JPH0745787A - Thin-film composite integrated circuit parts and its menufacture - Google Patents

Thin-film composite integrated circuit parts and its menufacture

Info

Publication number
JPH0745787A
JPH0745787A JP5191300A JP19130093A JPH0745787A JP H0745787 A JPH0745787 A JP H0745787A JP 5191300 A JP5191300 A JP 5191300A JP 19130093 A JP19130093 A JP 19130093A JP H0745787 A JPH0745787 A JP H0745787A
Authority
JP
Japan
Prior art keywords
film
integrated circuit
thin
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191300A
Other languages
Japanese (ja)
Inventor
Michio Arai
三千男 荒井
Yukio Yamauchi
幸夫 山内
Naoya Sakamoto
直哉 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Original Assignee
Semiconductor Energy Laboratory Co Ltd
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd, TDK Corp filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP5191300A priority Critical patent/JPH0745787A/en
Priority to US08/242,813 priority patent/US5643804A/en
Priority to KR1019940011146A priority patent/KR100273826B1/en
Publication of JPH0745787A publication Critical patent/JPH0745787A/en
Priority to US08/812,453 priority patent/US5877533A/en
Priority to US09/226,215 priority patent/US6410960B1/en
Priority to KR1019990046276A priority patent/KR100311675B1/en
Priority to KR1020010009793A priority patent/KR100351399B1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19104Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device on the semiconductor or solid-state device, i.e. passive-on-chip

Abstract

PURPOSE:To manufacture a thin-film integrated circuit part at a low cost and reduce its chip size, by forming on a thin-film integrated circuit through a thin-film process a thin-film layered body via an interlayer film made of a glass layer having SiO2 as its main component. CONSTITUTION:On a substrate 11 whereon a thin-film integrated circuit chip 12 is formed, via a PSG film 14 formed by an atmospheric CVD method, a thin-film layered type capacitor 17 wherein a dielectric material layer 15 and a conductor material layer 16 are formed alternately by a thin-film process, and a thin-film layered type inductor 18 comprising a magnetic material layer 19 and the conductor layer 16 are formed respectively. Since in this manner the layered section formed on the substrate 11 whereon the thin-film integrated circuit chip 12 is formed is provided wholly by the thin-film process, no burning processing by a high temperature is required unlike thick-film methods. Thereby, any contraction of the layered section which is caused by burning and any wrong effect which is caused by the difference between the thermal expansion coefficients of the layered section and the substrate whereon the thin-film integrated circuit is formed are eliminated. Also, by virtue of the thin-film method, the layered section is made thin, and cheap Al can be used as the conductor material of the layered section instead of expensive pd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜複合集積回路部品に
係り、特に安価に製造できチップサイズの小さな薄膜複
合集積回路部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film composite integrated circuit component, and more particularly to a thin film composite integrated circuit component which can be manufactured at low cost and has a small chip size.

【0002】[0002]

【従来の技術】能動回路素子から構成される薄膜集積回
路を形成した基板と、積層型コンデンサ、積層型インダ
クタ、抵抗回路あるいはこれらを組合わせたものから形
成される積層体を一体化させた複合集積回路部品は、従
来から知られている。
2. Description of the Related Art A substrate in which a thin film integrated circuit composed of active circuit elements is formed and a laminated body formed of a laminated capacitor, a laminated inductor, a resistor circuit or a combination thereof are integrated. Integrated circuit components have been known for some time.

【0003】一例として図5に示す如き構造の複合集積
回路部品について説明する。この複合集積回路部品は積
層型コンデンサ51と、積層型インダクタ52から成る
積層体と薄膜集積回路チップ54とから構成される。積
層型コンデンサ51を形成するためには、仮支持基板上
にBaTiO3 系セラミックス等の誘電体材料ペースト
をシート状に印刷し、この上に電極用導体材料ペースト
を印刷し、さらにこの上に誘電体材料ペーストと電極用
導体材料ペーストを交互に複数層印刷して積層する。
As an example, a composite integrated circuit component having a structure as shown in FIG. 5 will be described. This composite integrated circuit component comprises a multilayer capacitor 51, a multilayer body including a multilayer inductor 52, and a thin film integrated circuit chip 54. In order to form the multilayer capacitor 51, a dielectric material paste such as BaTiO 3 -based ceramics is printed in a sheet shape on a temporary support substrate, a conductor material paste for electrodes is printed thereon, and a dielectric material is further formed thereon. A plurality of layers of the body material paste and the electrode conductor material paste are alternately printed and laminated.

【0004】この積層体の上に、同様にして磁性材料と
導体材料ペーストを積層印刷してインダクタンス部分を
積層する。積層型インダクタ52は、例えば、Ni−C
u−Zn系フェライト等の磁性体材料ペーストをシート
状に印刷し、その上にコイルパターンを印刷し、さらに
この上にこれらを交互に印刷する。それからこの積層体
を乾燥させたのち、仮支持板から剥離し、例えば800
℃〜900℃で焼成し、複合積層体を得る。
A magnetic material and a conductor material paste are similarly laminated and printed on the laminated body to laminate the inductance portion. The multilayer inductor 52 is, for example, Ni-C.
A magnetic material paste such as u-Zn ferrite is printed in a sheet shape, a coil pattern is printed on the sheet, and these are alternately printed. Then, after drying this laminated body, it is peeled off from the temporary support plate, for example, 800
Firing at ℃ to 900 ℃, to obtain a composite laminate.

【0005】このように形成した積層体上にベアの薄膜
集積回路チップ54を搭載し、この薄膜集積回路チップ
54の取り出し端子55と積層体に設けられた電極パッ
ト56とを金属線57によりワイヤボンディングして電
気接続する。
A bare thin film integrated circuit chip 54 is mounted on the laminated body formed in this way, and a takeout terminal 55 of this thin film integrated circuit chip 54 and an electrode pad 56 provided on the laminated body are wired by a metal wire 57. Bonding and electrical connection.

【0006】最後にこの薄膜集積回路チップ54を覆っ
てプラスチックあるいはセラミックのパッケージ58を
形成し、複合集積回路部品50を完成する。また、前記
の構成では、積層体を形成するために仮支持基板を用い
て受動素子材料ペーストと導電材料ペーストを印刷し、
その後これを剥離するという煩雑な工程が必要である。
これをなくすために、薄膜集積回路を形成した基板上に
直接積層体を形成する構造のものもある。
Finally, a plastic or ceramic package 58 is formed covering the thin film integrated circuit chip 54 to complete the composite integrated circuit component 50. Further, in the above configuration, the passive element material paste and the conductive material paste are printed using the temporary support substrate to form the laminated body,
After that, a complicated process of peeling it off is required.
In order to eliminate this, there is also a structure in which a laminated body is directly formed on a substrate on which a thin film integrated circuit is formed.

【0007】さらに薄膜集積回路チップと受動素子から
なる積層体を別々の工程で形成するのでなく、LSIの
Si基板内に、大容量のコンデンサを薄膜プロセスで内
蔵させて形成する試みも提案されている(NIKKEI
ELECTRONICS1993年5月24日号p8
2〜87参照)。
Further, an attempt has also been proposed to form a large-capacity capacitor in a Si substrate of an LSI by a thin film process, instead of forming a laminated body including a thin film integrated circuit chip and a passive element in separate steps. (NIKKEI
ELECTRONICS May 24, 1993 issue p8
2-87).

【0008】[0008]

【発明が解決しようとする課題】従来の複合集積回路部
品では、その受動素子部分を構成する積層体は積層印
刷、焼成による厚膜プロセスで形成する。従って積層体
として誘電体材料層や磁性体材料層を多層に積層する場
合でも非常に生産性良く、安価に製造することができ
る。またインダクタやコンデンサの数が少くなれば、複
合集積回路部品の大きさは小さく出来る。
In the conventional composite integrated circuit component, the laminated body constituting the passive element portion is formed by a thick film process by laminated printing and firing. Therefore, even when a dielectric material layer or a magnetic material layer is laminated in multiple layers as a laminated body, it can be manufactured with extremely high productivity and at low cost. In addition, the size of the composite integrated circuit component can be reduced by reducing the number of inductors and capacitors.

【0009】ところが、薄膜集積回路を搭載して複合集
積回路部品を構成する場合には、薄膜集積回路チップを
搭載するための一定の大きさが積層体としては必要とな
り、積層体の大きさを十分に小さく出来ないという問題
点がある。
However, when a thin film integrated circuit is mounted to form a composite integrated circuit component, a certain size for mounting the thin film integrated circuit chip is required for the laminated body, and the size of the laminated body is reduced. There is a problem that it cannot be made small enough.

【0010】また、薄膜集積回路を形成した基板上に直
接厚膜プロセスで積層体を形成するものでは、積層体の
形成のための焼成温度が高いため、予め形成した薄膜集
積回路の素子特性に悪影響を与えることや、焼成による
積層体の縮みが、前記薄膜集積回路に悪影響を与えるな
どの問題点がある。
Further, in the case where the laminated body is formed directly on the substrate on which the thin film integrated circuit is formed by the thick film process, the firing temperature for forming the laminated body is high, so that the device characteristics of the thin film integrated circuit formed in advance are There are problems such that the thin film integrated circuit is adversely affected and the shrinkage of the laminate due to firing adversely affects the thin film integrated circuit.

【0011】さらに、LSIに大容量のコンデンサを内
蔵させたものは、その製法上、薄膜集積回路を形成した
基板上に、薄膜集積回路の横にこれを形成することにな
り、このため、全体の部品の大ききさが大型化するなど
の問題点がある。
Further, in the LSI in which a large-capacity capacitor is built in, the thin film integrated circuit is formed on the substrate on which the thin film integrated circuit is formed due to its manufacturing method. However, there is a problem in that the size of the parts is large.

【0012】従って本発明の目的は、安価に製造出来る
上にチップサイズの小さな複合集積回路部品を提供する
ものである。
Therefore, an object of the present invention is to provide a composite integrated circuit component which can be manufactured at low cost and has a small chip size.

【0013】[0013]

【課題を解決するための手段】本発明は前記問題点を解
決するため、薄膜集積回路を形成した基板上に、積層型
コンデンサ、積層型インダクタあるいはこれらを組合わ
せた受動回路を構成する積層部を形成した複合集積回路
部品において、積層部として、前記薄膜集積回路にSi
2 を主成分とするガラス層からなる層間膜を介在し
て、薄膜プロセスで形成した薄膜積層体を形成するもの
である。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a multilayer capacitor, a multilayer inductor, or a multilayer portion which constitutes a passive circuit combining these on a substrate on which a thin film integrated circuit is formed. In the composite integrated circuit component formed with, a Si layer is formed on the thin film integrated circuit as a laminated part.
A thin film laminate formed by a thin film process is formed with an interlayer film made of a glass layer containing O 2 as a main component interposed.

【0014】なお、薄膜プロセスで形成する膜は10層
以内であることが望ましい。
The film formed by the thin film process is preferably 10 layers or less.

【0015】[0015]

【作用】これにより薄膜集積回路を形成した基板上に垂
直方向に薄膜積層体を形成することができるので、薄膜
複合集積回路部品を非常に小型に提供できる。
As a result, the thin film laminated body can be formed in the vertical direction on the substrate on which the thin film integrated circuit is formed, so that the thin film composite integrated circuit component can be provided in a very small size.

【0016】[0016]

【実施例】本発明の一実施例を図1〜図4によって説明
する。図1は本発明の一実施例である薄膜複合集積回路
部品10の概略説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic explanatory view of a thin film composite integrated circuit component 10 which is an embodiment of the present invention.

【0017】図1において、11は基板、12は薄膜集
積回路チップ、13は取り出し電極、14はフォスフォ
シリケートグラス(PSG)膜、15はTiO2 層、1
6はAl層、17は薄膜積層型コンデンサ、18は薄膜
積層型インダクタ、19は薄膜磁性材料層、20は取り
出し電極を示す。
In FIG. 1, 11 is a substrate, 12 is a thin film integrated circuit chip, 13 is a take-out electrode, 14 is a phosphosilicate glass (PSG) film, 15 is a TiO 2 layer, 1
6 is an Al layer, 17 is a thin film laminated capacitor, 18 is a thin film laminated inductor, 19 is a thin film magnetic material layer, and 20 is a take-out electrode.

【0018】本実施例においては薄膜集積回路チップ1
2を形成した基板11上に常圧CVD法によって形成し
たPSG膜14を介在させて、誘電体材料層、例えばT
iO 2 層15と導体材料層、例えばAl層16とを交互
にマスク蒸着やマスクスパッタ法を用いた薄膜プロセス
を用いて形成し、薄膜積層型コンデンサ17と、磁性材
料層19とAl層16からなる薄膜積層型インダクタ1
8を形成する。
In the present embodiment, the thin film integrated circuit chip 1
2 is formed by the atmospheric pressure CVD method on the substrate 11 on which
With the PSG film 14 interposed, a dielectric material layer such as T
iO 2Alternating layers 15 and conductor material layers, eg Al layers 16
Film process using mask evaporation and mask sputtering method
Thin film multilayer capacitor 17 and magnetic material
Thin-film laminated inductor 1 including material layer 19 and Al layer 16
8 is formed.

【0019】また、薄膜集積回路チップ12と薄膜積層
型コンデンサ17との間の層間膜14はフォスフォシリ
ケートグラス(PSG)膜、ノンドープシリケートグラ
ス(NSG)膜、ボロシリケートグラス(BSG)膜、
このBSGと、フォスフォシリケートグラス(PSG)
との混合体であるボロフォスフォシリケートグラス(B
・PSG)膜の如きSiO2 を主成分とするガラス膜の
少なくとも一種以上から成る膜であって、その膜厚は
0.1〜5μm、好ましくは8000Å以上あるとよ
い。これらのガラス膜は常圧CVD法により形成するこ
とができる。
The interlayer film 14 between the thin film integrated circuit chip 12 and the thin film multilayer capacitor 17 is a phosphosilicate glass (PSG) film, a non-doped silicate glass (NSG) film, a borosilicate glass (BSG) film,
This BSG and phosphosilicate glass (PSG)
Borophosphosilicate glass (B
A film made of at least one kind of glass film containing SiO 2 as a main component, such as a PSG) film, and the film thickness is 0.1 to 5 μm, preferably 8000 Å or more. These glass films can be formed by the atmospheric pressure CVD method.

【0020】なお、薄膜集積回路チップ12と薄膜積層
型コンデンサ17、薄膜積層型インダクタ18とは薄膜
集積回路の取り出し電極13と導体材料層であるAl層
16によって電気的に接続される。
The thin film integrated circuit chip 12, the thin film multilayer capacitor 17, and the thin film multilayer inductor 18 are electrically connected to each other by the lead electrode 13 of the thin film integrated circuit and the Al layer 16 which is a conductor material layer.

【0021】次に本実施例の薄膜複合集積回路部品に用
いる、薄膜集積回路チップ12における薄膜トランジス
タの製造工程を、図2〜図3によって説明する。先ず、
基板11として多結晶シリコン基板を用い、この基板1
1上にスパッタ法により、酸化シリコン膜22を100
0〜5000Åの厚さに形成する(図2(A)参照)。
Next, the manufacturing process of the thin film transistor in the thin film integrated circuit chip 12 used in the thin film composite integrated circuit component of this embodiment will be described with reference to FIGS. First,
A polycrystalline silicon substrate is used as the substrate 11, and this substrate 1
1 by sputtering the silicon oxide film 22 to 100
It is formed to a thickness of 0 to 5000Å (see FIG. 2 (A)).

【0022】次にこの上にアモルファス・シリコン(α
−Si)膜23’を減圧CVD法により、500〜60
00Åの厚さに形成する(図2(B)参照)。この時の
成膜条件は次の通りである。
Next, an amorphous silicon (α
-Si) film 23 'is formed by a low pressure CVD method to 500-60
It is formed to a thickness of 00Å (see FIG. 2 (B)). The film forming conditions at this time are as follows.

【0023】 Si2 6 100〜500 SCCM He 500 SCCM 反応圧力 0.1〜1 Torr 成膜温度 430〜500℃ このα−Si膜23’を所定のアイランド状にパターニ
ングした後、約600℃で約40時間、窒素雰囲気中で
熱処理して結晶化し活性シリコン膜23とする(図2
(C)参照)。
Si 2 H 6 100 to 500 SCCM He 500 SCCM Reaction pressure 0.1 to 1 Torr Film formation temperature 430 to 500 ° C. After patterning the α-Si film 23 ′ into a predetermined island shape, the temperature is about 600 ° C. It is heat-treated in a nitrogen atmosphere for about 40 hours to be crystallized to form an active silicon film 23 (FIG. 2).
(See (C)).

【0024】次にゲート絶縁膜を形成するために、ドラ
イ酸化により、500〜2000Åの膜厚の酸化シリコ
ン膜24’を形成する(図2(D)参照)。この時の成
膜条件は次の通りである。
Next, in order to form a gate insulating film, a silicon oxide film 24 'having a film thickness of 500 to 2000 Å is formed by dry oxidation (see FIG. 2D). The film forming conditions at this time are as follows.

【0025】 O2 2.5 SLM 反応温度 850〜1100℃ 次にこの上にゲート電極となるP又はBをドープしたシ
リコン層25’を減圧CVD法により、1000〜40
00Åの膜厚で形成する(図2(E)参照)。
O 2 2.5 SLM Reaction temperature 850 to 1100 ° C. Next, a P or B-doped silicon layer 25 ′ serving as a gate electrode is formed on this layer by a low pressure CVD method at 1000 to 40 ° C.
It is formed with a film thickness of 00Å (see FIG. 2E).

【0026】この後、所定のパターンに従ってエッチン
グ工程によりゲート絶縁膜24、ゲート電極25を形成
する(図2(F)参照)。さらにこのゲート電極25を
マスクとして、活性シリコン膜23のソース・ドレイン
領域となるべき部分に、イオンドーピング法により、例
えばPをドープしてソース・ドレイン領域26、27を
形成する(図3(A)参照)。
After that, a gate insulating film 24 and a gate electrode 25 are formed by an etching process according to a predetermined pattern (see FIG. 2F). Further, using the gate electrode 25 as a mask, source / drain regions 26 and 27 are formed in the portion of the active silicon film 23 to be the source / drain regions by ion doping, for example, by doping P (FIG. 3A). )reference).

【0027】これらの素子を含む基板を窒素雰囲気中で
600℃で12時間加熱しドーパントの活性化を行い、
さらに水素雰囲気中で400℃1時間熱処理し、水素化
処理を行い活性シリコン膜23の欠陥準位密度を減少さ
せる。
A substrate including these elements is heated at 600 ° C. for 12 hours in a nitrogen atmosphere to activate the dopant,
Further, heat treatment is performed in a hydrogen atmosphere at 400 ° C. for 1 hour to perform hydrogenation treatment to reduce the defect level density of the active silicon film 23.

【0028】次にこの基板全体に常圧CVD法でPSG
膜28を4000〜8000Åの膜厚で形成した後、各
電極配線のために、必要とするパターンに従ってパター
ニングを行う(図3(B)参照)。
Next, PSG is formed on the entire substrate by the atmospheric pressure CVD method.
After forming the film 28 with a film thickness of 4000 to 8000Å, patterning is performed according to a required pattern for each electrode wiring (see FIG. 3B).

【0029】この後電極配線用のAlをスパッタ法によ
り成膜し、配線パターンに従ってパターニングし、配線
層29を形成して、図3(C)の如き薄膜トランジスタ
を完成する。
After that, Al for the electrode wiring is formed by the sputtering method, patterned according to the wiring pattern, and the wiring layer 29 is formed to complete the thin film transistor as shown in FIG. 3C.

【0030】この後に保護膜を兼ねたPSG膜を層間絶
縁膜として形成し、電極用スルーホールを形成後電極配
線層を形成して薄膜集積回路チップ12を構成する。本
発明では、次にこの薄膜集積回路チップ12が形成され
た基板11上にPSG膜14を介して薄膜プロセスを用
いて図1に示す如く、薄膜状の受動素子の薄膜積層型コ
ンデンサ17、薄膜積層型インダクタ18等を形成す
る。
After that, a PSG film also serving as a protective film is formed as an interlayer insulating film, an electrode through hole is formed, and then an electrode wiring layer is formed to form the thin film integrated circuit chip 12. In the present invention, next, as shown in FIG. 1, using a thin film process through the PSG film 14 on the substrate 11 on which the thin film integrated circuit chip 12 is formed, as shown in FIG. The laminated inductor 18 and the like are formed.

【0031】薄膜積層部として積層インダクタ18を形
成する場合を図4によって説明する。使用する磁性材料
としてはNi−Cu−Znフェライトを使用し、次の条
件でマスクスパッタリングを行い、Ni−Cu−Znフ
ェライト膜19を形成する(図4(A)参照)。
The case of forming the laminated inductor 18 as the thin film laminated portion will be described with reference to FIG. Ni—Cu—Zn ferrite is used as the magnetic material to be used, and mask sputtering is performed under the following conditions to form the Ni—Cu—Zn ferrite film 19 (see FIG. 4A).

【0032】スパッタリングの条件は以下の通りであ
る。 ターゲット Ni−Cu−Zn アルゴン圧 10〜100 mTorr 反応温度 150℃ RFパワー 1 KW なお、フェライト膜19には薄膜集積回路チップ12の
取り出し電極13に対応するスルーホールを形成する。
The sputtering conditions are as follows. Target Ni-Cu-Zn Argon pressure 10 to 100 mTorr Reaction temperature 150 ° C. RF power 1 KW In addition, a through hole corresponding to the extraction electrode 13 of the thin film integrated circuit chip 12 is formed in the ferrite film 19.

【0033】次にインダクタの導体材料層として、Al
をマスクスパッタリングにより蒸着しAl層16を形成
するとともに、薄膜集積回路の取り出し電極13と導体
層16との接続も行う(図4(B)参照)。
Next, as a conductor material layer of the inductor, Al
Is vapor-deposited by mask sputtering to form the Al layer 16, and the extraction electrode 13 of the thin film integrated circuit and the conductor layer 16 are also connected (see FIG. 4B).

【0034】同様に薄膜プロセスを用いて交互にNi−
Cu−Znフェライト膜19’と導体層16’を形成し
て積層型の薄膜インダクタ18を形成する(図4(C)
参照)。
Similarly, a thin film process is used to alternate the Ni--
A Cu-Zn ferrite film 19 'and a conductor layer 16' are formed to form a laminated thin film inductor 18 (FIG. 4C).
reference).

【0035】その後、必要に応じてこの上に積層型薄膜
コンデンサを形成することもできる。例えば、誘電体材
料としてTiO2 を用いてマスクスパッタリングを行う
ときの成膜の条件は次の通りである。
After that, a laminated thin film capacitor can be formed on this, if necessary. For example, the conditions of film formation when mask sputtering is performed using TiO 2 as a dielectric material are as follows.

【0036】 真空度 0.01 Torr 基板の温度 200℃ ソース温度 1500℃ この条件でTiO2 膜を形成後、Alをマスクスパッタ
リングして導体膜として積層化して、例えば、図1に示
す如く薄膜積層型コンデンサ17を形成する。
Degree of vacuum 0.01 Torr Substrate temperature 200 ° C. Source temperature 1500 ° C. Under these conditions, a TiO 2 film is formed, and then Al is mask-sputtered to be laminated as a conductor film. For example, thin film lamination as shown in FIG. The mold capacitor 17 is formed.

【0037】本発明では、薄膜集積回路を形成した基板
上に形成する積層部として各受動素子をマスクスパッタ
リングなどの薄膜プロセスで行うため、反応条件を変え
るだけでよいので製造が容易であるが、多層にするには
スパッタリング工程時に加熱処理が介在するので、その
影響を小さくするために全体で10層以内にすることが
望ましい。
In the present invention, since each passive element is formed by a thin film process such as mask sputtering as a laminated portion formed on a substrate on which a thin film integrated circuit is formed, it is easy to manufacture because only reaction conditions need to be changed. Since heat treatment is involved during the sputtering process to form a multilayer, it is desirable that the total number be within 10 layers in order to reduce the effect.

【0038】[0038]

【発明の効果】本発明の構成にすることにより、薄膜集
積回路チップを形成した基板上に形成する積層部も全部
薄膜プロセスで行うため、従来の厚膜法のように高温に
よる焼成処理など、基板に対して高温熱処理を行うこと
がない。
According to the structure of the present invention, since the laminated portion formed on the substrate on which the thin film integrated circuit chip is formed is also entirely formed by the thin film process, a baking treatment at a high temperature as in the conventional thick film method, etc. No high temperature heat treatment is applied to the substrate.

【0039】これにより焼成による積層体の縮みと薄膜
集積回路を形成した基板との熱膨張係数の違いによる悪
影響もない。さらに薄膜集積回路形成後の高温熱処理が
ないので、水素化がし易い上、熱による素子特性への悪
影響もない。
As a result, there is no adverse effect due to the shrinkage of the laminate due to firing and the difference in the coefficient of thermal expansion between the substrate on which the thin film integrated circuit is formed. Furthermore, since there is no high-temperature heat treatment after the thin film integrated circuit is formed, hydrogenation is easy and there is no adverse effect on the device characteristics due to heat.

【0040】また、薄膜法により、従来の圧膜法より積
層部が薄くなり部品の小型化、コンパクト化が実現す
る。ICのチップサイズは樹脂モールドの大きさにより
決まるため、この樹脂モールドを全体で一体化できるた
め小型化できる。
Further, the thin film method allows the laminated portion to be thinner than that of the conventional pressure film method, so that the parts can be made smaller and more compact. Since the chip size of the IC is determined by the size of the resin mold, this resin mold can be integrated as a whole, so that the size can be reduced.

【0041】その上、積層部の導体材料として高価なP
dの代わりに安価なAlが使用でき、その点からも薄膜
集積回路部品の低コスト化がはかれる。
In addition, P which is expensive as a conductor material for the laminated portion
Inexpensive Al can be used instead of d, and also from this point, the cost of the thin film integrated circuit component can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜複合集積回路部品の概
略構成説明図である。
FIG. 1 is a schematic configuration explanatory view of a thin film composite integrated circuit component of one embodiment of the present invention.

【図2】本発明の一実施例で用いる薄膜トランジスタの
製造工程説明図の一部である。
FIG. 2 is a part of a manufacturing process explanatory view of a thin film transistor used in one embodiment of the present invention.

【図3】本発明の一実施例で用いる薄膜トランジスタの
製造工程説明図の続きである。
FIG. 3 is a continuation of the manufacturing process explanatory diagram of the thin film transistor used in the embodiment of the present invention.

【図4】本発明の一実施例の薄膜複合集積回路部品の薄
膜積層部の製造工程説明図である。
FIG. 4 is an explanatory view of the manufacturing process of the thin film laminated portion of the thin film composite integrated circuit component of one embodiment of the present invention.

【図5】従来の複合集積回路部品の概略構成説明図であ
る。
FIG. 5 is a schematic configuration explanatory view of a conventional composite integrated circuit component.

【符号の説明】[Explanation of symbols]

11 基板 12 薄膜集積回路チップ 14 PSG膜 15 薄膜誘電体材料層 16 Al層 17 薄膜積層型コンデンサ 18 薄膜積層型インダクタ 19 薄膜磁性体材料層 11 Substrate 12 Thin Film Integrated Circuit Chip 14 PSG Film 15 Thin Film Dielectric Material Layer 16 Al Layer 17 Thin Film Multilayer Capacitor 18 Thin Film Multilayer Inductor 19 Thin Film Magnetic Material Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 3/46 Q 6921−4E (72)発明者 坂本 直哉 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H05K 3/46 Q 6921-4E (72) Inventor Naoya Sakamoto 398 Hase, Atsugi-shi, Kanagawa Co., Ltd. Conductor Energy Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 薄膜集積回路を形成した基板上に積層型
コンデンサ、積層型インダクタあるいはこれらを組合わ
せた受動素子を構成する積層部を形成した複合集積回路
部品において、薄膜集積回路を形成した基板上にSiO
2 を主成分とするガラス層からなる層間膜を介在して、
薄膜プロセスで形成した薄膜積層型受動素子を形成する
ことを特徴とする薄膜複合集積回路部品。
1. A composite integrated circuit component having a thin film integrated circuit formed on a substrate on which a thin film integrated circuit is formed, in which a multilayer capacitor, a laminated inductor, or a laminated portion forming a passive element combining these is formed. SiO on top
With an inter-layer film consisting of a glass layer whose main component is 2 ,
A thin film composite integrated circuit component characterized by forming a thin film laminated passive device formed by a thin film process.
【請求項2】 前記層間膜は、フォスフォシリケートグ
ラス膜、ノンドープシリケートグラス膜、ボロシリケー
トグラス膜、ボロフォスフォシリケートグラス膜のうち
の少なくとも1層からなることを特徴とする請求項1記
載の薄膜複合集積回路部品。
2. The interlayer film is made of at least one layer selected from a phosphosilicate glass film, a non-doped silicate glass film, a borosilicate glass film, and a borophosphosilicate glass film. Thin film composite integrated circuit component.
【請求項3】 前記層間膜の厚さは0.1〜5μmであ
ることを特徴とする請求項1記載の薄膜複合集積回路部
品。
3. The thin film composite integrated circuit component according to claim 1, wherein the thickness of the interlayer film is 0.1 to 5 μm.
【請求項4】 前記薄膜積層型受動素子の薄膜積層体は
10層以内とすることを特徴とする請求項1記載の薄膜
複合集積回路部品。
4. The thin film composite integrated circuit component according to claim 1, wherein the thin film laminated body of the thin film laminated passive element is within 10 layers.
【請求項5】 薄膜集積回路を形成した基板上にCVD
法によりSiO2 を主成分とするガラス層からなる層間
膜を形成する工程と、該層間膜上に450℃以下の薄膜
プロセスで薄膜積層型受動素子を形成する工程とを有す
る薄膜複合集積回路部品の製造方法。
5. A CVD method on a substrate on which a thin film integrated circuit is formed.
Thin film composite integrated circuit component including a step of forming an interlayer film made of a glass layer containing SiO 2 as a main component by a method and a step of forming a thin film laminated passive element on the interlayer film by a thin film process at 450 ° C. or lower Manufacturing method.
JP5191300A 1993-05-21 1993-08-02 Thin-film composite integrated circuit parts and its menufacture Pending JPH0745787A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP5191300A JPH0745787A (en) 1993-08-02 1993-08-02 Thin-film composite integrated circuit parts and its menufacture
US08/242,813 US5643804A (en) 1993-05-21 1994-05-16 Method of manufacturing a hybrid integrated circuit component having a laminated body
KR1019940011146A KR100273826B1 (en) 1993-05-21 1994-05-21 Method of manufacturing a hybrid integrated circuit component having a laminated body and hybrid integrated circuit component
US08/812,453 US5877533A (en) 1993-05-21 1997-03-06 Hybrid integrated circuit component
US09/226,215 US6410960B1 (en) 1993-05-21 1999-01-07 Hybrid integrated circuit component
KR1019990046276A KR100311675B1 (en) 1993-05-21 1999-10-25 A composite integrated circuit componenet and a hybrid integrated circuit member
KR1020010009793A KR100351399B1 (en) 1993-05-21 2001-02-26 A method of manufacturing a composite integrated circuit component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191300A JPH0745787A (en) 1993-08-02 1993-08-02 Thin-film composite integrated circuit parts and its menufacture

Publications (1)

Publication Number Publication Date
JPH0745787A true JPH0745787A (en) 1995-02-14

Family

ID=16272274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191300A Pending JPH0745787A (en) 1993-05-21 1993-08-02 Thin-film composite integrated circuit parts and its menufacture

Country Status (1)

Country Link
JP (1) JPH0745787A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006285958A (en) * 2005-03-08 2006-10-19 Semiconductor Energy Lab Co Ltd Wireless chip and electronic apparatus having it
JP2006294006A (en) * 2005-03-15 2006-10-26 Semiconductor Energy Lab Co Ltd Wireless chip and electronic device having the same
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US7208832B2 (en) 2003-06-13 2007-04-24 Sony Corporation Semiconductor device, package structure thereof, and method for manufacturing the semiconductor device
JP2007514326A (en) * 2003-12-22 2007-05-31 インテル・コーポレーション Method for integrating a plurality of passive elements in contact with spacers in a stacked die
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
JP2008054493A (en) * 2006-07-28 2008-03-06 Semiconductor Energy Lab Co Ltd Power storage device
KR100816243B1 (en) * 2006-08-29 2008-03-21 동부일렉트로닉스 주식회사 Semiconductor device and fabricating method thereof
CN102385986A (en) * 2011-08-19 2012-03-21 上海丽恒光微电子科技有限公司 Capacitor and electronic device with same
JP2012231664A (en) * 2006-07-28 2012-11-22 Semiconductor Energy Lab Co Ltd Power storage device
US8455954B2 (en) 2005-03-08 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and electronic appliance having the same
US8783577B2 (en) 2005-03-15 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device having the same
JP2022521511A (en) * 2019-02-21 2022-04-08 ケメット エレクトロニクス コーポレーション Power module package with integrated passive components

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US7619282B2 (en) 1997-01-18 2009-11-17 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US8026152B2 (en) 2002-12-27 2011-09-27 Semiconductor Energy Laboratory Co., Ltd. Separation method of semiconductor device
US8441102B2 (en) 2002-12-27 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a capacitor
US7230316B2 (en) 2002-12-27 2007-06-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
US7208832B2 (en) 2003-06-13 2007-04-24 Sony Corporation Semiconductor device, package structure thereof, and method for manufacturing the semiconductor device
US7727803B2 (en) 2003-06-13 2010-06-01 Sony Corporation Semiconductor device, package structure thereof, and method for manufacturing the semiconductor device
JP2007514326A (en) * 2003-12-22 2007-05-31 インテル・コーポレーション Method for integrating a plurality of passive elements in contact with spacers in a stacked die
JP2006285958A (en) * 2005-03-08 2006-10-19 Semiconductor Energy Lab Co Ltd Wireless chip and electronic apparatus having it
US8455954B2 (en) 2005-03-08 2013-06-04 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and electronic appliance having the same
US8783577B2 (en) 2005-03-15 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device having the same
JP2006294006A (en) * 2005-03-15 2006-10-26 Semiconductor Energy Lab Co Ltd Wireless chip and electronic device having the same
US10236271B2 (en) 2005-03-15 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device having the same
JP2008054493A (en) * 2006-07-28 2008-03-06 Semiconductor Energy Lab Co Ltd Power storage device
JP2012231664A (en) * 2006-07-28 2012-11-22 Semiconductor Energy Lab Co Ltd Power storage device
US8692249B2 (en) 2006-07-28 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device
US9070563B2 (en) 2006-07-28 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device
KR100816243B1 (en) * 2006-08-29 2008-03-21 동부일렉트로닉스 주식회사 Semiconductor device and fabricating method thereof
CN102385986A (en) * 2011-08-19 2012-03-21 上海丽恒光微电子科技有限公司 Capacitor and electronic device with same
JP2022521511A (en) * 2019-02-21 2022-04-08 ケメット エレクトロニクス コーポレーション Power module package with integrated passive components

Similar Documents

Publication Publication Date Title
US6410960B1 (en) Hybrid integrated circuit component
JP3499255B2 (en) Method of manufacturing composite integrated circuit component
JPH0745787A (en) Thin-film composite integrated circuit parts and its menufacture
JP3995619B2 (en) Thin film capacitor element, manufacturing method thereof, and electronic device
JPS63266809A (en) Integrated thin film capacitor
JP4177560B2 (en) Thin film capacitors, electronic components with built-in passive elements, and high frequency compatible modules
JPH0745786A (en) Composite integrated circuit parts
JP3597874B2 (en) Method of manufacturing composite integrated circuit component
JP4196351B2 (en) Film capacitor manufacturing method
US20040202823A1 (en) Ceramic laminate and method for manufacturing the same
JP3163761B2 (en) Integrated circuit device
JP3284694B2 (en) Multilayer resistor module
JPH0363237B2 (en)
JP3290514B2 (en) Hybrid integrated circuit components
JP2004296860A (en) Multilayer coil and its manufacturing method
JP2004273825A (en) Thin film capacitor element, manufacturing method thereof, and electronic device
JP2002252336A (en) Semiconductor device and its manufacturing method
JP5119058B2 (en) Thin film capacitor
JP3645808B2 (en) Thin-film electronic component, its manufacturing method and substrate
JP2739453B2 (en) Capacitor with fuse function and method of manufacturing the same
JPH1041468A (en) Silicon substrate for mcm and its manufacturing method
JP2000306767A (en) Thin-film capacitor, manufacture thereof, and multilayer laminate mounting board
JP2000340744A (en) Capacitor and manufacture thereof
JPH0832029A (en) Manufacture of hybrid integrated circuit
JPH05166666A (en) Metal-ceramic laminated film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907