JPH0743526A - Ir reflecting body, bulb, and bulb with reflecting mirror - Google Patents

Ir reflecting body, bulb, and bulb with reflecting mirror

Info

Publication number
JPH0743526A
JPH0743526A JP19050493A JP19050493A JPH0743526A JP H0743526 A JPH0743526 A JP H0743526A JP 19050493 A JP19050493 A JP 19050493A JP 19050493 A JP19050493 A JP 19050493A JP H0743526 A JPH0743526 A JP H0743526A
Authority
JP
Japan
Prior art keywords
infrared
film
transmittance
reflecting
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19050493A
Other languages
Japanese (ja)
Inventor
Akira Kawakatsu
晃 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP19050493A priority Critical patent/JPH0743526A/en
Publication of JPH0743526A publication Critical patent/JPH0743526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To obtain an IR reflecting film having good reflectance for IR rays, good transmittance for visible rays, and good property such as heat resistance and strength by forming plural numbers of holes of almost squares having a specified side length on an IR reflecting body formed on the surface of a base body. CONSTITUTION:This reflecting body consists of a base body 1 and an IR reflecting material (TiN film) 2 comprising a metal compd. having plural numbers of holes 3 of almost squares having one side about 1/2 length of the IR cut wavelength on the surface of the base body 1. Since the total transmittance is the sum of the transmittance through holes 3 and the transmittance through the TiN film 2, a SiO2 layer to prevent reflection of visible rays is formed on the metal compd. film to further improve the transmittance for visible rays. Any metal compd. is used as far as it has high reflectance for IR. However, the total transmittance is influenced by the light transmitting through the metal compd., such a metal compd. is preferable that trasmits much visible rays. Therefore, a material which transmits a part of visible rays such as TiN and CrN having selectivity for wavelength is preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視光を透過し、赤外線
を反射する赤外線反射膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared reflecting film which transmits visible light and reflects infrared light.

【0002】[0002]

【従来の技術】可視光を透過し、赤外線を反射する赤外
反射膜がシ−ルドビ−ムランプ、ハロゲン電球等の照明
器具やビルの窓ガラス等に使用されている。この赤外反
射膜の1つとして、誘電体を多層に亘って積層した誘電
体多層膜(Ta2 5 ,TiO2 −SiO2 )、導電性
酸化物膜(In23 :Sb,SnO2 :Sb)、誘電体
金属複合膜(TiO2 −Ag−TiO2 )、金属化合物
膜(TiN,CrN,LaB6 )等が利用されている。
2. Description of the Related Art Infrared reflecting films that transmit visible light and reflect infrared rays are used for lighting equipment such as shield beam lamps, halogen bulbs, and window glass of buildings. As one of the infrared reflection films, a dielectric multilayer film (Ta 2 O 5 , TiO 2 —SiO 2 ) in which dielectrics are stacked in multiple layers, a conductive oxide film (In 2 O 3 : Sb, SnO). 2 : Sb), a dielectric metal composite film (TiO 2 —Ag—TiO 2 ), a metal compound film (TiN, CrN, LaB 6 ) and the like are used.

【0003】[0003]

【発明が解決しようとする課題】しかし、誘電体多層膜
は耐熱性は非常に高いが層数が8層以上必要であり、赤
外線のカット率は良好であるが、カット幅が狭いため、
全体として赤外線の反射率が低いとして問題がある。
However, the dielectric multilayer film has a very high heat resistance, but the number of layers is required to be 8 or more, and the infrared cut rate is good, but the cut width is narrow, so
There is a problem because the reflectance of infrared rays is low as a whole.

【0004】また、導電性酸化物膜は、1μm 付近から
なだらかに赤外線をカットするため、赤外線の反射率が
低い、耐熱性が低いという問題があり、また膜強度も弱
い。
Further, since the conductive oxide film gently cuts infrared rays from around 1 μm, there are problems that the reflectance of infrared rays is low and the heat resistance is low, and the film strength is weak.

【0005】さらに、誘電体金属複合膜は赤外線反射率
は高いが、可視光の透過率は80〜70%前後と低いという
問題があった。
Further, the dielectric metal composite film has a high infrared reflectance, but has a problem that the visible light transmittance is low at around 80 to 70%.

【0006】さらにまた、金属化合物は可視光域の透過
率が低く、着色して見えるという問題があった。
Furthermore, there is a problem that the metal compound has a low transmittance in the visible light region and appears colored.

【0007】そこで、これらの特性を鑑みて可視光の透
過率が低くても良い場合には、赤外反射膜として誘電体
金属複合膜、金属化合物膜が利用されている。
Therefore, in view of these characteristics, when the visible light transmittance may be low, a dielectric metal composite film or a metal compound film is used as the infrared reflecting film.

【0008】本発明は上記の点に鑑みてなされたもの
で、その目的は赤外線の反射率も良く、しかも可視光の
透過率も良く、耐熱性強度等の良好な赤外線反射膜を提
供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide an infrared reflective film having a good infrared reflectance, a good visible light transmittance, and a good heat resistance strength. It is in.

【0009】[0009]

【課題を解決するための手段】請求項1に係わる赤外反
射構体は、基体と、この基体の表面に形成され、一辺が
赤外線カット波長の約1/2の長さである略正方形の穴
を複数有する金属化合物からなる赤外線反射体とを具備
することを特徴とする。
An infrared reflecting structure according to a first aspect of the present invention comprises a base and a substantially square hole formed on the surface of the base, each side having a length of about ½ of the infrared cut wavelength. And an infrared reflector made of a metal compound having a plurality of.

【0010】請求項2に係わる赤外線反射構体は、基体
と、この基体の表面に形成され、直径が赤外線カット波
長の約1/1.71の長さである略円形の穴を複数有す
る金属化合物からなる赤外線反射体とを具備することを
特徴とする。
An infrared reflecting structure according to a second aspect of the present invention is a metal compound having a base and a plurality of substantially circular holes formed on the surface of the base and having a diameter of about 1 / 1.71 of the infrared cut wavelength. And an infrared reflector consisting of.

【0011】請求項3に係わる管球は、発光体が封装さ
れたガラスバルブと、このガラスバルブの表面に形成さ
れ、一辺が赤外線カット波長の約1/2の長さである略
正方形の穴を複数有する金属化合物からなる赤外線反射
体とを具備することを特徴とする。
The tube according to claim 3 is a glass bulb in which a light emitting body is sealed, and a substantially square hole formed on the surface of the glass bulb and having one side having a length of about ½ of the infrared cut wavelength. And an infrared reflector made of a metal compound having a plurality of.

【0012】請求項4に係わる反射鏡付管球は、発光体
が封装されてなる管球と、この管球から放射された光を
制御する反射鏡と、この反射鏡前面に配置されたカバ−
ガラスと、このカバ−ガラスの表面に形成され、一辺が
赤外線カット波長の約1/2の長さである略正方形の穴
を複数有する金属化合物からなる赤外線反射体とを具備
することを特徴とする。
According to a fourth aspect of the present invention, there is provided a bulb with a reflecting mirror, wherein the luminous body is sealed, a reflecting mirror for controlling the light emitted from the bulb, and a cover arranged in front of the reflecting mirror. −
And an infrared reflector made of a metal compound, which is formed on the surface of the cover glass and has a plurality of substantially square holes each having a length of about ½ of the infrared cut wavelength. To do.

【0013】請求項5に係わる管球の金属化合物からな
る赤外線反射体は薄膜であることを特徴とする。
An infrared reflector made of a metal compound of a tube according to claim 5 is a thin film.

【0014】[0014]

【作用】基体の表面に一辺が赤外線カット波長の約1/
2の長さである略正方形の穴を複数有する金属化合物か
らなる赤外線反射体を形成するようにしたので、可視光
を透過し、赤外線を効率良く反射することができる。
[Function] One side of the surface of the substrate is about 1 / of the infrared cut wavelength
Since the infrared reflector made of a metal compound having a plurality of substantially square holes each having a length of 2 is formed, visible light can be transmitted and infrared rays can be efficiently reflected.

【0015】[0015]

【実施例】以下図面を参照して本発明の一実施例に係わ
る赤外反射膜について説明する。図1は赤外反射膜の斜
視図、図2は1つ格子を示す斜視図、図3は本発明の赤
外反射膜の波長に対する透過率を示す図、図4及び図5
は導波管を伝わる電力を説明するための図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An infrared reflecting film according to an embodiment of the present invention will be described below with reference to the drawings. 1 is a perspective view of an infrared reflecting film, FIG. 2 is a perspective view showing one grating, FIG. 3 is a diagram showing the transmittance of the infrared reflecting film of the present invention with respect to wavelength, FIGS. 4 and 5.
FIG. 4 is a diagram for explaining electric power transmitted through a waveguide.

【0016】図1において、1はガラス基板である。こ
のガラス基板1上には赤外線の反射率の高く耐熱性、耐
久性の良好な金属化合物薄膜としてTiN膜2が格子状
に形成される。このTiN膜2は0.5μの厚さで形成
されており、TiN膜2に囲まれるように一辺が0.4
μの正方形状の穴3が形成されている。ここで、TiN
膜2の幅は0.13μの幅を有する。
In FIG. 1, reference numeral 1 is a glass substrate. On the glass substrate 1, a TiN film 2 is formed in a lattice shape as a metal compound thin film having a high infrared reflectance and good heat resistance and durability. The TiN film 2 is formed with a thickness of 0.5 μ, and one side is 0.4 so as to be surrounded by the TiN film 2.
A square hole 3 of μ is formed. Where TiN
The width of the membrane 2 has a width of 0.13μ.

【0017】このように格子状にTiN膜2を形成する
方法としては、ガラス基板1上にTiN膜2をイオンプ
レ−ティング等で厚さ0.5μで形成し、その後フォト
エッチングにより格子状にTiN膜2を除去して穴3を
形成するようにしている。
As a method of forming the TiN film 2 in a grid pattern as described above, the TiN film 2 is formed on the glass substrate 1 by ion plating to a thickness of 0.5 μ, and then the TiN film 2 is formed in a grid pattern by photoetching. The film 2 is removed to form the holes 3.

【0018】ここで、上記導波管について一般的な説明
について説明する。導波管が図4(A)、(B)及び図
5(A)、(B)に示すような長方形の断面を持った中
空の管であるとすると、断面には図4(A)、(B)及
び図5(A)、(B)に電界、磁界を生じ、これらが管
内を進行し、エネルギ−は電界及び磁界により運ばれ、
電力が伝送される。このような場合には、導体に流れる
全電流を与えるだけでは、電磁界分布は定まらない。む
しろ、内部の電磁界分布に適合するように、導体表面の
電流あるいは電圧分布が定まるというべきで、エネルギ
−輸送の本体は全く空間の中に移ってしまう。
Here, a general description of the above waveguide will be described. If the waveguide is a hollow tube having a rectangular cross section as shown in FIGS. 4 (A), (B) and FIGS. 5 (A), (B), the cross section shown in FIG. Electric fields and magnetic fields are generated in (B) and FIGS. 5 (A) and (B), and these travel in the tube, and energy is carried by the electric fields and magnetic fields.
Electric power is transmitted. In such a case, the electromagnetic field distribution cannot be determined only by giving the total current flowing through the conductor. Rather, the current or voltage distribution on the conductor surface should be determined so that it fits the electromagnetic field distribution inside, and the body of energy transport is completely transferred into space.

【0019】しかし、この導波管に用いる周波数は波長
が管の大きさと同程度以下になる必要があり、周波数が
低ければ、静電界あるいは静磁界の分布状態になってし
まう。
However, the frequency used for this waveguide must have a wavelength equal to or less than the size of the tube, and if the frequency is low, a static electric field or static magnetic field will be distributed.

【0020】普通の電力工学に用いる周波数、あるいは
高周波数といってもそれ程波長の短くない周波数では、
やはり導体の電圧、電流によって定まる電界、磁界が発
生する。それゆえエネルギ−輸送の本体は電界、磁界に
あるけれども、それを導体の電圧、電流によって代表さ
せていると考えることができ、エネルギ−は線路の電
圧、電流によって運ばれるという考え方で一向さしつか
えがない。
At a frequency used for ordinary power engineering, or at a high frequency, a wavelength whose wavelength is not so short,
After all, an electric field and a magnetic field are generated which are determined by the voltage and current of the conductor. Therefore, although the main body of energy transport is an electric field and a magnetic field, it can be considered that it is represented by the voltage and current of a conductor, and energy may be carried by the voltage and current of a line. Absent.

【0021】ところで、光は電磁波であるため上述した
ようにしてエネルギ−が伝搬される。また、光が図2に
示すようにa×aの穴3に放射されると、Maxwell の電
磁方程式を境界条件(導体表面での電場及び磁場=0)
の条件で解くと導波管として作用する。
By the way, since light is an electromagnetic wave, energy is propagated as described above. In addition, when light is radiated into the axa hole 3 as shown in FIG. 2, Maxwell's electromagnetic equation is used as a boundary condition (electric field and magnetic field on the conductor surface = 0).
When it is solved under the condition of, it acts as a waveguide.

【0022】ここで、Maxwell の電磁方程式には波数k
=角周波数/速度(波長に比例する)の制限条件があ
り、特定波長域は透過し、特定波長域はカットする。す
なわち、特定波長λ=a/2を境にそれ以上は内面反射
して透過せず、それ以下は透過されることになる。
Here, in Maxwell's electromagnetic equation, the wave number k
= There is a limit condition of angular frequency / velocity (proportional to wavelength), and the specific wavelength range is transmitted and the specific wavelength range is cut. That is, when the specific wavelength λ = a / 2 is used as a boundary, the inner wavelength is not reflected and transmitted beyond that, and the lower wavelength is transmitted.

【0023】つまり、図3に示すように、赤外線カット
波長は0.8μであり、その波長の半分(つまり、0.
4μ)を穴3の一辺の長さaとすることにより、0.8
μ以上の波長の赤外線を反射し、0.8μ以下の可視光
を透過させることができる。図3はTiN膜2のみの透
過特性及び実施例の透過特性を示している。この実施例
では、可視透過率は80%以上で、しかも赤外線をほぼ
カットし良好な特性が得られている。ここで、全体の透
過率は穴3からの透過光と金属化合物膜としてのTiN
膜2を通しての透過光の和となるので、金属化合物膜上
に可視光の反射を防止するためのSiO2 層を設けるよ
うにして、可視透過率を一層改善することができる。
That is, as shown in FIG. 3, the infrared cut wavelength is 0.8 μ, which is half the wavelength (that is, 0 ..
4 μ) as the length a of one side of the hole 3
It can reflect infrared light having a wavelength of μ or more and transmit visible light of 0.8 μ or less. FIG. 3 shows the transmission characteristics of only the TiN film 2 and the transmission characteristics of the embodiment. In this embodiment, the visible transmittance is 80% or more, and the infrared rays are almost cut off, and good characteristics are obtained. Here, the total transmittance is the light transmitted through the hole 3 and TiN as the metal compound film.
Since it is the sum of the transmitted light through the film 2, the visible transmittance can be further improved by providing a SiO 2 layer for preventing the reflection of visible light on the metal compound film.

【0024】ところで、金属化合物は、赤外線の反射率
が高いものであれば良いが、全体の透過率は金属化合物
の透過光の影響を受けるので、可視光をなるべく透過す
る量が多いほど良く、波長選択性を有するTiN,Cr
N等,LaB6 ,TiB2 等のように可視光の一部を透
過させる材料が適しており、Al,Ag等の金属を利用
するより全体の透過率が高く耐熱性及び強度が良好なも
のを得ることができる。
By the way, the metal compound may have a high infrared reflectance, but since the overall transmittance is affected by the transmitted light of the metal compound, the larger the amount of visible light transmitted, the better. TiN, Cr with wavelength selectivity
Materials such as N, LaB 6 , TiB 2 etc. that transmit a part of visible light are suitable, and have higher overall transmittance and better heat resistance and strength than the use of metals such as Al and Ag. Can be obtained.

【0025】また、本実施例の赤外線反射膜は図6及び
図7に示すようなハロゲン電球の前面ガラスの表面に形
成される。図6のハロゲン電球は、前述したようによう
素、臭素、塩素などのハロゲンと、アルゴン、窒素など
の希ガスが封入された石英バルブ11、石英バルブ11
の封止部12、タングステン線などからなるコイルフィ
ラメント13、タングステン線などからなる内部リ−ド
線14、モリブデン箔などからなる金属箔導体15、外
部リ−ド線16、アンカ−線17およびビ−ドガラス1
8、赤外線反射膜19を有している。
The infrared reflecting film of this embodiment is formed on the surface of the front glass of the halogen bulb as shown in FIGS. 6 and 7. As described above, the halogen bulb of FIG. 6 has a quartz bulb 11 and a quartz bulb 11 in which halogens such as iodine, bromine and chlorine and rare gases such as argon and nitrogen are enclosed.
, A coil filament 13 made of a tungsten wire, an internal lead wire 14 made of a tungsten wire, a metal foil conductor 15 made of a molybdenum foil, an external lead wire 16, an anchor wire 17 and a wire. -Douglas 1
8 has an infrared reflection film 19.

【0026】また、図7のハロゲン電球は、ガラス基体
21、ダイクロックミラ−23、ハロゲン電球24、フ
ィラメント25、ダイロックミラ−23の前面に配置す
るカバ−ガラス26、このカバ−ガラス26の表面に形
成された赤外線反射膜27を有している。
The halogen bulb shown in FIG. 7 has a glass substrate 21, a dichroic mirror 23, a halogen bulb 24, a filament 25, a cover glass 26 arranged in front of the die lock mirror 23, and a cover glass 26. It has an infrared reflection film 27 formed on the surface.

【0027】なお、上記実施例ではガラス基板1上に正
方形の穴を有する金属窒化物の薄膜を形成するようにし
て、ガラス基板1上にマトリクス状に直径が0.4μの
穴を有する金属窒化膜の薄膜を形成ようにしても良く、
その穴は三角形であっても良い。
In the above embodiment, a metal nitride thin film having square holes is formed on the glass substrate 1 to form a metal nitride film having 0.4 μm diameter holes on the glass substrate 1. A thin film may be formed,
The hole may be triangular.

【0028】[0028]

【発明の効果】以上詳述したように本発明によれば、基
体と、この基体の表面に形成され、一辺が赤外線カット
波長の約1/2の長さである略正方形の穴を複数有する
金属化合物からなる赤外線反射体を備えているので、可
視透過率は80%以上で、しかも赤外線をほぼカット
し、しかも耐熱性及び耐久性の良好な赤外線反射膜を提
供することができる。
As described above in detail, according to the present invention, a substrate and a plurality of substantially square holes formed on the surface of the substrate, each side having a length of about 1/2 of the infrared cut wavelength, are provided. Since the infrared reflector made of a metal compound is provided, it is possible to provide an infrared reflective film having a visible transmittance of 80% or more, substantially blocking infrared rays, and having excellent heat resistance and durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる赤外反射膜の斜視
図。
FIG. 1 is a perspective view of an infrared reflective film according to an embodiment of the present invention.

【図2】1つ格子を示す斜視図。FIG. 2 is a perspective view showing one lattice.

【図3】本発明の赤外反射膜の波長に対する透過率を示
す図。
FIG. 3 is a graph showing the transmittance of the infrared reflective film of the present invention with respect to wavelength.

【図4】導波管を伝わる電力を説明するための図。FIG. 4 is a diagram for explaining electric power transmitted through a waveguide.

【図5】導波管を伝わる電力を説明するための図。FIG. 5 is a diagram for explaining electric power transmitted through a waveguide.

【図6】ハロゲン電球の断面図。FIG. 6 is a sectional view of a halogen bulb.

【図7】ハロゲン電球の断面図。FIG. 7 is a sectional view of a halogen bulb.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…TiN膜、3…穴 1 ... Glass substrate, 2 ... TiN film, 3 ... Hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基体と、 この基体の表面に形成され、一辺が赤外線カット波長の
約1/2の長さである略正方形の穴を複数有する金属化
合物からなる赤外線反射体と、を具備することを特徴と
する赤外線反射構体。
1. An infrared reflector comprising a base and a metallic compound formed on the surface of the base and having a plurality of substantially square holes each having a length of about ½ of an infrared cut wavelength. Infrared reflecting structure characterized by that.
【請求項2】 基体と、 この基体の表面に形成され、直径が赤外線カット波長の
約1/1.71の長さである略円形の穴を複数有する金
属化合物からなる赤外線反射体と、を具備することを特
徴とする赤外線反射構体。
2. An infrared reflector comprising a metal compound, which is formed on the surface of the substrate and has a plurality of substantially circular holes each having a diameter of about 1 / 1.71 of an infrared cut wavelength. An infrared reflecting structure characterized by being provided.
【請求項3】 発光体が封装されたガラスバルブと、 このガラスバルブの表面に形成され、一辺が赤外線カッ
ト波長の約1/2の長さである略正方形の穴を複数有す
る金属化合物からなる赤外線反射体と、を具備すること
を特徴とする管球。
3. A glass bulb in which a light emitting body is sealed, and a metal compound formed on the surface of the glass bulb and having a plurality of substantially square holes each having a length of about 1/2 of an infrared cut wavelength. An infrared ray reflector, and a tube.
【請求項4】 発光体が封装されてなる管球と、 この管球から放射された光を制御する反射鏡と、 この反射鏡前面に配置されたカバ−ガラスと、 このカバ−ガラスの表面に形成され、一辺が赤外線カッ
ト波長の約1/2の長さである略正方形の穴を複数有す
る金属化合物からなる赤外線反射体と、を具備すること
を特徴とする反射鏡付管球。
4. A tube in which a luminous body is sealed, a reflecting mirror for controlling light emitted from the tube, a cover glass arranged in front of the reflecting mirror, and a surface of the cover glass. And an infrared reflector made of a metal compound having a plurality of substantially square holes each having a length of about ½ of an infrared cut wavelength, the infrared reflector having a mirror.
【請求項5】 上記金属化合物からなる赤外線反射体
は、薄膜であることを特徴とする請求項3記載の管球。
5. The tube according to claim 3, wherein the infrared reflector made of the metal compound is a thin film.
JP19050493A 1993-07-30 1993-07-30 Ir reflecting body, bulb, and bulb with reflecting mirror Pending JPH0743526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19050493A JPH0743526A (en) 1993-07-30 1993-07-30 Ir reflecting body, bulb, and bulb with reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19050493A JPH0743526A (en) 1993-07-30 1993-07-30 Ir reflecting body, bulb, and bulb with reflecting mirror

Publications (1)

Publication Number Publication Date
JPH0743526A true JPH0743526A (en) 1995-02-14

Family

ID=16259196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19050493A Pending JPH0743526A (en) 1993-07-30 1993-07-30 Ir reflecting body, bulb, and bulb with reflecting mirror

Country Status (1)

Country Link
JP (1) JPH0743526A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515681A (en) * 2002-10-10 2006-06-01 グラヴルベル Hydrophilic reflective article
WO2007023691A1 (en) * 2005-08-26 2007-03-01 Matsushita Electric Industrial Co., Ltd. Reflector and device having the reflector
WO2008142208A1 (en) * 2007-05-22 2008-11-27 Beneq Oy Infrared radiation reflecting glass
JP2010021543A (en) * 2008-06-12 2010-01-28 Komatsu Ltd Extreme ultra violet light source apparatus
JP2010085917A (en) * 2008-10-02 2010-04-15 Asahi Kasei E-Materials Corp Transparent heat-ray reflecting film and heat-ray shielding windowpane using the same
JP2010243981A (en) * 2009-04-10 2010-10-28 Asahi Kasei Corp Transparent heat ray reflection sheet and heat ray shielding window glass using the same
JP2010539554A (en) * 2007-09-19 2010-12-16 レイブンブリック,エルエルシー Low-emission film for windows incorporating nanoscale wire grids
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515681A (en) * 2002-10-10 2006-06-01 グラヴルベル Hydrophilic reflective article
WO2007023691A1 (en) * 2005-08-26 2007-03-01 Matsushita Electric Industrial Co., Ltd. Reflector and device having the reflector
US8559101B2 (en) 2005-08-26 2013-10-15 Panasonic Corporation Reflector and apparatus including the reflector
WO2008142208A1 (en) * 2007-05-22 2008-11-27 Beneq Oy Infrared radiation reflecting glass
JP2010539554A (en) * 2007-09-19 2010-12-16 レイブンブリック,エルエルシー Low-emission film for windows incorporating nanoscale wire grids
JP2010021543A (en) * 2008-06-12 2010-01-28 Komatsu Ltd Extreme ultra violet light source apparatus
JP2010085917A (en) * 2008-10-02 2010-04-15 Asahi Kasei E-Materials Corp Transparent heat-ray reflecting film and heat-ray shielding windowpane using the same
JP2010243981A (en) * 2009-04-10 2010-10-28 Asahi Kasei Corp Transparent heat ray reflection sheet and heat ray shielding window glass using the same
US10247936B2 (en) 2009-04-10 2019-04-02 Ravenbrick Llc Thermally switched optical filter incorporating a guest-host architecture

Similar Documents

Publication Publication Date Title
JP2542108B2 (en) Optical interference coating and lamp using the same
US20060226777A1 (en) Incandescent lamp incorporating extended high-reflectivity IR coating and lighting fixture incorporating such an incandescent lamp
JP3963964B2 (en) Optical coating and lamp using the same
US4965485A (en) Halogen lamp envelope with roughened surface area and optical film
JPH0743526A (en) Ir reflecting body, bulb, and bulb with reflecting mirror
JPH0612663B2 (en) Incandescent light bulb
US20090134793A1 (en) Ir reflecting grating for halogen lamps
US6967443B2 (en) IR-coated halogen lamp using reflective end coats
US4227113A (en) Incandescent electric lamp with partial light transmitting coating
US5705882A (en) Optical coating and lamp employing same
JPH02177248A (en) Halogen bulb
JPH02189805A (en) Microwave excitation type electrodeless light emitting device
JPH04349338A (en) Filament and electric bulb using same
JP2668828B2 (en) Short arc discharge lamp
JPH0949922A (en) Ultraviolet-ray shielding filter, lamp and illuminator
JPH113688A (en) Reflection type tubular lamp and lighting system
JPH05251059A (en) Radiation source
JP3078925B2 (en) Light source
JP2003077419A (en) High pressure discharge lamp and lighting fixture
JP3221773B2 (en) High-intensity discharge lamp arc tube and high-intensity discharge lamp
JP2687243B2 (en) Multilayer optical interference film
JPH0721996A (en) Electric bulb and electric bulb with reflector
JPH11111037A (en) Electric lamp and lighting system
JPH08271730A (en) Optical interference film and incandescent lamp, reflection type illuminator and optical device using the same
JPH0877980A (en) Halogen lamp