状態になるおそれがある場合に、この熱交
換器内部の吸放湿性溶液を、ヒータで直接に加熱して放
湿をより確実に行わせることができ、吸放湿サイクルを
継続して確実に行うことが可能になる。
(Effect of the invention) As described above, in the humidity controller according to the first aspect, the saturated vapor pressure of the moisture absorbing / releasing solution of the heat exchanger on the moisture releasing side is lower than the vapor partial pressure of the outside air, so When there is a risk that moisture will not be generated, the moisture absorbing / releasing solution inside the heat exchanger can be heated directly by the heater so that moisture can be released more reliably. It is possible to continue and reliably perform.

しかも、線状のヒータはチューブ状の熱交換器の内部に
配置されているために、従来のように熱交換器の表面積
が減少することもなく、熱交換器の熱交換効率を高く維
持することができる。同時にヒータによる吸放湿性溶液
の加熱効率も向上する。
Moreover, since the linear heater is arranged inside the tubular heat exchanger, the surface area of the heat exchanger does not decrease as in the conventional case, and the heat exchange efficiency of the heat exchanger is maintained high. be able to. At the same time, the heating efficiency of the moisture absorbing / releasing solution by the heater is also improved.

また第2請求項記載の湿度調節機においては、熱交換器
を螺旋状に巻回して構成したので、構成容積に対する熱
交換器の表面積を広くすることができ、熱交換器をコン
パクトに形成することが可能になる。
Further, in the humidity controller according to the second aspect of the present invention, since the heat exchanger is spirally wound, the surface area of the heat exchanger with respect to the constituent volume can be increased, and the heat exchanger can be made compact. It will be possible.

さらに第3請求項記載の湿度調節機においては、一対の
連結配管を相互に熱交換可能に配置しているので、両熱
交換器における熱交換に先立って吸放湿性溶液を相互に
熱交換し得ることになり、一層熱効率を向上させること
ができる。
Further, in the humidity controller according to the third aspect, since the pair of connecting pipes are arranged so that heat can be exchanged with each other, the moisture absorptive and desorptive solutions are mutually heat-exchanged prior to heat exchange in both heat exchangers. As a result, the thermal efficiency can be further improved.

またさらに第4請求項記載の湿度調節機においては、架
橋ポリエチレンで連結配管を形成したので、耐食性を向
上し得ると共に、さらに可撓性に富むことから連結配管
の配設が容易になる。
Further, in the humidity controller according to the fourth aspect, since the connecting pipe is formed of cross-linked polyethylene, the corrosion resistance can be improved and the flexibility is further enhanced, so that the connecting pipe can be easily arranged.

そして第5請求項記載の湿度調節機においては、一方の
通路の周囲を他方の通路が囲むことになるために、上述
した連結配管での熱交換器効率がさらに向上することに
なる。
Further, in the humidity controller according to the fifth aspect, since one passage is surrounded by the other passage, the heat exchanger efficiency in the above-mentioned connecting pipe is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例に係る湿度調節機を示す構造
略図、第2図は熱交換器の断面図、第3図はリード線の
貫通部を示す断面図、第4図は湿度調節機を備えた空気
調和機の構造略図、第5図は連結配管の断面図、第6図
は連結配管の別の実施例を示す断面図、第7図は水溶液
濃度−飽和水蒸気圧のグラフ、第8図は従来例の構造略
図、第9図、第10図はそれぞれ従来の熱交換器を示す断
面図である。 1……第1熱交換器、2……第2熱交換器、3……連結
配管、6……ヒータ。
FIG. 1 is a schematic structural view showing a humidity controller according to an embodiment of the present invention, FIG. 2 is a sectional view of a heat exchanger, FIG. 3 is a sectional view showing a penetrating portion of a lead wire, and FIG. 5 is a cross-sectional view of a connecting pipe, FIG. 6 is a cross-sectional view showing another embodiment of the connecting pipe, FIG. 7 is a graph of aqueous solution concentration-saturated water vapor pressure, FIG. 8 is a schematic structural view of a conventional example, and FIGS. 9 and 10 are sectional views showing a conventional heat exchanger, respectively. 1 ... 1st heat exchanger, 2 ... 2nd heat exchanger, 3 ... connection piping, 6 ... heater.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】水蒸気を透過する多孔質材料で構成された
2つの熱交換器(1)(2)を連結配管(3)(3)で
相互に連結して環状の循環径路を構成すると共に、この
循環径路内に、雰囲気中の水蒸気分圧に対する飽和水蒸
気圧力の高低差に応じて水分の吸収、排出を行う塩化リ
チウム水溶液等の吸放湿性溶液を充填し、上記一方の熱
交換器(1)を、この熱交換器(1)内の吸放湿性溶液
の飽和水蒸気圧力がこの熱交換器(1)周辺の雰囲気中
の水蒸気分圧よりも高くなる温度で維持する一方、他方
の熱交換器(2)を、この熱交換器(2)内の吸放湿性
溶液の飽和水蒸気圧力がこの熱交換器(2)周辺の雰囲
気中の水蒸気分圧よりも低くなる温度で維持すると共
に、上記循環径路内を上記吸放湿性溶液が循環すべく構
成して一方の熱交換器(1)側で放湿すると共に、他方
の熱交換器(2)側で吸湿するようにした湿度調節機で
あって、上記放湿側の熱交換器(1)をチューブ状に形
成し、このチューブ状の熱交換器(1)内に線状のヒー
タ(6)を配設していることを特徴とする湿度調節機。
1. An annular circulation path is formed by connecting two heat exchangers (1) (2) made of a porous material permeable to water vapor with connecting pipes (3) (3) to each other. , The circulation path is filled with a moisture absorptive and desorptive solution such as an aqueous solution of lithium chloride that absorbs and discharges water according to the difference in the saturated steam pressure with respect to the partial pressure of steam in the atmosphere, and the one heat exchanger ( 1) is maintained at a temperature at which the saturated steam pressure of the moisture absorbing / releasing solution in the heat exchanger (1) is higher than the steam partial pressure in the atmosphere around the heat exchanger (1), while the heat of the other is maintained. The exchanger (2) is maintained at a temperature at which the saturated water vapor pressure of the moisture absorptive and desorptive solution in the heat exchanger (2) becomes lower than the water vapor partial pressure in the atmosphere around the heat exchanger (2), One of the heat exchanges is configured by circulating the moisture absorbing / releasing solution in the circulation path. A humidity controller configured to release moisture on the side of (1) and absorb moisture on the side of the other heat exchanger (2), wherein the heat exchanger (1) on the moisture release side is formed into a tube shape, A humidity controller characterized in that a linear heater (6) is arranged in the tubular heat exchanger (1).
【請求項2】上記チューブ状の熱交換器(1)は螺旋状
に巻回されていることを特徴とする第1請求項記載の湿
度調節機。
2. A humidity controller according to claim 1, wherein the tubular heat exchanger (1) is spirally wound.
【請求項3】往き側及び復り側の一対の上記連結配管
(3)(3)を、相互に熱交換可能に配置していること
を特徴とする第1又は第2請求項記載の湿度調節機。
3. The humidity according to claim 1 or 2, wherein the pair of connecting pipes (3) (3) on the going side and the returning side are arranged so as to be able to exchange heat with each other. Adjuster.
【請求項4】上記連結配管(3)(3)は架橋ポリエチ
レン製であることを特徴とする第3請求項記載の湿度調
節機。
4. A humidity controller according to claim 3, wherein the connecting pipes (3) (3) are made of cross-linked polyethylene.
【請求項5】上記一対の連結配管(3)(3)を内外2
重に形成したことを特徴とする第3又は第4請求項記載
の湿度調節機。
5. The inside and outside 2 of the pair of connecting pipes (3) (3)
The humidity controller according to claim 3 or 4, wherein the humidity controller is formed in multiple layers.
JP1263457A 1989-10-09 1989-10-09 Humidity controller Expired - Fee Related JPH0759996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1263457A JPH0759996B2 (en) 1989-10-09 1989-10-09 Humidity controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1263457A JPH0759996B2 (en) 1989-10-09 1989-10-09 Humidity controller

Publications (2)

Publication Number Publication Date
JPH03125830A JPH03125830A (en) 1991-05-29
JPH0759996B2 true JPH0759996B2 (en) 1995-06-28

Family

ID=17389776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1263457A Expired - Fee Related JPH0759996B2 (en) 1989-10-09 1989-10-09 Humidity controller

Country Status (1)

Country Link
JP (1) JPH0759996B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000289B2 (en) 2010-05-25 2015-04-07 7Ac Technologies, Inc. Photovoltaic-thermal (PVT) module with storage tank and associated methods
US9308490B2 (en) 2012-06-11 2016-04-12 7Ac Technologies, Inc. Methods and systems for turbulent, corrosion resistant heat exchangers
ES2683855T3 (en) 2013-03-01 2018-09-28 7Ac Technologies, Inc. Desiccant air conditioning system
JP6568516B2 (en) * 2013-03-14 2019-08-28 7エーシー テクノロジーズ,インコーポレイテッド Method and system for mini-split liquid desiccant air conditioning
JP6506266B2 (en) 2013-06-12 2019-04-24 7エーシー テクノロジーズ,インコーポレイテッド In-ceiling liquid desiccant air conditioning system
CN106164594B (en) 2014-03-20 2019-10-25 7Ac技术公司 Roof liquid desiccant systems and method
WO2016081933A1 (en) 2014-11-21 2016-05-26 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
WO2019089957A1 (en) 2017-11-01 2019-05-09 7Ac Technologies, Inc. Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems
EP3704415A4 (en) 2017-11-01 2021-11-03 7AC Technologies, Inc. Tank system for liquid desiccant air conditioning system
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture

Also Published As

Publication number Publication date
JPH03125830A (en) 1991-05-29

Similar Documents

Publication Publication Date Title
JP5327371B2 (en) Humidity control module and humidity control device
JP4729409B2 (en) Desiccant ventilation system
JP2013064549A (en) Air conditioning system
JP4341924B2 (en) Desiccant ventilation system
JPH0759996B2 (en) Humidity controller
JP4892271B2 (en) Air conditioning system
JP5987854B2 (en) Heat exchange element and heat exchanger
JP6065096B2 (en) Humidity control device
JP5821456B2 (en) Humidity control device
JPS62297647A (en) Dehumidification system of building
JPH0743151B2 (en) Dehumidifier / humidifier and air conditioner equipped with dehumidifier / humidifier
JP3161636B2 (en) Air cooling device using moisture absorbent
JPH054576B2 (en)
JP6231418B2 (en) Cooling dehumidification system
JP5811729B2 (en) Air conditioning system
JP2006145092A (en) Air conditioning system and building
JP7036491B2 (en) Humidity control device
JP3119062B2 (en) Air conditioner
JP3861707B2 (en) Air conditioner
JPH09222244A (en) Humidify control air conditioner
JP6015439B2 (en) Humidity control module and humidity control device having the same
JP6235392B2 (en) Air conditioner
JP2017207217A (en) Air humidity control system
JP2024051877A (en) Air conditioning equipment
JPH11132505A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees