JPH0756087A - Zoom tube lens for infinity correction type zoom microscope - Google Patents

Zoom tube lens for infinity correction type zoom microscope

Info

Publication number
JPH0756087A
JPH0756087A JP21926093A JP21926093A JPH0756087A JP H0756087 A JPH0756087 A JP H0756087A JP 21926093 A JP21926093 A JP 21926093A JP 21926093 A JP21926093 A JP 21926093A JP H0756087 A JPH0756087 A JP H0756087A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
group
zoom
lens
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21926093A
Other languages
Japanese (ja)
Inventor
Kunio Shimada
邦夫 島田
Original Assignee
Union Optical Co Ltd
ユニオン光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/173Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification

Abstract

PURPOSE:To embody the zoom tube lens for infinity correction type zoom microscope, which has a high zoom ratio reaching 10 and can obtain a high object magnification, with a low cost. CONSTITUTION:This mechanical compensation type zoom lens consists of four groups having positive, negative, negative, and positive refracting powers in order from the object side, and the first group has the positive refracting power and is fixed during zooming, and the second group has the negative refracting power and is linearly moved during zooming to act as the main body for power varying, and the third group has the negative refracting power and is linearly moved during zooming to fixedly keep the image position, and the fourth group has the positive refracting power and is fixed during zooming, and its first group consists of a positive single lens.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は無限遠補正型顕微鏡に使用されるチューブレンズをズームレンズとしたものであり、特にズーム比10に達する高ズーム比を有し、顕微鏡に用いたときに高物体倍率が得られるズームチューブレンズに関する。 BACKGROUND OF THE INVENTION The present invention has a tube lens used infinity corrected microscope with zoom lens, in particular having a high zoom ratio reaches a zoom ratio of 10, high when used in microscopy It relates to a zoom tube lens where the object magnification is obtained.

【0002】 [0002]

【従来の技術】無限遠補正型の顕微鏡においては、チューブレンズと対物レンズの焦点距離の比が倍率となる。 BACKGROUND OF THE INVENTION infinity corrected type of microscope, the ratio of the focal length of the tube lens and the objective lens is the magnification.
この性質を利用して、チューブレンズをズームレンズとすることによって倍率を変化させることが従来行われていた。 Using this property, it is possible to change the magnification has been conventionally performed by the tube lens and a zoom lens. 従来、この発明と同一発明者による無限遠補正型の大口径高倍率ズーム顕微鏡のズームチューブレンズ(本願出願人と同一出願人による特願平4−19926 Conventionally, Japanese Patent Application by infinity corrected type large diameter high-magnification zoom microscope zoom tube lens (Applicants and commonly owned by the present invention and the same inventor 4-19926
6号特許出願の明細書において開示。 It disclosed in the specification of 6 patent application. 但し、この出願の時点では未公開。 However, unpublished at the time of this application. )があったが、その第1群は3枚ものレンズを要した。 ) I had, but the first group took also three lenses.

【0003】 [0003]

【発明が解決しようとする課題】そのため、従来の無限遠補正型ズーム顕微鏡用ズームチューブレンズは構成レンズ枚数が多いためコストが高くなるという問題点があった。 THE INVENTION Problems to be Solved Therefore, the conventional infinity corrected type zoom microscope zoom tube lens has a problem that costs for number of lenses is large becomes high. この発明は以上の如き従来技術の問題点に鑑みて創作されたものであり、ズームチューブレンズの第1群のレンズ枚数をわずか1枚で構成した無限遠補正型ズーム顕微鏡用ズームチューブレンズを提供することを目的とする。 This invention has been made in view of the problems of such prior art above, provides infinity corrected type zoom microscope zoom tube lens with a lens number of the first group of the zoom tube lens in only one an object of the present invention is to.

【0004】 [0004]

【課題を解決するための手段】この発明は無限遠補正型顕微鏡のチューブレンズとして用いられるズームレンズで、そのズームレンズは物体側から正、負、負、正の屈折力の4群からなるメカニカルコンペンセイションタイプであり、第1群は正の屈折力を有し、ズーミング中は固定され、第2群は負の屈折力を有し、ズーミング中は直線的に移動して変倍作用の主力をなし、第3群は負の屈折力を有し、ズーミング中は非線形的に移動して像位置を一定に保つ作用をなし、第4群は正の屈折力を有し、ズーミング中は固定され、その第1群は正の単レンズよりなる無限遠補正型ズーム顕微鏡用ズームチューブレンズに特徴を有する。 SUMMARY OF THE INVENTION The present invention is a zoom lens used as the infinity corrected microscope tube lens and the zoom lens from the object side positive, negative, negative, the four groups of positive refractive power mechanical a Compensation type, the first group has a positive refractive power, during zooming is fixed, the second group has a negative refractive power, during zooming zooming action to move linearly without a core, the third group has a negative refractive power, during zooming without an effect to keep the image position constant moves nonlinearly, the fourth group has a positive refractive power, during zooming fixed, its first group characterized by infinity corrected type zoom microscope zoom tube lens formed of a positive single lens.

【0005】 [0005]

【作用】一般にズームレンズは光線入射高が最大となるテレ端で最も収差が大きくなりやすい。 [Action] Generally zoom lens most aberration tends to be large at the telephoto end the ray incidence height becomes maximum. テレ端における収差を補正する上で最も重要なのが第1群である。 The aberration most important for correct at the telephoto end is a first group. 一方、この発明で得られるような無限遠補正型ズーム顕微鏡においては、テレ端で対物レンズのNAが最大となるのに伴ってズームチューブレンズへの光線入射高も最大となるから、ここでもテレ端での収差補正が最重要となる。 On the other hand, in the infinity corrected type zoom microscope as it obtained in the present invention, since the NA of the objective lens at the telephoto end becomes the maximum even ray incidence height of the zoom tube lens with to the maximum, again telephoto aberration correction at the end is the most important.

【0006】ところが、この発明の発明者が設計、検討を繰り返した結果、無限遠補正型ズーム顕微鏡用ズームチューブレンズの場合、第1群についての事情が一般のズームレンズとは異なることが判明した。 [0006] However, as a result of inventor's design, repeated studies of the present invention, in the case of infinity corrected type zoom microscope zoom tube lens and circumstances for the first group was found to be different from a general zoom lens . つまり、第1 In other words, the first
群に隣接して対物レンズが配置されるため、通常は第1 Since the objective lens is positioned adjacent to the group, usually the first
群で負担すべき収差補正を対物レンズに転嫁することが出来るのである。 It is is able to shift the aberration correction to be borne by the group in the objective lens. これによって第1群の収差補正の負担を小さくすることが出来る。 This makes it possible to reduce the burden of aberration correction of the first group.

【0007】以上の理由から、第1群のレンズ構成を単レンズ1枚にすることが可能となった。 [0007] For these reasons, it has become possible to the lens configuration of the first group in one single lens.

【0008】しかも硝種については、第1群に蛍石系の硝種を用いた実施例9と第1群にSF系のうち分散の大きな硝種を用いた実施例10とで証明した様に、第1群には現在市販されている硝種の全てが使用可能である。 [0008] Moreover the glass type is, as was demonstrated in Example 10 using a large glass type of dispersion of the SF system as in Example 9 using the glass type of fluorite system to the first group to the first group, the one group all glass types that are currently commercially available can be used.

【0009】第2群ないし第4群の各群のレンズ構成については実施例に示したように、構成を一定にする必要はない。 [0009] As for the lens configuration of each group of the second group to the fourth group shown in the examples, it is not necessary to the structure constant.

【0010】この発明と組み合わされる対物レンズは、 [0010] objective lens combined with the invention,
ズームチューブレンズの第1群が単レンズ1枚であることによる収差補正不足を補うものでなくてはならない。 First group of the zoom tube lens should be one which compensate for the aberration correction shortage by a one single lens.
例えば、テレ端における物体倍率を50倍程度とする場合、3つの成分に分けられ、物体側より順に正単レンズ2枚より成る正屈折力の第1成分、3群以上の正レンズ群を有する正屈折力の第2成分、接合レンズ1群より成る負屈折力の第3成分より成り、第1成分の正単レンズのアッベ数のうち小さい方をν S 、第2成分の正レンズのみのアッベ数の平均値をν A 、第3成分の正レンズのアッベ数をν Lとする時、 (1) 32<ν S <57 (2) 68<ν A <95.2 (3) 20<ν L <38 なる条件を有する無限遠補正型ズーム顕微鏡用の高N Having for example, if a 50 times the object magnification at the telephoto end, is divided into three components, the first component of the positive refractive power consisting of two positive single lens in order from the object side, a positive lens group of three or more groups the second component of the positive refracting power and a third component of the negative refractive power composed of a cemented lens group 1, the smaller [nu S of Abbe numbers of the positive single lens of the first component, the only positive lens of the second component when the average value of the Abbe number [nu a, the Abbe number of the positive lens of the third component and ν L, (1) 32 < ν S <57 (2) 68 <ν a <95.2 (3) 20 < [nu L <high N for infinity corrected type zoom microscope with a 38 condition:
A、高倍率対物レンズを使用することが望ましい。 A, it is desirable to use a high magnification objective lens.

【0011】実施例を見れば分かる通り、この発明のズームチューブレンズは高倍率域に限らず、中倍率域の無限遠補正型ズーム顕微鏡にも有効に使用される。 [0011] As can be seen from examples, the zoom tube lens of the present invention is not limited to the high magnification range, it is used effectively in the medium magnification range infinity corrected type zoom microscope.

【0012】 [0012]

【実施例】このズーム顕微鏡用ズームチューブレンズは対物レンズと組み合わせて用いられるので、各実施例においては対物レンズについても開示することとし、それを含めた形で説明する。 EXAMPLES This zoom microscope zoom tube lens is used in combination with the objective lens, and also discloses an objective lens in each embodiment will be described in a form that includes it.

【0013】(実施例1)図1に実施例1のレンズ構成図を示す。 [0013] A (Example 1) lens arrangement of Example 1 in Figure 1. 図中符号、r 1 Reference numeral, r 1. . . r 34は各レンズの曲率半径、d 1 r 34 is the radius of curvature of each lens, d 1. . . 33は各レンズの厚さまたは間隔を表す。 d 33 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0014】 [0014]

【表1】 [Table 1]

【0015】ここで、n 1 [0015] In this case, n 1. . .20は各レンズのd線に対する屈折率、ν 1 . N 20 is the refractive index at the d-line of each lens, [nu 1. . . ν 20はd線に対するアッベ数である。 [nu 20 is the Abbe number at the d-line. この実施例のワイド端(5倍)、中間(21 Wide end of this Example (5 times), intermediate (21
倍)、テレ端(50倍)における諸収差をそれぞれ図8、図9、図10として示す。 Fold), illustrating aberrations at the telephoto end (50-fold), respectively 8, 9, as FIG. 10.

【0016】(実施例2)図2に実施例2のレンズ構成図を示す。 [0016] A (Example 2) lens arrangement of Example 2 in FIG. 図中符号、r 1 Reference numeral, r 1. . . r 28は各レンズの曲率半径、d 1 r 28 is the radius of curvature of each lens, d 1. . . 27は各レンズの厚さまたは間隔を表す。 d 27 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0017】 [0017]

【表2】 [Table 2]

【0018】ここで、n 1 [0018] In this case, n 1. . .16は各レンズのd線に対する屈折率、ν 1 . N 16 is the refractive index at the d-line of each lens, [nu 1. . . ν 16はd線に対するアッベ数である。 [nu 16 is the Abbe number at the d-line. この実施例のワイド端(1.5倍)、中間(6.2倍)、テレ端(15倍)における諸収差をそれぞれ図11、図12、図13として示す。 Wide end of this example (1.5 fold), the intermediate (6.2-fold), illustrating aberrations at the telephoto end (15 times), respectively 11, 12, as Figure 13.

【0019】(実施例3)図3に実施例3のレンズ構成図を示す。 [0019] A (Example 3) lens arrangement of the third embodiment in FIG. 図中符号、r 1 Reference numeral, r 1. . . r 26は各レンズの曲率半径、d 1 r 26 is the radius of curvature of each lens, d 1. . . 25は各レンズの厚さまたは間隔を表す。 d 25 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0020】 [0020]

【表3】 [Table 3]

【0021】ここで、n 1 [0021] In this case, n 1. . .15は各レンズのd線に対する屈折率、ν 1 . N 15 is the refractive index at the d-line of each lens, [nu 1. . . ν 15はd線に対するアッベ数である。 [nu 15 is the Abbe number at the d-line. この実施例のワイド端(1.5倍)、中間(6.2倍)、テレ端(15倍)における諸収差をそれぞれ図14、図15、図16として示す。 Wide end of this example (1.5 fold), the intermediate (6.2-fold), illustrating aberrations at the telephoto end (15 times), respectively 14, 15, as FIG. 16.

【0022】(実施例4)図4に実施例4のレンズ構成図を示す。 [0022] diagram showing a lens configuration of Example 4 Example 4 in Figure 4. 図中符号、r 1 Reference numeral, r 1. . . r 38は各レンズの曲率半径、d 1 r 38 is the radius of curvature of each lens, d 1. . . 37は各レンズの厚さまたは間隔を表す。 d 37 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0023】 [0023]

【表4】 [Table 4]

【0024】ここで、n 1 [0024] In this case, n 1. . .22は各レンズのd線に対する屈折率、ν 1 . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22はd線に対するアッベ数である。 [nu 22 is the Abbe number at the d-line. この実施例において視野数は18である。 Field number in this example is 18. この実施例のワイド端(5倍)、中間(21倍)、テレ端(50倍)における諸収差をそれぞれ図17、図18、 Wide end of this Example (5 times), intermediate (21-fold), respectively various aberrations at the telephoto end (50 times) 17, 18,
図19として示す。 It is shown as Figure 19.

【0025】(実施例5)図5に実施例5のレンズ構成図を示す。 [0025] A (Example 5) lens arrangement of the fifth embodiment in FIG. 図中符号、r 1 Reference numeral, r 1. . . r 26は各レンズの曲率半径、d 1 r 26 is the radius of curvature of each lens, d 1. . . 25は各レンズの厚さまたは間隔を表す。 d 25 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0026】 [0026]

【表5】 [Table 5]

【0027】ここで、n 1 [0027] In this case, n 1. . .15は各レンズのd線に対する屈折率、ν 1 . N 15 is the refractive index at the d-line of each lens, [nu 1. . . ν 15はd線に対するアッベ数である。 [nu 15 is the Abbe number at the d-line. この実施例のワイド端(0.9倍)、中間(3.7倍)、テレ端(9倍)における諸収差をそれぞれ図20、図21、図22として示す。 Wide end of this example (0.9 fold), the intermediate (3.7-fold), illustrating aberrations at the telephoto end (9 fold), respectively Figure 20, Figure 21, as Figure 22.

【0028】(実施例6)この実施例においてはレンズの構成は前記実施例2の場合と同様なので特に図示はしない。 [0028] (Example 6) are not particularly illustrated because the construction of the lens is the same as that of Example 2 in this embodiment. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0029】 [0029]

【表6】 [Table 6]

【0030】ここで、n 1 [0030] In this case, n 1. . .16は各レンズのd線に対する屈折率、ν 1 . N 16 is the refractive index at the d-line of each lens, [nu 1. . . ν 16はd線に対するアッベ数である。 [nu 16 is the Abbe number at the d-line. この実施例のワイド端(1.5倍)、中間(6.2倍)、テレ端(15倍)における諸収差をそれぞれ図23、図24、図25として示す。 Wide end of this example (1.5 fold), the intermediate (6.2-fold), illustrating aberrations at the telephoto end (15 times), respectively Figure 23, Figure 24, as Figure 25.

【0031】(実施例7)図6に実施例7のレンズ構成図を示す。 [0031] (Example 7) Figure 6 shows a lens arrangement of a seventh embodiment. 図中符号、r 1 Reference numeral, r 1. . . r 29は各レンズの曲率半径、d 1 r 29 is the radius of curvature of each lens, d 1. . . 28は各レンズの厚さまたは間隔を表す。 d 28 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0032】 [0032]

【表7】 [Table 7]

【0033】ここで、n 1 [0033] In this case, n 1. . .17は各レンズのd線に対する屈折率、ν 1 . N 17 is the refractive index at the d-line of each lens, [nu 1. . . ν 17はd線に対するアッベ数である。 [nu 17 is the Abbe number at the d-line. この実施例のワイド端(12.5倍)、中間(28倍)、テレ端(50倍)における諸収差をそれぞれ図26、図27、図28として示す。 Wide end of this example (12.5 times), intermediate (28-fold), illustrating aberrations at the telephoto end (50 fold) respectively as 26, 27, 28.

【0034】(実施例8)図7に実施例8のレンズ構成図を示す。 [0034] diagram showing a lens configuration of Example 8 (Example 8) FIG. 図中符号、r 1 Reference numeral, r 1. . . r 21は各レンズの曲率半径、d 1 r 21 is the radius of curvature of each lens, d 1. . . 20は各レンズの厚さまたは間隔を表す。 d 20 represents the thickness or spacing between the lenses. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0035】 [0035]

【表8】 [Table 8]

【0036】ここで、n 1 [0036] In this case, n 1. . .12は各レンズのd線に対する屈折率、ν 1 . N 12 is the refractive index at the d-line of each lens, [nu 1. . . ν 12はd線に対するアッベ数である。 [nu 12 is the Abbe number at the d-line. この実施例のワイド端(3.75倍)、中間(8.3倍)、テレ端(15倍)における諸収差をそれぞれ図29、図30、図31として示す。 Wide end of this example (3.75 times), intermediate (8.3-fold), illustrating aberrations at the telephoto end (15 times), respectively 29, 30, as Figure 31.

【0037】(実施例9)この実施例においてはレンズの構成は前記実施例4の場合と同様なので特に図示はしない。 [0037] (Example 9) are not particularly illustrated because the construction of the lens is the same as that of Example 4 in this embodiment. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0038】 [0038]

【表9】 [Table 9]

【0039】ここで、n 1 [0039] In this case, n 1. . .22は各レンズのd線に対する屈折率、ν 1 . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22はd線に対するアッベ数である。 [nu 22 is the Abbe number at the d-line. この実施例において、視野数は18である。 In this example, field number is 18.
この実施例においては、ズームチューブレンズの第1群に蛍石系の硝種を用いており、実施例10と共に、第1 In this embodiment, it uses a glass type of fluorite system to the first group of the zoom tube lens, with examples 10, first
群には現在市販されている硝種の全てが使用可能であることを証明する。 To prove that all glass types in the group that are currently on the market can be used. この実施例のワイド端(5倍)、中間(21倍)、テレ端(50倍)における諸収差をそれぞれ図32、図33、図34として示す。 Wide end of this Example (5 times), intermediate (21-fold), illustrating aberrations at the telephoto end (50-fold), respectively Figure 32, Figure 33, as Figure 34.

【0040】(実施例10)この実施例においてはレンズの構成は前記実施例4の場合と同様なので特に図示はしない。 [0040] (Example 10) are not particularly illustrated because the construction of the lens is the same as that of Example 4 in this embodiment. この実施例における光学系の諸元は次の表の通りである。 Specifications of the optical system in this embodiment is as in the following table.

【0041】 [0041]

【表10】 [Table 10]

【0042】ここで、n 1 [0042] In this case, n 1. . .22は各レンズのd線に対する屈折率、ν 1 . N 22 is the refractive index at the d-line of each lens, [nu 1. . . ν 22はd線に対するアッベ数である。 [nu 22 is the Abbe number at the d-line. この実施例において、視野数は18である。 In this example, field number is 18.
この実施例においては、ズームチューブレンズの第1群にSF系のうち分散の大きな硝種を用いており、実施例9と共に、第1群には現在市販されている硝種の全てが使用可能であることを証明する。 In this embodiment, employs a first large glass type of dispersion of the SF system zoom group tube lens, with examples 9, the first group is all glass types that are currently commercially available to prove that. この実施例のワイド端(5倍)、中間(21倍)、テレ端(50倍)における諸収差をそれぞれ図35、図36、図37として示す。 Wide end of this Example (5 times), intermediate (21-fold), illustrating aberrations at the telephoto end (50-fold), respectively Figure 35, Figure 36, as Figure 37.

【0043】 [0043]

【発明の効果】以上の構成よりなるこの発明のズームチューブレンズをズーム顕微鏡に使用すれば、高物体倍率、高NA、長作動距離及び高ズーム比を、従来のズーム顕微鏡に比べて少ないレンズ枚数で達成することができる。 Using the above zoom tube lens of the present invention has the constitution according to the present invention in a zoom microscope, high object magnification, high NA, long working distance and high zoom ratio, a small number of lenses as compared with the conventional zoom microscope in can be achieved to. 即ち、この発明によれば、ズームチューブレンズの中で最大のレンズ径を有する第1群の構成が、従来の3枚に対して1枚となり、コストダウンに有利となる効果を奏する。 That is, according to the present invention, the configuration of the first group having the greatest lens diameter in the zoom tube lens becomes the one with respect to the conventional three, an advantageous and become effective in cost reduction.

【0044】又、実施例1より明らかなように、物体倍率が5倍から50倍まで一つの対物レンズで連続的に変倍可能な、ズーム比10のズーム顕微鏡を得られる効果がある。 [0044] Also, as is clear from Example 1, the object magnification is possible continuously zooming in one of the objective lens from 5 times to 50 times, the effect obtained by the zoom microscope zoom ratio 10.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】この発明の実施例1のレンズ構成図。 [1] lens arrangement of a first embodiment of the present invention.

【図2】この発明の実施例2のレンズ構成図。 [Figure 2] lens arrangement of a second embodiment of the present invention.

【図3】この発明の実施例3のレンズ構成図。 [Figure 3] lens arrangement of a third embodiment of the present invention.

【図4】この発明の実施例4のレンズ構成図。 [4] lens arrangement of a fourth embodiment of the present invention.

【図5】この発明の実施例5のレンズ構成図。 [5] lens arrangement of a fifth embodiment of the present invention.

【図6】この発明の実施例7のレンズ構成図。 [6] lens arrangement of a seventh embodiment of the present invention.

【図7】この発明の実施例8のレンズ構成図。 [7] lens configuration diagram of an eighth embodiment of the present invention.

【図8】この発明の実施例1のワイド端における諸収差図。 [8] various aberrations in the wide end of the first embodiment of the present invention.

【図9】同上、中間における諸収差図。 [9] Same as above, various aberrations in the middle.

【図10】同上、テレ端における諸収差図。 [Figure 10] Id., Various aberrations in the telephoto end.

【図11】この発明の実施例2のワイド端における諸収差図。 [11] various aberrations in the wide end of the second embodiment of the present invention.

【図12】同上、中間における諸収差図。 [12] Ibid, various aberrations in the middle.

【図13】同上、テレ端における諸収差図。 [13] Id., Various aberrations in the telephoto end.

【図14】この発明の実施例3のワイド端における諸収差図。 [14] various aberrations in the wide end of a third embodiment of the present invention.

【図15】同上、中間における諸収差図。 [15] Id., Various aberrations in the middle.

【図16】同上、テレ端における諸収差図。 [16] Id., Various aberrations in the telephoto end.

【図17】この発明の実施例4のワイド端における諸収差図。 [17] various aberrations in the wide end of a fourth embodiment of the present invention.

【図18】同上、中間における諸収差図。 [18] Id., Various aberrations in the middle.

【図19】同上、テレ端における諸収差図。 [19] Id., Various aberrations in the telephoto end.

【図20】この発明の実施例5のワイド端における諸収差図。 [Figure 20] various aberrations in the wide end of the fifth embodiment of the present invention.

【図21】同上、中間における諸収差図。 [21] Id., Various aberrations in the middle.

【図22】同上、テレ端における諸収差図。 [Figure 22] Id., Various aberrations in the telephoto end.

【図23】この発明の実施例6のワイド端における諸収差図。 [Figure 23] various aberrations in the wide end of the sixth embodiment of the present invention.

【図24】同上、中間における諸収差図。 [Figure 24] Id., Various aberrations in the middle.

【図25】同上、テレ端における諸収差図。 [Figure 25] Id., Various aberrations in the telephoto end.

【図26】この発明の実施例7のワイド端における諸収差図。 [Figure 26] various aberrations in the wide end of the seventh embodiment of the present invention.

【図27】同上、中間における諸収差図。 [Figure 27] Id., Various aberrations in the middle.

【図28】同上、テレ端における諸収差図。 [28] Id., Various aberrations in the telephoto end.

【図29】この発明の実施例8のワイド端における諸収差図。 [29] various aberrations in the wide end of the eighth embodiment of the present invention.

【図30】同上、中間における諸収差図。 [Figure 30] Id., Various aberrations in the middle.

【図31】同上、テレ端における諸収差図。 [31] Id., Various aberrations in the telephoto end.

【図32】この発明の実施例9のワイド端における諸収差図。 [Figure 32] various aberrations in the wide end of the ninth embodiment of the present invention.

【図33】同上、中間における諸収差図。 [Figure 33] Id., Various aberrations in the middle.

【図34】同上、テレ端における諸収差図。 [Figure 34] Id., Various aberrations in the telephoto end.

【図35】この発明の実施例10のワイド端における諸収差図。 [Figure 35] various aberrations in the wide end of the tenth embodiment of the present invention.

【図36】同上、中間における諸収差図。 [36] Id., Various aberrations in the middle.

【図37】同上、テレ端における諸収差図。 [Figure 37] Id., Various aberrations in the telephoto end.

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 無限遠補正型顕微鏡のチューブレンズとして用いられるズームレンズで、そのズームレンズは物体側から正、負、負、正の屈折力の4群からなるメカニカルコンペンセイションタイプであり、第1群は正の屈折力を有し、ズーミング中は固定され、第2群は負の屈折力を有し、ズーミング中は直線的に移動して変倍作用の主力をなし、第3群は負の屈折力を有し、ズーミング中は非線形的に移動して像位置を一定に保つ作用をなし、第4群は正の屈折力を有し、ズーミング中は固定され、その第1群は正の単レンズよりなることを特徴とする無限遠補正型ズーム顕微鏡用ズームチューブレンズ。 In 1. A zoom lens used as the infinity corrected microscope tube lens is its zoom lens is a positive from the object side, a negative, negative, mechanical Compensation type consisting of four groups of positive refractive power, the first group has a positive refractive power, during zooming is fixed, the second group has a negative refractive power, during zooming without the mainstay of zooming action to move linearly, the third group has a negative refractive power, during zooming without an effect to keep moving nonlinearly the image position constant, the fourth group has a positive refractive power, during zooming is fixed, the first group infinity corrected type zoom microscope zoom tube lens characterized by consisting of a single positive lens.
JP21926093A 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope Pending JPH0756087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21926093A JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21926093A JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Publications (1)

Publication Number Publication Date
JPH0756087A true true JPH0756087A (en) 1995-03-03

Family

ID=16732741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21926093A Pending JPH0756087A (en) 1993-08-12 1993-08-12 Zoom tube lens for infinity correction type zoom microscope

Country Status (1)

Country Link
JP (1) JPH0756087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514920A (en) * 2000-05-03 2004-05-20 ダーク・ソーンクセンDirk SOENKSEN Fully automatic quick microscope slide scanner
US8923597B2 (en) 2004-05-27 2014-12-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514920A (en) * 2000-05-03 2004-05-20 ダーク・ソーンクセンDirk SOENKSEN Fully automatic quick microscope slide scanner
JP2011232762A (en) * 2000-05-03 2011-11-17 Aperio Technologies Inc Fully automatic rapid microscope slide scanner
US8385619B2 (en) 2000-05-03 2013-02-26 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US9851550B2 (en) 2000-05-03 2017-12-26 Leica Biosystems Imaging, Inc. Fully automatic rapid microscope slide scanner
US8923597B2 (en) 2004-05-27 2014-12-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
US9069179B2 (en) 2004-05-27 2015-06-30 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides

Similar Documents

Publication Publication Date Title
US4720179A (en) Zoom lens system for use with a compact camera
US5585970A (en) Zoom lens with high zoom ratio
US5276553A (en) Ultra wide angle zoom lens
US4874231A (en) Zoom lens
JPH07270684A (en) Rear focus zoom lens and image pickup system
US4986643A (en) Lens system capable of close-up photographing
US5325233A (en) Zoom lens utilizing inner focus system
US5663834A (en) Eyepiece zoom lens system
US5659426A (en) Zoom lens
US4659186A (en) Small size zoom lens
US4364641A (en) Wide angle zoom lens
JPH09258102A (en) Zoom lens of inner focusing type
US5309284A (en) Great relative aperture telephoto zoom lens
JPH11305124A (en) Zoom lens and optical instrument using the zoom lens
JPH08320435A (en) Wide-angle zoom lens
JPH0651202A (en) Telephoto zoom lens
JPH11258506A (en) Zoom lens
US5646779A (en) Optical system capable of correcting image position
US5412507A (en) Great aperture zoom lens
JPH07152002A (en) Zoom lens having vibrationproof function
JP2004226648A (en) Rear converter lens
JPH0634885A (en) Zoom lens
US5751485A (en) Lens capable of short distance photographing with vibration reduction function
JPH08220438A (en) Zoom lens focusable at short distance
US5126884A (en) Compact wide-angle zoom lens