JPH0738141B2 - Voltage-stabilized integrated circuit device - Google Patents

Voltage-stabilized integrated circuit device

Info

Publication number
JPH0738141B2
JPH0738141B2 JP58167003A JP16700383A JPH0738141B2 JP H0738141 B2 JPH0738141 B2 JP H0738141B2 JP 58167003 A JP58167003 A JP 58167003A JP 16700383 A JP16700383 A JP 16700383A JP H0738141 B2 JPH0738141 B2 JP H0738141B2
Authority
JP
Japan
Prior art keywords
voltage
error
output
unit
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58167003A
Other languages
Japanese (ja)
Other versions
JPS6059413A (en
Inventor
田中  慎二
功 吉田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP58167003A priority Critical patent/JPH0738141B2/en
Publication of JPS6059413A publication Critical patent/JPS6059413A/en
Publication of JPH0738141B2 publication Critical patent/JPH0738141B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電圧安定化回路が半導体集積回路装置内に構
成された電圧安定化集積回路装置に関する。
Description: TECHNICAL FIELD The present invention relates to a voltage stabilizing integrated circuit device in which a voltage stabilizing circuit is formed in a semiconductor integrated circuit device.

従来例の構成とその問題点 電圧安定化回路は、基準電圧発生部、誤差電圧増幅部、
制御素子、誤差電圧検出部などから構成され、出力電圧
をモニターする誤差電圧検出部の電圧と基準電圧とを比
較して、誤差電圧増幅部の出力によって制御素子の出力
を一定に保ち、安定な出力電圧を得るものである。
Configuration of the conventional example and its problems The voltage stabilizing circuit includes a reference voltage generating unit, an error voltage amplifying unit,
Comprised of a control element, error voltage detector, etc., the voltage of the error voltage detector that monitors the output voltage is compared with the reference voltage, and the output of the error voltage amplifier keeps the output of the control element constant and stable. The output voltage is obtained.

第1図に直列制御型の電圧安定化回路のブロック構成図
を示す。図中、1は誤差電圧増幅部、2は制御素子、3
は誤差電圧検出部、4は基準電圧発生部、5は定電流
源、6は入力電圧端子、7は出力電圧端子、そして8〜
10は導線である。そして、誤差電圧増幅部1、制御素子
2および誤差電圧検出部3は負帰還ループを構成する。
FIG. 1 shows a block diagram of a series control type voltage stabilizing circuit. In the figure, 1 is an error voltage amplifier, 2 is a control element, 3
Is an error voltage detector, 4 is a reference voltage generator, 5 is a constant current source, 6 is an input voltage terminal, 7 is an output voltage terminal, and 8 to
10 is a conducting wire. The error voltage amplification unit 1, the control element 2, and the error voltage detection unit 3 form a negative feedback loop.

第1図の回路構成において、基準電圧発生部の基準電圧
はVs、誤差電圧検出部3の検出抵抗をRΛ,RΒとし、負
帰還ループ利得が十分大きいものとすると、出力電圧端
子7に取り出される出力電圧Voは、次式で表せられる。
In the circuit configuration of FIG. 1, when the reference voltage of the reference voltage generator is Vs, the detection resistors of the error voltage detector 3 are RΛ and RΒ, and the negative feedback loop gain is sufficiently large, the voltage is taken out to the output voltage terminal 7. The output voltage Vo is expressed by the following equation.

Vo=V(1+RΒ/RΛ) ……(1) (1)式より明らかなように、出力電圧Voは検出抵抗R
Λ,RΒを変えることにより、基準電圧Vs以上の任意の値
に設定できる。
Vo = V S (1 + RΒ / RΛ) (1) As is clear from the equation (1), the output voltage Vo is the detection resistance R
It can be set to any value higher than the reference voltage Vs by changing Λ and RΒ.

現在、商品化されている電圧安定化回路は、この回路形
式を用いたものが多く、この中で、いわゆる3端子レギ
ュレータと称されるものは、検出抵抗RΛおよびRΒの
値を固定化した出力電圧固定型の電圧安定化回路装置で
ある。
Many of the voltage stabilizers currently commercialized use this circuit type. Among them, the so-called three-terminal regulator has an output in which the values of the detection resistors RΛ and RΒ are fixed. It is a fixed voltage type voltage stabilizing circuit device.

ところで、このような電圧安定化回路で設定される出力
電圧の値は、一般的の電子機器で多く採用される電源電
圧の値に予め設定しているため、多くの電子機器では既
存の電圧安定化回路装置を使用しても何等支障ないもの
と考えられる。しかしながら、電子機器の中には、所望
の電源電圧が既製品によって得られないために、回路動
作に支障しない範囲で固定の出力電圧を出力する既製品
を選んでやむなく使用する場合も少なくない。例えば、
市販の3端子レギュレータの出力電圧が、5(V),8
(V),12(V),15(V),24(V)の既製品が用意さ
れている中で、例えば、電源電圧9(V)仕様の電子機
器の場合、余裕を考えて12(V)の電源電圧を使用しな
ければならず、このことは、不所望の電力を消費するこ
とになり、好ましくなかった。
By the way, the value of the output voltage set by such a voltage stabilization circuit is set in advance to the value of the power supply voltage that is often adopted in general electronic equipment, and therefore, in many electronic equipment, the existing voltage stabilization is used. It is considered that there is no problem even if the integrated circuit device is used. However, in some electronic devices, since a desired power supply voltage cannot be obtained by an off-the-shelf product, it is often the case that an off-the-shelf product that outputs a fixed output voltage within a range that does not hinder the circuit operation is selected and used. For example,
Output voltage of commercially available 3-terminal regulator is 5 (V), 8
Among ready-made products of (V), 12 (V), 15 (V), and 24 (V), for example, in the case of an electronic device with a power supply voltage of 9 (V), allow 12 ( V) supply voltage had to be used, which was undesired as it would consume undesired power.

近年、電圧安定化回路も半導体集積回路装置で構成する
ことが多くなっており、この場合、半導体チップ上に所
望する複数個の抵抗体を形成し、予め所定の抵抗比を設
定することは容易とされており、本回路装置のように抵
抗比によって所望の出力電圧を設定する回路構成には好
適である。
In recent years, the voltage stabilizing circuit is also often configured by a semiconductor integrated circuit device. In this case, it is easy to form a plurality of desired resistors on a semiconductor chip and set a predetermined resistance ratio in advance. Therefore, it is suitable for a circuit configuration in which a desired output voltage is set by a resistance ratio like the present circuit device.

第2図は、複数の出力電圧を設定するための検出抵抗
を、とりわけ検出抵抗RΒ、に相当するものを、予め複
数本設けた回路構成図を示す。例えば、抵抗値が0(K
Ω),3(KΩ),7(KΩ),10(KΩ),19(KΩ),の
5種類の検出抵抗RΒを用意するならば、これらの抵抗
の1つ若しくは複数個を選択して、所望の出力電圧を得
ることができる。
FIG. 2 shows a circuit configuration diagram in which a plurality of detection resistors for setting a plurality of output voltages, in particular, ones corresponding to the detection resistors R B are provided in advance. For example, the resistance value is 0 (K
Ω), 3 (KΩ), 7 (KΩ), 10 (KΩ), 19 (KΩ), if five kinds of detection resistors R B are prepared, one or more of these resistors are selected, A desired output voltage can be obtained.

ここで、基準電圧Vs=5(V),検出抵抗RΛ=5(K
Ω)に設定した条件下では、検出抵抗RΒを(ロ)側
に、即ちRΒ=7(KΩ)に設定するならば、出力電圧
Voは上記(1)式によりVo=12(V)が得られる。同様
に、検出抵抗RΒを0(KΩ),3(KΩ),10(KΩ),
19(KΩ)に選択した時、出力電圧Voが各々5(V),8
(V),15(V),24(V)になることは容易に理解でき
よう。
Here, the reference voltage Vs = 5 (V) and the detection resistor RΛ = 5 (K
Under the conditions set to (Ω), if the detection resistance R B is set to the (B) side, that is, R B = 7 (KΩ), the output voltage
For Vo, Vo = 12 (V) can be obtained from the above equation (1). Similarly, the detection resistance R B is 0 (KΩ), 3 (KΩ), 10 (KΩ),
When 19 (KΩ) is selected, the output voltage Vo is 5 (V) and 8 respectively.
It can be easily understood that it will be (V), 15 (V), 24 (V).

第3図は、第2図中の検出抵抗RΛおよびRΒに相当す
る箇所を半導体チップ上に配置した抵抗体配置図であ
る。第3図中の抵抗体R1は第2図中の抵抗RΛに対応
し、第3図中の抵抗体R2,R3,R4,R5a,R5bは第2図中の抵
抗RΒに対応する。そして、第2図の検出抵抗RΒの抵
抗値を充足するように各々、R2=3(KΩ)、R3=7
(KΩ)、R4=10(KΩ)に設定され、R5aとR5bとは直
列に接続して、R5a+R5b=19(KΩ)に選ばれている。
また、第3図中の80,90,100は各々第2図中の導線8,9,1
0に対応する配線部である。
FIG. 3 is a resistor layout diagram in which the portions corresponding to the detection resistors RΛ and RΒ in FIG. 2 are placed on the semiconductor chip. The resistor R 1 in FIG. 3 corresponds to the resistor R Λ in FIG. 2 , and the resistors R 2 , R 3 , R 4 , R 5 a, R 5 b in FIG. Corresponds to the resistance R B. Then, R 2 = 3 (KΩ) and R 3 = 7, respectively, so that the resistance value of the detection resistor R B in FIG. 2 is satisfied.
(KΩ) and R 4 = 10 (KΩ) are set, R 5 a and R 5 b are connected in series, and R 5 a + R 5 b = 19 (KΩ) is selected.
Also, 80, 90, 100 in FIG. 3 are the lead wires 8, 9, 1 in FIG. 2, respectively.
It is a wiring unit corresponding to 0.

第3図において、検出抵抗RΒ=7(KΩ)に設定する
場合は、配線部A点とA′点を接続すればよい。同様
に、検出抵抗RΒ=3(KΩ),10(KΩ),19(KΩ)
に設定する場合には、各々、B点とB′点、C点とC′
点、D点とD′点を接続すればよい。なお、検出抵抗R
Βとして、抵抗体R2,R3,R4,R5a+R5bを各々個々に用い
る必要性はなく、これらの抵抗体を組み合わせて用いる
ことも当然可能である。例えば、抵抗体R2(3KΩ)とR3
(7KΩ)の並列体でもよい。この場合の検出抵抗RΒの
値は2.1(KΩ)となって、出力電圧Voは上記(1)式
よりVo=7.1(V)となる。
In FIG. 3, when the detection resistance R B = 7 (KΩ) is set, the wiring points A and A ′ may be connected. Similarly, the detection resistance RΒ = 3 (KΩ), 10 (KΩ), 19 (KΩ)
When set to, point B and point B ', point C and point C', respectively.
It suffices to connect the points D, D and D '. The detection resistance R
It is not necessary to individually use the resistors R 2 , R 3 , R 4 , R 5 a + R 5 b as B, and it is naturally possible to use these resistors in combination. For example, resistors R 2 (3KΩ) and R 3
A parallel body of (7KΩ) may be used. In this case, the value of the detection resistor R B is 2.1 (KΩ), and the output voltage Vo is Vo = 7.1 (V) from the above equation (1).

ところで、半導体チップ上に電気的素子を作り込む場
合、拡散層と配線部とが接触する開口部11には、接触抵
抗なるものが存在し、この接触抵抗Rcの抵抗値は開口部
11の大きさや、拡散層の不純物濃度に依存することが知
られている。従って、高精度が要求される回路装置を集
積化する場合には、この接触抵抗Rcを無視することがで
きないものとなる。このことは、抵抗比で出力電圧を定
める本回路装置でも同様に問題となり、出力電圧Voを設
定する際に上記(1)式を単純に採用することは好まし
くない。即ち、厳密な出力電圧Voに設定するには、接触
抵抗Rcを考慮した次式を用いなければならない。
By the way, when an electric element is formed on a semiconductor chip, there is a contact resistance in the opening 11 where the diffusion layer and the wiring portion contact, and the resistance value of this contact resistance Rc is the opening.
It is known to depend on the size of 11 and the impurity concentration of the diffusion layer. Therefore, this contact resistance Rc cannot be ignored when a circuit device that requires high precision is integrated. This similarly poses a problem in the present circuit device that determines the output voltage by the resistance ratio, and it is not preferable to simply adopt the above equation (1) when setting the output voltage Vo. That is, in order to set the strict output voltage Vo, the following equation in consideration of the contact resistance Rc must be used.

次に、接触抵抗Rcが出力電圧Voにどの程度寄与するかを
明らかにするために、(1)式および(2)式で求めた
出力電圧Voを下表に示す。
Next, in order to clarify how the contact resistance Rc contributes to the output voltage Vo, the output voltage Vo obtained by the equations (1) and (2) is shown in the table below.

なお、上記数値を算出するに際しては、例えば、1個当
たりの接触抵抗を75(Ω)、両端を合わせた接触抵抗Rc
=150(Ω)とし、RΒ=19(KΩ)の時は、抵抗体R5a
とR5bとを直列接続したので、接触抵抗を300(Ω)とし
た。
When calculating the above numerical values, for example, the contact resistance per unit is 75 (Ω), the contact resistance Rc
= 150 (Ω), and when RΒ = 19 (KΩ), the resistor R 5 a
And R 5 b so connected in series with, and the contact resistance with the 300 (Omega).

上記の表より明らかなように、接触抵抗Rcを考慮した場
合の出力電圧Voは、RΛ=RΒの条件を境にして、即ち
上記従来例において、RΒ=5(KΩ)を境にしてRΒ
が小さくなると、出力電圧Voが設定値Xより大きくな
り、逆にRΒが大きくなるにしたがって、設定値との比
率(Y/X)が小さくなることが理解できよう。このこと
は、とりもなおさず、出力電圧Voが設計通りに精度良く
設定されないことを意味し、極めて不都合である。
As is clear from the above table, the output voltage Vo in the case of considering the contact resistance Rc is the boundary of the condition of RΛ = RΒ, that is, the boundary of RΒ = 5 (KΩ) in the above conventional example.
It can be understood that the output voltage Vo becomes larger than the set value X as the value becomes smaller, and conversely, the ratio (Y / X) to the set value becomes smaller as the R Β becomes larger. This means that the output voltage Vo is not accurately set as designed, which is extremely inconvenient.

発明の目的 本発明は、上記の不都合を克服した、即ち、出力電圧が
精度良く設定される安定化電圧集積回路装置を提供する
ものである。さらに、もう一つの目的は、広範囲の出力
電圧を所定のステップで出力することが可能な回路装置
を提供せしめるところにある。
An object of the present invention is to provide a stabilized voltage integrated circuit device which overcomes the above-mentioned inconvenience, that is, an output voltage is set accurately. Furthermore, another object is to provide a circuit device capable of outputting a wide range of output voltages in predetermined steps.

発明の構成 本発明は要するに、開口部を含む抵抗形状および値の同
一な複数個の単位抵抗(R11〜R22)を出力端(7)と基
準電位点との間に直列接続して構成され出力電圧を分圧
する誤差電圧検出部(3)と、前記誤差電圧検出部で分
圧された電圧と基準電圧発生部(4)で発生する基準電
圧とを比較し、比較された誤差電圧を増幅する誤差電圧
増幅部(1)と、入力電圧端子(6)から電源供給され
ると共に前記誤差電圧増幅部の出力によって制御され安
定化した出力電圧を前記出力端(7)に出力する制御素
子(2)と、前記出力端と前記誤差電圧検出部と前記誤
差電圧増幅部と前記制御素子が負帰還ループを成すと共
に、半導体基板上に集積化される回路装置であって、前
記単位抵抗を直列接続する個数の比で前記誤差電圧検出
部(3)の分圧比を定めることを特徴とする電圧安定化
集積回路装置であり、 この構成によれば、誤差電圧検出部(3)の検出誤差と
して開口部の接触抵抗Rcの影響が排除され、負帰還量の
誤差を無くすことができ、安定化出力電圧を精度良く広
範囲に設定できる。
Configuration of the Invention The present invention is essentially configured by connecting a plurality of unit resistors (R 11 to R 22 ) having the same resistance shape and value including an opening in series between the output end (7) and the reference potential point. The error voltage detecting unit (3) for dividing the output voltage is compared with the voltage divided by the error voltage detecting unit and the reference voltage generated by the reference voltage generating unit (4), and the compared error voltage is calculated. An error voltage amplification section (1) for amplification, and a control element which is supplied with power from an input voltage terminal (6) and outputs a stabilized output voltage controlled by the output of the error voltage amplification section to the output terminal (7). (2) A circuit device in which the output terminal, the error voltage detection unit, the error voltage amplification unit, and the control element form a negative feedback loop, and is integrated on a semiconductor substrate, wherein the unit resistance is The error voltage detection unit ( ) Is defined, the voltage-stabilized integrated circuit device is characterized in that according to this configuration, the influence of the contact resistance Rc of the opening is eliminated as a detection error of the error voltage detector (3), The error of the feedback amount can be eliminated, and the stabilized output voltage can be set accurately in a wide range.

実施例の説明 第4図は、本発明に係わる一実施例を示し、誤差電圧検
出部3に用いる複数の単位抵抗を半導体チップ上に配置
した抵抗体配置図である。なお、第3図と同一機能を有
するものは同一番号を付した。
Description of Embodiments FIG. 4 shows an embodiment of the present invention, and is a resistor layout diagram in which a plurality of unit resistors used in the error voltage detector 3 are arranged on a semiconductor chip. Those having the same functions as those in FIG. 3 are designated by the same reference numerals.

第4図中の抵抗体R11〜R34は、同一形状で且つ同一の抵
抗値、例えば、ほぼ1(KΩ)に選ばれ、24個を同一の
チップ上に近接して配置する。このことは、整合性を必
要とする集積素子は、集積回路装置内に配置するに際し
て、形状および寸法を同じくし、且つ近接することが好
ましいことに基づく。
The resistors R 11 to R 34 in FIG. 4 have the same shape and the same resistance value, for example, are selected to be approximately 1 (KΩ), and 24 resistors are arranged close to each other on the same chip. This is based on the fact that integrated elements that require matching preferably have the same shape and size and are in close proximity when placed in an integrated circuit device.

次に、本発明の一実施例において、接触抵抗Rcの影響に
ついて述べる。いま、単位抵抗R11からR34までの開口
部、並びに胴体の形状を同一にして、胴体抵抗をRo接触
抵抗をRcとし、検出抵抗RΛを構成するために直列接続
した単位抵抗の個数をn、検出抵抗RΒを構成するため
に直列接続した単位抵抗の個数をmとすると、出力電圧
Voは次式で表せられる。
Next, the effect of the contact resistance Rc in one embodiment of the present invention will be described. Now, the unit resistances R 11 to R 34 and the shape of the body are the same, the body resistance is Ro, the contact resistance is Rc, and the number of unit resistances connected in series to form the detection resistance RΛ is n. , M is the number of unit resistors connected in series to form the detection resistor R B, the output voltage
Vo can be expressed by the following equation.

上記(3)式より明らかなように、開口部11の接触抵抗
Rcが胴体部分の抵抗Roに比べて無視できない大きさであ
ったとしても、接触抵抗Rcの絶対値が抵抗の相対比に寄
与しなくなり、出力電圧Voが、接触抵抗Rcの大きさに左
右されることがなく、単位抵抗の個数比によって定めら
れることが理解できる。
As is clear from the above formula (3), the contact resistance of the opening 11
Even if Rc is a size that cannot be ignored compared to the resistance Ro of the body, the absolute value of the contact resistance Rc does not contribute to the relative ratio of resistance, and the output voltage Vo depends on the size of the contact resistance Rc. It can be understood that it is determined by the number ratio of the unit resistance without causing

次に、広範囲の出力電圧を作り出すための手順を説明す
る。まず、検出抵抗RΛ=5(KΩ)に設定するには、
例えば、抵抗体R11〜R15の5本を直列接続する。そし
て、抵抗体R16からR34までの19本を所望する接続によっ
て、検出抵抗RΒとして用いる。そして、抵抗体R16〜R
34を順次直列接続して用いるならば、検出抵抗RΒは、
1(KΩ)から19(KΩ)まで、1(KΩ)のステップ
で設定され得る。このとき、検出抵抗RΒ=0の場合も
含めると、出力電圧Voは(3)式より、Vo=5(V)か
らVo=24(V)までに、1(V)のステップで、合計20
種類の出力電圧が得られる。
Next, a procedure for producing a wide range of output voltages will be described. First, to set the detection resistance RΛ = 5 (KΩ),
For example, five resistors R 11 to R 15 are connected in series. Then, 19 resistors R 16 to R 34 are used as the detection resistor R B by a desired connection. And resistors R 16 to R
If 34 are used in series connection, the detection resistor R B is
It can be set from 1 (KΩ) to 19 (KΩ) in steps of 1 (KΩ). At this time, including the case of the detection resistor R = 0, the output voltage Vo can be calculated from the formula (3) to a total of 20 in steps of 1 (V) from Vo = 5 (V) to Vo = 24 (V).
Different types of output voltages are available.

しかも、本発明の集積回路装置は、非常に広範囲の出力
電圧が取り出せうるにもかかわらず、検出用の抵抗素子
が半導体チップに占める面積は、第3図の従来例と同程
度の面積で構成できるという利点もある。このことは、
第3図中及び第4図中に同一面積で示す点線枠の領域X
内に配置された抵抗素子群を比較すれば明らかである。
なお、第4図に示した一実施例で未使用の単位抵抗が生
じた時は、未使用の単位抵抗の開口部を配線部110によ
って被覆しておけば品質問題の必配はない。
Moreover, in the integrated circuit device of the present invention, although the output voltage in a very wide range can be taken out, the area occupied by the resistance element for detection on the semiconductor chip is the same as that of the conventional example shown in FIG. There is also an advantage that you can. This is
Region X of the dotted line frame shown by the same area in FIG. 3 and FIG.
It is obvious by comparing the resistance element groups arranged inside.
When an unused unit resistance is generated in the embodiment shown in FIG. 4, if the opening of the unused unit resistance is covered with the wiring section 110, the quality problem is not necessary.

更に、本実施例では、所定電圧以外の出力電圧に切り換
える場合、わざわざ最初の拡散工程からやり直す必要が
なく、配線マスクの変更によって対応できるため、非常
に短いスループマット時間で対応できるだけでなく、拡
散用マスクの共有化が図れ、フォトマスクの管理、拡散
仕掛り中のスライスの管理の点で有利である。
Furthermore, in the present embodiment, when switching to an output voltage other than the predetermined voltage, it is not necessary to start over from the first diffusion step, and it is possible to deal with it by changing the wiring mask. It is advantageous in that the photomask can be shared, and the photomask management and the slice in the process of diffusion are managed.

発明の効果 以上に述べたように、本発明の電圧安定化集積回路装置
は、直列接続する単位抵抗の個数比で安定化出力電圧が
設定され、開口部の接触抵抗が出力電圧に全く影響しな
いという格別の効果を奏する。
As described above, in the voltage-stabilized integrated circuit device of the present invention, the stabilized output voltage is set by the number ratio of the unit resistors connected in series, and the contact resistance of the opening does not affect the output voltage at all. It has a special effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は直列制御型の電圧安定化回路のブロック構成
図、第2図は複数個の出力電圧を取り出すように構成し
た電圧安定化回路の標準的ブロック構成図、第3図は第
2図中の誤差電圧検出部を半導体集積化した従来例の抵
抗体配置図、第4図は本発明の一実施例に係る誤差電圧
検出部の抵抗体配置図を示す。 1……誤差電圧増幅部、2……制御素子、3……誤差電
圧検出部、4……基準電圧発生部、5……定電流源、6
……入力電圧端子、7……出力電圧端子、8〜10……導
線、11……開口部、80,90,100,110……配線部、RΛ,R
Β……検出抵抗、R1〜R4,R11〜R34……抵抗体、R5a,R5b
……抵抗体。
FIG. 1 is a block configuration diagram of a series control type voltage stabilizing circuit, FIG. 2 is a standard block configuration diagram of a voltage stabilizing circuit configured to take out a plurality of output voltages, and FIG. 3 is FIG. FIG. 4 shows a resistor layout diagram of a conventional example in which the error voltage detector is integrated in a semiconductor, and FIG. 4 is a resistor layout diagram of the error voltage detector according to an embodiment of the present invention. 1 ... Error voltage amplification section, 2 ... Control element, 3 ... Error voltage detection section, 4 ... Reference voltage generation section, 5 ... Constant current source, 6
...... Input voltage terminal, 7 …… Output voltage terminal, 8 to 10 …… Lead wire, 11 …… Opening part, 80,90,100,110 …… Wiring part, RΛ, R
B: Detecting resistance, R 1 to R 4 , R 11 to R 34 ...... Resistance element, R 5 a, R 5 b
...... Resistor.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−81931(JP,A) 特開 昭58−100449(JP,A) 実開 昭57−78653(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-53-81931 (JP, A) JP-A-58-100449 (JP, A) Practical application Sho-57-78653 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】開口部を含む抵抗形状および値の同一な複
数個の単位抵抗を出力端と基準電位点との間に直列接続
して構成され出力電圧を分圧する誤差電圧検出部と、前
記誤差電圧検出部で分圧された電圧と基準電圧発生部で
発生する基準電圧とを比較し、比較された誤差電圧を増
幅する誤差電圧増幅部と、 入力電圧端子から電源供給されると共に前記誤差電圧増
幅部の出力によって制御され安定化した出力電圧を前記
出力端に出力する制御素子と、 前記出力端と前記誤差電圧検出部と前記誤差電圧増幅部
と前記制御素子とが負帰還ループを成すと共に、半導体
基板上に集積化される回路装置であって、前記単位抵抗
を直列接続する個数の比で前記誤差検出部の分圧比を定
めることを特徴とする電圧安定化集積回路装置。
1. An error voltage detection unit configured to connect a plurality of unit resistors having the same resistance shape and value including an opening in series between an output end and a reference potential point to divide an output voltage. An error voltage amplification unit that compares the voltage divided by the error voltage detection unit with the reference voltage generated by the reference voltage generation unit and amplifies the compared error voltage. A control element that outputs a stabilized output voltage controlled by the output of the voltage amplification section to the output terminal, the output terminal, the error voltage detection section, the error voltage amplification section, and the control element form a negative feedback loop. At the same time, the voltage stabilized integrated circuit device is a circuit device integrated on a semiconductor substrate, wherein the voltage division ratio of the error detection unit is determined by the ratio of the numbers of the unit resistors connected in series.
JP58167003A 1983-09-09 1983-09-09 Voltage-stabilized integrated circuit device Expired - Lifetime JPH0738141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58167003A JPH0738141B2 (en) 1983-09-09 1983-09-09 Voltage-stabilized integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58167003A JPH0738141B2 (en) 1983-09-09 1983-09-09 Voltage-stabilized integrated circuit device

Publications (2)

Publication Number Publication Date
JPS6059413A JPS6059413A (en) 1985-04-05
JPH0738141B2 true JPH0738141B2 (en) 1995-04-26

Family

ID=15841572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58167003A Expired - Lifetime JPH0738141B2 (en) 1983-09-09 1983-09-09 Voltage-stabilized integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0738141B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016980A (en) * 2007-07-02 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Constant voltage generation circuit and constant voltage generation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902084B1 (en) * 2007-06-15 2009-06-10 (주)태진기술 Voltage regulator and fabrication method thereof
KR100900267B1 (en) * 2007-08-06 2009-05-29 (주)태진기술 Sub-1v output voltage regulator of ultra low dropout type

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381931A (en) * 1976-12-27 1978-07-19 Fujitsu Ltd Integrated circuit for variable output type stabilization power source
JPS5778653U (en) * 1980-10-30 1982-05-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016980A (en) * 2007-07-02 2009-01-22 Nippon Telegr & Teleph Corp <Ntt> Constant voltage generation circuit and constant voltage generation method

Also Published As

Publication number Publication date
JPS6059413A (en) 1985-04-05

Similar Documents

Publication Publication Date Title
EP0285016A1 (en) Hall effect device
JPS60953B2 (en) Semiconductor integrated circuit device
JPH08340243A (en) Bias circuit
KR900006963B1 (en) Low cost d/a converter with high precision feedback resistor and output amplifier
JPS6323568B2 (en)
JP3894833B2 (en) Resistor circuit and voltage detection circuit and constant voltage generation circuit using the same
US6175224B1 (en) Regulator circuit having a bandgap generator coupled to a voltage sensor, and method
JPS59184924A (en) Current source unit
JPH0738141B2 (en) Voltage-stabilized integrated circuit device
US4081696A (en) Current squaring circuit
US6232823B1 (en) Voltage setting circuit in a semiconductor integrated circuit
KR100617893B1 (en) Band gap reference circuit
JP3562141B2 (en) Current output circuit
GB2108796A (en) A constant current source circuit
JP3186807B2 (en) Current source
US7057443B2 (en) Temperature independent current source and active filter circuit using the same
JP2985766B2 (en) Temperature independent voltage monitoring circuit
JPS61248548A (en) Voltage stabilized integrated circuit device
JPS59121863A (en) Semiconductor device
JPS62150758A (en) Semiconductor integrated circuit
JP2729071B2 (en) Constant current circuit
SU811233A1 (en) Dc voltage source
SU813788A1 (en) Stabilized current source assembly
JPH0993912A (en) Semiconductor integrated circuit
JP3554251B2 (en) Stabilized DC power supply