JPH0737724A - Stationary induction equipment winding and its manufacture - Google Patents

Stationary induction equipment winding and its manufacture

Info

Publication number
JPH0737724A
JPH0737724A JP5182287A JP18228793A JPH0737724A JP H0737724 A JPH0737724 A JP H0737724A JP 5182287 A JP5182287 A JP 5182287A JP 18228793 A JP18228793 A JP 18228793A JP H0737724 A JPH0737724 A JP H0737724A
Authority
JP
Japan
Prior art keywords
coil
cooling
cooling tube
tube
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5182287A
Other languages
Japanese (ja)
Inventor
Hiroshi Sonobe
浩 園部
Keiichi Abe
景一 阿部
Yasufumi Nagata
恭文 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5182287A priority Critical patent/JPH0737724A/en
Publication of JPH0737724A publication Critical patent/JPH0737724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases

Abstract

PURPOSE:To improve cooling of a coil by applying a thin insulating cooling tube. CONSTITUTION:At the top and bottom edges of each layer of a coil 2, polyvinylidene chloride cooling tubes 4 approximately 0.1mm thick are adhered, and cooling medium for cooling the coil 2 is permitted to communicate in each cooling tube 4. The coil 2 and the cooling 4 are covered with a silicone gel insulating layer. The insulating layer is formed by storing the coil 2 mounted with the cooling tubes 4 in a container 6, applying pressure in the cooling tube 4 and filling and hardening silicon gel in the container 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コイルを覆う絶縁層を
備えた静止誘導機器巻線およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction device winding having an insulating layer covering a coil and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、都市部への電力需要の増大に対応
して、都市部に電力機器を設置することが多くなってき
た。この種電力機器のうち、ビルや地下街に設置される
機器、とりわけ大形機器たる変圧器には難燃性が要求さ
れている。このような背景のもと、変圧器に使用する絶
縁媒体としても、可燃性の鉱物油から難燃性であるエポ
キシ樹脂等に置換されつつあり、さらにはシリコーンゲ
ル等の固液中間性状を有するものの適用も研究されてい
る。
2. Description of the Related Art In recent years, in response to an increase in the demand for electric power in urban areas, electric power equipment is often installed in urban areas. Among these types of power equipment, equipment installed in buildings and underground malls, especially transformers that are large equipment, are required to have flame retardancy. Against this background, as an insulating medium used in transformers, flammable mineral oils are being replaced by flame-retardant epoxy resins and the like, and they have solid-liquid intermediate properties such as silicone gel. The application of things is also being studied.

【0003】しかしながら、これらの絶縁媒体を採用し
たものは、油入変圧器のように絶縁兼冷却媒体が対流循
環して冷却するものに比べ、冷却性が劣るため、コイル
の電流密度を下げる等の温度上昇抑制対策が必要とな
り、その結果、変圧器が大形化,重量アップされる傾向
にあった。一方、都市部では地価が高く、搬入制限の厳
しい所に変圧器を設置する都合上、変圧器の小形化およ
び軽量化が最優先課題であり、とりわけコイルの冷却性
改善が強く望まれている。
However, the one using these insulating media is inferior in cooling property to the one in which the insulating and cooling medium is convectively circulated and cooled like an oil-filled transformer, so that the current density of the coil is lowered. It was necessary to take measures to control the temperature rise of the transformer, and as a result, transformers tended to be larger and heavier. On the other hand, in urban areas, downsizing and weight reduction of transformers are the top priorities for the reason that transformers are installed in places where land prices are high and import restrictions are severe, and improvement of coil cooling performance is strongly desired. .

【0004】[0004]

【発明が解決しようとする課題】このような課題を解決
する構成として、ポンプおよび外部熱交換器に接続され
た冷却チューブをコイルの所定部分に密接させ、前記冷
却チューブ内に冷媒を流通させることにより、コイルの
冷却性を改善するものが考えられている。ここで、高電
圧コイルに上記構成を適用する場合は、冷媒はもとよ
り、冷却チューブにも絶縁性のものを適用し、ポンプや
外部熱交換器とコイルとの絶縁を図る必要がある。
As a constitution for solving such a problem, a cooling tube connected to a pump and an external heat exchanger is brought into close contact with a predetermined portion of a coil, and a refrigerant is circulated in the cooling tube. Therefore, it is considered that the cooling property of the coil is improved. Here, when the above-mentioned configuration is applied to the high-voltage coil, it is necessary to apply not only the refrigerant but also the cooling tube having an insulating property to insulate the coil from the pump or the external heat exchanger.

【0005】ところで、前記絶縁性の冷却チューブに
は、冷媒漏出防止のための気密性,ポンプの吐出圧や外
力に耐える強度,コイルの被覆等の微小な凹凸に追従す
るための柔軟性等が必要であるが、一般的に、セラミッ
クを除いた樹脂等からなる絶縁性の冷却チューブは、金
属の冷却チューブに比べて強度や気密性の点で劣る。こ
のため、前記絶縁性の冷却チューブとして、肉厚が比較
的厚い(0.5mm厚程度)テフロン製のチューブを用
い、強度や気密性の低さをカバーすることが考えられ
る。しかしながら、この種チューブを適用した場合、下
記(a),(b)等の不具合が想定される。
By the way, the insulating cooling tube has airtightness for preventing refrigerant leakage, strength to withstand the discharge pressure and external force of the pump, flexibility to follow minute irregularities such as coil coating, etc. Although necessary, an insulating cooling tube made of resin or the like excluding ceramic is generally inferior in strength and airtightness to a metal cooling tube. Therefore, it is conceivable to use a Teflon tube having a relatively large wall thickness (about 0.5 mm thickness) as the insulating cooling tube to cover low strength and airtightness. However, when this type of tube is applied, the following problems (a) and (b) are expected.

【0006】(a)熱伝導率が小さいため、肉厚が厚い
と、たとえ0.5mm厚程度でも大きな熱抵抗となり、
肉厚方向に熱伝導による温度降下を生じる。その結果、
コイルの冷却性が損われる。 (b)比較的柔軟性は有るが、肉厚が厚いと、たとえ
0.5mm厚程度でもコイルの被覆等の微小な凹凸に追
従できない。このため、接触熱抵抗による温度降下を生
じ、結果としてコイルの冷却性が損われる。
(A) Since the thermal conductivity is small, if the wall thickness is large, the thermal resistance becomes large even if the thickness is about 0.5 mm.
A temperature drop occurs due to heat conduction in the thickness direction. as a result,
The cooling performance of the coil is impaired. (B) It is relatively flexible, but if the wall thickness is large, it is not possible to follow minute irregularities such as the coil coating even if it is about 0.5 mm thick. Therefore, a temperature drop occurs due to the contact thermal resistance, and as a result, the cooling property of the coil is impaired.

【0007】従って、テフロン製チューブの薄肉化を図
れば(a)および(b)の問題は解決される方向に向か
うが、すると、長期使用による疲労等が生じ、気密性の
点で要求性能を満たすことが困難になる。また、0.5
mm厚以下のテフロン製チューブは汎用性がなく、市場
性の点からコストに見合った供給が困難である。
Therefore, if the wall thickness of the Teflon tube is reduced, the problems (a) and (b) will be solved, but then fatigue and the like will occur due to long-term use, and the required performance in terms of airtightness will be obtained. Difficult to meet. Also, 0.5
Tubes made of Teflon having a thickness of less than mm are not versatile, and it is difficult to supply them at a cost in view of their marketability.

【0008】本発明は上記事情に鑑みてなされたもので
あり、その目的は、強度面での不安を解消し、高気密性
で肉厚が薄い絶縁性の冷却チューブを適用することが可
能な静止誘導機器巻線およびその製造方法を提供するこ
とである。
The present invention has been made in view of the above circumstances, and an object thereof is to eliminate anxiety in terms of strength and to apply an insulating cooling tube having high airtightness and thin wall thickness. A static induction device winding and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の静止誘導機器巻線は、コイルと、このコイ
ルに接触状態で装着され該コイル冷却用の冷媒が流通す
る肉厚の薄い絶縁性の冷却チューブと、前記コイルおよ
び冷却チューブを覆う絶縁層とを備え、前記冷却チュー
ブとして、ポリ塩化ビニリデン製チューブまたはポリ塩
化ビニリデン製フィルムを基材とした多層フィルム製チ
ューブを用いたことを特徴とする(請求項1)。この場
合、絶縁材料として、シリコーンゲルまたはエポキシ樹
脂を用いることができる(請求項2)。
In order to achieve the above object, the static induction device winding of the present invention has a coil and a wall thickness through which a coolant for cooling the coil is mounted in contact with the coil. A thin insulating cooling tube and an insulating layer that covers the coil and the cooling tube are provided, and as the cooling tube, a polyvinylidene chloride tube or a multilayer film tube using a polyvinylidene chloride film as a base material is used. (Claim 1). In this case, silicone gel or epoxy resin can be used as the insulating material (claim 2).

【0010】また、本発明の静止誘導機器巻線の製造方
法は、コイルと、このコイルに接触状態で装着され該コ
イル冷却用の冷媒が流通する肉厚の薄い絶縁性の冷却チ
ューブと、前記コイルおよび冷却チューブを覆う絶縁層
とを備え、前記冷却チューブが装着されたコイルを型内
に収容し、この冷却チューブ内を加圧した状態で、前記
型内に絶縁材料を充填硬化することを特徴とする。この
場合、型を絶縁材製の容器から形成し、絶縁材料が硬化
した後に、該容器を絶縁層の外殻とすることができる
(請求項4)。
The static induction device winding manufacturing method of the present invention includes a coil, a thin insulating cooling tube which is mounted in contact with the coil and through which a cooling medium for cooling the coil flows. An insulating layer covering the coil and the cooling tube, the coil having the cooling tube mounted therein is housed in a mold, and while the inside of the cooling tube is pressurized, an insulating material is filled and cured in the mold. Characterize. In this case, the mold can be formed from a container made of an insulating material, and after the insulating material is cured, the container can be used as the outer shell of the insulating layer (claim 4).

【0011】[0011]

【作用】請求項1記載の手段によれば、冷却チューブと
して、特に気密性が高いポリ塩化ビニリデン製チューブ
またはポリ塩化ビニリデン製フィルムを基材とした多層
フィルム製チューブを用いるので、長期使用により冷却
チューブが疲労して冷媒が漏出することを確実に防止で
きる。しかも、冷却チューブは肉厚が薄く構成されてい
るので、冷却チューブの熱抵抗が小となるのは勿論のこ
と、冷却チューブがコイルの被覆等の微小な凹凸に追従
するので、コイルの冷却性が向上し、ひいては、コイル
の小形化および軽量化が可能となる。
According to the means of claim 1, since the cooling tube is a tube made of polyvinylidene chloride having a particularly high airtightness or a tube made of a multilayer film having a film made of polyvinylidene chloride as a base material, it is cooled by long-term use. It is possible to surely prevent the refrigerant from leaking due to fatigue of the tube. Moreover, since the cooling tube is made thin, the thermal resistance of the cooling tube is not only small, but also the cooling tube follows minute irregularities such as the coating of the coil, so that the cooling performance of the coil is improved. The coil size can be reduced and the coil can be reduced in size and weight.

【0012】また、エポキシ樹脂は熱硬化性で耐熱性が
極めて良好であるから、請求項2記載の手段のように、
絶縁材料としてエポキシ樹脂を用いれば、巻線の難燃性
がより向上する。また、シリコーンゲルは硬化した状態
は固液中間性状であるが、型内に充填する際には低粘度
の液状であるから、絶縁材料としてシリコーンゲルを用
いれば、過大な圧力で充填作業を行わなくとも、シリコ
ーンゲルは型内にあるコイルの細部までもれなく充填さ
れる。
Further, since the epoxy resin is thermosetting and has very good heat resistance, as in the means according to claim 2,
When epoxy resin is used as the insulating material, the flame retardancy of the winding is further improved. Although the silicone gel is in a solid-liquid intermediate state when cured, it is a low-viscosity liquid when it is filled in the mold. Therefore, if silicone gel is used as the insulating material, the filling work will be performed with excessive pressure. If not, the silicone gel will fill all the details of the coil in the mould.

【0013】しかも、絶縁層を形成するにあたって、請
求項3記載の手段のように、冷却チューブ内を加圧した
状態で絶縁材料の充填硬化作業を行うことにより、肉厚
の薄い冷却チューブを用いているにも係わらず、それら
の作業時に冷却チューブが潰れてしまうことを防止でき
る。
In addition, when forming the insulating layer, a thin cooling tube is used by carrying out the filling and hardening operation of the insulating material while the inside of the cooling tube is pressurized, as in the means described in claim 3. However, it is possible to prevent the cooling tubes from being crushed during the work.

【0014】さらに、絶縁材料が充填される型は、型開
きして製品を取出す等の作業が必要であるが、請求項4
記載の手段によれば、型として作用する容器を巻線の一
部として用いるので、上記作業を廃止でき、製造作業性
が向上する。
Further, the mold filled with the insulating material requires work such as opening the mold to take out the product.
According to the described means, since the container acting as a mold is used as a part of the winding, the above work can be eliminated and the workability in manufacturing is improved.

【0015】[0015]

【実施例】以下、本発明を変圧器に適用した第1実施例
について図1および図2を参照しながら説明する。尚、
変圧器の場合、コイルは、低圧側コイルと高圧側コイル
の2コイルで構成されるが、以下では、代表して1コイ
ルを説明する。即ち、絶縁材からなる巻枠兼用の内筒1
には導線2aが巻回されて円筒形のコイル2を形成して
いる。このコイル2は内周側から外周側にかけて計5層
で構成されており、内周側から数えて2層目と3層目と
の間および3層目と4層目との間には、冷却ダクトを形
成するための間隔片3が介在されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment in which the present invention is applied to a transformer will be described below with reference to FIGS. still,
In the case of a transformer, the coil is composed of two coils, a low voltage side coil and a high voltage side coil, but in the following, one coil will be described as a representative. That is, the inner cylinder 1 made of an insulating material and also serving as a reel
A conductive wire 2a is wound around to form a cylindrical coil 2. This coil 2 is composed of a total of 5 layers from the inner peripheral side to the outer peripheral side. Between the second layer and the third layer and between the third layer and the fourth layer, counted from the inner peripheral side, A spacing piece 3 is provided to form a cooling duct.

【0016】コイル2の各層の上下両端部には薄肉な冷
却チューブ4が装着され、上側の冷却チューブ4の上側
および下側の冷却チューブ4の下側には端部支持部材5
が取付けられている。これら各冷却チューブ4は肉厚が
0.1mm程度に設定され、ポリ塩化ビニリデン製チュ
ーブ(具体的には「サラン(旭化成社の登録商標)シー
ムレスチューブ」)から形成されている。また、各冷却
チューブ4は、外部熱交換器(図示せず)およびポンプ
(図示せず)とループを形成するように接続されてい
る。そして、各冷却チューブ4内には、パーフロロカー
ボンからなる絶縁性の冷媒が封入されており、ポンプが
作動すると、各冷却チューブ4内の冷媒が矢印A,Bで
示すように流通するようになっている。
Thin cooling tubes 4 are attached to the upper and lower ends of each layer of the coil 2, and end support members 5 are provided above the upper cooling tubes 4 and below the lower cooling tubes 4.
Is installed. The thickness of each of these cooling tubes 4 is set to about 0.1 mm, and is formed from a polyvinylidene chloride tube (specifically, "Saran (registered trademark of Asahi Kasei Corp.) seamless tube"). Further, each cooling tube 4 is connected to an external heat exchanger (not shown) and a pump (not shown) so as to form a loop. An insulating refrigerant made of perfluorocarbon is enclosed in each cooling tube 4, and when the pump operates, the refrigerant in each cooling tube 4 flows as indicated by arrows A and B. ing.

【0017】コイル2の外周側には、絶縁材製の外筒6
aが設けられ、この外筒6aと内筒1とで形成される上
面開口および下面開口は、内筒1および外筒6aと共に
型としての容器6を構成する絶縁材製の天板6bおよび
底板6cにより閉塞されている。そして、天板6bおよ
び底板6cには、夫々複数の孔6dが形成されており、
前記各冷却チューブ4は孔6dから外部に導出されてい
る。また、容器6内には絶縁材料としてのシリコーンゲ
ルが充填硬化されている。これによって、コイル2およ
び各冷却チューブ4を覆う絶縁層7が形成され、しか
も、容器6は絶縁層7と一体化され、その外殻をなして
いる。
An outer cylinder 6 made of an insulating material is provided on the outer peripheral side of the coil 2.
a is provided, and an upper surface opening and a lower surface opening formed by the outer cylinder 6a and the inner cylinder 1 constitute a top plate 6b and a bottom plate made of an insulating material that together with the inner cylinder 1 and the outer cylinder 6a constitute a container 6 as a mold It is blocked by 6c. A plurality of holes 6d are formed on the top plate 6b and the bottom plate 6c, respectively.
Each of the cooling tubes 4 is led out from the hole 6d. The container 6 is filled and hardened with silicone gel as an insulating material. As a result, the insulating layer 7 that covers the coil 2 and each cooling tube 4 is formed, and the container 6 is integrated with the insulating layer 7 and forms the outer shell thereof.

【0018】次に、上記変圧器の製造方法について説明
する。まず、内筒1の外周に絶縁材等を介してコイル2
の1層目および2層目を巻回し、その2層目の外周に間
隔片3を介して3層目を巻回する。そして、3層目の外
周に間隔片3を介して4層目および5層目を巻回する。
この場合、コイル2の各層の巻回毎に、各層の上下端部
に冷却チューブ4を装着し、各冷却チューブ4の上下に
端部支持部材5を装着する。
Next, a method of manufacturing the above transformer will be described. First, the coil 2 is provided on the outer periphery of the inner cylinder 1 via an insulating material or the like.
The first layer and the second layer are wound, and the third layer is wound around the outer circumference of the second layer with the spacing piece 3 interposed therebetween. Then, the fourth layer and the fifth layer are wound around the outer periphery of the third layer with the spacing piece 3 interposed therebetween.
In this case, the cooling tubes 4 are attached to the upper and lower ends of each layer, and the end support members 5 are attached to the upper and lower ends of each cooling tube 4 for each winding of each layer of the coil 2.

【0019】この後、コイル2の外周を包囲するように
して外筒6aを配置し、この外筒6aと内筒1とでなす
上面開口および下面開口を天板6bおよび底板6cで閉
塞する。このとき、コイル2の上端から突出する各冷却
チューブ4を天板6bの孔6dから外部に導出すると共
に、コイル2の下端から突出する各冷却チューブ4を底
板6cの孔6dから外部に導出する。
After that, the outer cylinder 6a is arranged so as to surround the outer circumference of the coil 2, and the upper and lower openings formed by the outer cylinder 6a and the inner cylinder 1 are closed by the top plate 6b and the bottom plate 6c. At this time, each cooling tube 4 protruding from the upper end of the coil 2 is led out through the hole 6d of the top plate 6b, and each cooling tube 4 protruding from the lower end of the coil 2 is led out through the hole 6d of the bottom plate 6c. .

【0020】そして、各冷却チューブ4をコンプレッサ
等の流体供給装置(図示せず)に接続し、該流体供給装
置を駆動することにより、各冷却チューブ4内に空気等
の気体または水等の液体を充填して0.5kg/cm2
程度の内圧を加え、この状態で内筒1と外筒6aとの空
間部にシリコーンゲルを充填する。そして、シリコーン
ゲルを加熱すると、シリコーンゲルが付加反応を起こ
し、所定時間放置すると、シリコーンゲルがゲル状に硬
化して絶縁層7が形成される。
By connecting each cooling tube 4 to a fluid supply device (not shown) such as a compressor and driving the fluid supply device, a gas such as air or a liquid such as water is supplied into each cooling tube 4. 0.5 kg / cm 2
A certain amount of internal pressure is applied, and in this state, the space between the inner cylinder 1 and the outer cylinder 6a is filled with silicone gel. Then, when the silicone gel is heated, the silicone gel causes an addition reaction, and when left for a predetermined time, the silicone gel is hardened into a gel and the insulating layer 7 is formed.

【0021】上記実施例によれば、変圧器を使用するに
あたっては、流体供給装置に接続されていた冷却チュー
ブ4を外部熱交換器およびポンプに接続し、冷媒を循環
させる。すると、コイル2で発生した熱は、コイル2に
密接された冷却チューブ4内を流通する冷媒に伝達さ
れ、この高温度の冷媒は、矢印Aで示すように、冷却チ
ューブ4内を流通し外部へ輸送される。そして、外部熱
交換器を通過する際に熱交換により冷却され、再びポン
プにより吐出されて、矢印Bで示すように、絶縁層7内
に流通する。而して、この一連の冷媒の循環動作によ
り、コイル2が冷却される。
According to the above-described embodiment, when the transformer is used, the cooling tube 4 connected to the fluid supply device is connected to the external heat exchanger and the pump to circulate the refrigerant. Then, the heat generated in the coil 2 is transferred to the refrigerant flowing in the cooling tube 4 which is in close contact with the coil 2, and the high temperature refrigerant flows in the cooling tube 4 as shown by an arrow A and is externally supplied. Be transported to. Then, when passing through the external heat exchanger, it is cooled by heat exchange, discharged again by the pump, and flows into the insulating layer 7 as shown by an arrow B. Thus, the coil 2 is cooled by this series of circulation operations of the refrigerant.

【0022】この場合、各冷却チューブ4として、気密
性が特に良好なポリ塩化ビニリデン製のチューブを用い
たので、長期使用により冷却チューブ4が疲労して冷媒
が漏出することを確実に防止できる。しかも、冷却チュ
ーブ4は薄肉であるから、薄肉な冷却チューブ4が元来
有している熱抵抗の小ささにより、コイル2の冷却性が
向上する上、柔軟性もあるので、冷却チューブ4が導線
2aの被覆等の微小な凹凸に密着するため、コイル2の
冷却性がより向上し、ひいては、コイル2の小形化およ
び軽量化が可能となる。
In this case, since each cooling tube 4 is made of polyvinylidene chloride, which has particularly good airtightness, it is possible to reliably prevent the cooling tubes 4 from fatigued and the refrigerant leaking out due to long-term use. Moreover, since the cooling tube 4 is thin, the cooling resistance of the coil 2 is improved due to the small thermal resistance originally possessed by the thin cooling tube 4, and the cooling tube 4 is also flexible, so that Since it closely adheres to minute irregularities such as the coating of the conductor wire 2a, the cooling property of the coil 2 is further improved, and the coil 2 can be made smaller and lighter.

【0023】しかも、絶縁層7を形成するにあたって
は、冷却チューブ4内を加圧した状態でシリコーンゲル
の充填硬化作業を行うので、肉厚の小さな冷却チューブ
4を用いているにも係わらず、それらの作業時ないしは
絶縁材料の静圧によって冷却チューブ4が潰れてしまう
虞れはない。
Moreover, when the insulating layer 7 is formed, since the silicone gel is filled and hardened while the cooling tube 4 is pressurized, the cooling tube 4 having a small thickness is used. There is no possibility that the cooling tube 4 will be crushed during these operations or due to the static pressure of the insulating material.

【0024】ところで、絶縁材料として用いたシリコー
ンゲルは、電気絶縁油として普及しているシリコーン油
と略同等の絶縁性を有するものであり、初期は低粘度の
液状をなしている。従って、シリコーンゲルの充填作業
を行う際、シリコーンゲルは液状であり、過大な圧力で
充填作業を行わなくとも、シリコーンゲルは容器6の細
部までもれなく充填される。従って、充填圧力による冷
却チューブ4の潰れを一層確実に防止できる。さらに、
シリコーンゲルの硬化時の柔軟性、即ち絶縁層7の柔軟
性は、シリコーンゲルの主成分であるジメチルポリシロ
キサンの有機基とケイ素とのモル比率R/Siに依存す
るので、モル比率R/Siを調整することにより、絶縁
層7の柔軟性を選択することができる。
By the way, the silicone gel used as the insulating material has substantially the same insulating properties as the silicone oil widely used as the electric insulating oil, and is in the form of a low-viscosity liquid at the initial stage. Therefore, when performing the filling operation of the silicone gel, the silicone gel is in a liquid state, and even if the filling operation is not performed with an excessive pressure, the silicone gel is completely filled in the details of the container 6. Therefore, the collapse of the cooling tube 4 due to the filling pressure can be prevented more reliably. further,
The flexibility of the silicone gel at the time of curing, that is, the flexibility of the insulating layer 7 depends on the molar ratio R / Si of the organic group of dimethylpolysiloxane, which is the main component of the silicone gel, and silicon. By adjusting, the flexibility of the insulating layer 7 can be selected.

【0025】また、絶縁材料を充填する際に成形型を用
いた場合には、成形型を型開きして製品を取出す一連の
作業が必要であるが、本実施例においては、型を絶縁性
の容器6から形成し、シリコーンゲルが硬化した後、容
器6を絶縁層7の外殻としたので、上記作業を廃止で
き、その結果、製造作業性が向上する。
Further, when a mold is used for filling the insulating material, a series of work for opening the mold and taking out the product is required. In this embodiment, the mold is made of an insulating material. Since the container 6 is formed from the container 6 and the silicone gel is hardened and then the container 6 is used as the outer shell of the insulating layer 7, the above-described work can be eliminated, and as a result, the manufacturing workability is improved.

【0026】図3および図4は本発明の第2実施例を示
すものであり、本実施例と前記第1実施例との相違点
は、内筒1とコイル2の最内層との間,コイル2の2層
目と3層目との間,3層目と4層目との間,最外層と絶
縁層7との間に夫々1本の冷却チューブ4を縦長なU字
状に設け、各冷却チューブ4の両上端部を天板6bの孔
6dから外部に導出した点にある。
FIGS. 3 and 4 show a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that between the inner cylinder 1 and the innermost layer of the coil 2, One cooling tube 4 is provided in a vertically long U shape between the second and third layers of the coil 2, between the third and fourth layers, and between the outermost layer and the insulating layer 7. The point is that both upper ends of each cooling tube 4 are led out from the holes 6d of the top plate 6b.

【0027】本実施例によれば、上記第1実施例と同様
の効果を奏するのは勿論のこと、所定層の内外両側面が
冷却されるので、コイル2の冷却性がより向上し、コイ
ル2の内外の温度差が低減される。
According to this embodiment, not only the same effects as those of the first embodiment are obtained, but also the inner and outer side surfaces of the predetermined layer are cooled, so that the cooling performance of the coil 2 is further improved, The temperature difference between the inside and the outside of 2 is reduced.

【0028】尚、上記実施例においては、内筒1とコイ
ル2の最内層との間,コイル2の所定層間,コイル2の
最外層と絶縁層7との間に夫々1本の冷却チューブ4を
介在したが、介在する冷却チューブ4の本数や冷却チュ
ーブ4内を循環する冷媒の量を増加することにより、所
望の放熱量に調整できる。
In the above embodiment, one cooling tube 4 is provided between the inner cylinder 1 and the innermost layer of the coil 2, a predetermined layer of the coil 2 and between the outermost layer of the coil 2 and the insulating layer 7. However, the desired heat radiation amount can be adjusted by increasing the number of intervening cooling tubes 4 or the amount of the refrigerant circulating in the cooling tubes 4.

【0029】図5および図6は本発明の第3実施例を示
すものであり、次に説明する点が上記第1実施例と相違
している。即ち、コイル8は、導線2aを円板状に巻回
してなるコイルユニット8aを複数の間隔片9を介して
内筒1の上下方向へ積層した形態に構成され、コイルユ
ニット8a相互間に介在された間隔片9はコイル8の外
周部から突出している。そして、各間隔片9の突出部分
には1個おきに冷却チューブ4が載置され、これによ
り、コイルユニット8aの外周面には1個おきに冷却チ
ューブ4が密接されている。また、外筒6aには孔6d
が形成されており、冷却チューブ4の両端部は外筒6a
の孔6dから外部に導出されている。
5 and 6 show a third embodiment of the present invention, which is different from the first embodiment in the points described below. That is, the coil 8 is configured in such a manner that the coil unit 8a formed by winding the conductor wire 2a in a disc shape is laminated in the vertical direction of the inner cylinder 1 via the plurality of spacing pieces 9, and the coil unit 8a is interposed between the coil units 8a. The separated spacing piece 9 projects from the outer peripheral portion of the coil 8. Then, every other cooling tube 4 is placed on the protruding portion of each spacing piece 9, whereby every other cooling tube 4 is in close contact with the outer peripheral surface of the coil unit 8a. Further, the outer cylinder 6a has a hole 6d.
Is formed, and both ends of the cooling tube 4 are formed into the outer cylinder 6a.
It is led out from the hole 6d.

【0030】本実施例によれば、上記第1実施例と同様
の効果を奏するのは勿論のこと、冷却チューブ4をコイ
ル8に装着するにあたっては、コイル8形成後に冷却チ
ューブ4を間隔片9上に載置すれば良く、これにより、
冷却チューブ4の装着作業性が向上する。しかも、導線
2aの巻回量が少ない円板状のコイルユニット8aごと
に冷却チューブ4を設けているので、コイル8の冷却性
がより向上し、コイル8の内外の温度差がより低減され
る。
According to this embodiment, the same effects as those of the first embodiment can be obtained, and when the cooling tube 4 is attached to the coil 8, the cooling tube 4 is formed after the coil 8 is formed. Just put it on top,
The workability of mounting the cooling tube 4 is improved. Moreover, since the cooling tube 4 is provided for each disk-shaped coil unit 8a in which the winding amount of the conductor wire 2a is small, the cooling performance of the coil 8 is further improved, and the temperature difference between the inside and outside of the coil 8 is further reduced. .

【0031】尚、上記実施例では、2層のコイルユニッ
ト8aに1本の割合で冷却チューブ4を設けたが、例え
ば各コイルユニット8aに冷却チューブ4を設けたり、
または、3個のコイルユニット8aに1本の割合で冷却
チューブ4を設けたりする等、冷却チューブ4を設ける
割合は適宜変更することができる。
In the above embodiment, one cooling tube 4 is provided in the two-layer coil unit 8a, but for example, each coil unit 8a may be provided with the cooling tube 4.
Alternatively, the ratio of the cooling tubes 4 to be provided can be appropriately changed, for example, the cooling tubes 4 may be provided to one of the three coil units 8a.

【0032】図7および図8は本発明の第4実施例を示
すものであり、上記第3実施例と相違する点は、コイル
ユニット8a相互間に1個おきに、間隔片を兼用して冷
却チューブ4を挟み込んだ点にある。本実施例によれ
ば、上記第3実施例と同様の効果を奏するのは勿論のこ
と、所定のコイルユニット8aの上下両側面が冷却され
るので、コイル8の冷却性がより向上し、コイル8の内
外の温度差がより低減される。この場合、コイルユニッ
ト8a相互間に1個おきの割合で冷却チューブ4を設け
たが、その割合は適宜変更できる。
FIG. 7 and FIG. 8 show a fourth embodiment of the present invention. The difference from the third embodiment is that every other coil unit 8a is provided with a spacing piece. The point is that the cooling tube 4 is sandwiched. According to the present embodiment, not only the same effects as those of the third embodiment are obtained, but also the upper and lower side surfaces of the predetermined coil unit 8a are cooled, so that the cooling performance of the coil 8 is further improved, The temperature difference between the inside and the outside of 8 is further reduced. In this case, the cooling tubes 4 are provided every other unit between the coil units 8a, but the ratio can be appropriately changed.

【0033】また、上記第1ないし第4実施例において
は、絶縁材料としてシリコーンゲルを用いたが、絶縁材
料としては、これに限られるものではなく、例えばエポ
キシ樹脂を用いても良い。この場合、容器6の代わりに
成形型を用い、まず、該成形型のキャビティ内に冷却チ
ューブ4が装着されたコイル2または8を収容する。次
に、冷却チューブ4内に気体または液体を充填して0.
5kg/cm2 程度の内圧を加え、キャビティ内を真空
にした状態でキャビティ内に溶融されたエポキシ樹脂を
注入硬化させ、絶縁層を形成する。そして最後に、該成
形型を開いて巻線を取出す。この場合、エポキシ樹脂は
耐熱性が極めて良好であるため、巻線の難燃性がより優
れたものになる。
Although silicone gel is used as the insulating material in the first to fourth embodiments, the insulating material is not limited to this, and for example, epoxy resin may be used. In this case, a mold is used instead of the container 6, and first, the coil 2 or 8 having the cooling tube 4 mounted therein is housed in the cavity of the mold. Next, the cooling tube 4 is filled with a gas or a liquid, and
An internal pressure of about 5 kg / cm 2 is applied, and while the inside of the cavity is evacuated, the melted epoxy resin is injected and cured to form an insulating layer. And finally, the mold is opened and the winding is taken out. In this case, since the epoxy resin has extremely good heat resistance, the flame retardancy of the winding becomes more excellent.

【0034】尚、上記各実施例においては、冷却チュー
ブ4としてポリ塩化ビニリデン製チューブを用いたが、
これに限られるものではなく、例えばポリ塩化ビニリデ
ン製フィルムを基材とした多層フィルム製のチューブを
用いても良い。この多層フィルム製チューブは、ポリ塩
化ビニリデン製チューブと同等の気密性を備えているの
で、上記各実施例と同様、長期使用に伴う冷媒漏出を確
実に防止できる。
Although a polyvinylidene chloride tube is used as the cooling tube 4 in each of the above embodiments,
The present invention is not limited to this, and for example, a tube made of a multilayer film having a film made of polyvinylidene chloride as a base material may be used. Since this multi-layer film tube has airtightness equivalent to that of polyvinylidene chloride tube, it is possible to surely prevent the refrigerant from leaking out due to long-term use, like the above-mentioned embodiments.

【0035】また、特にエポキシ樹脂を充填する際の液
圧等で冷却チューブ4が潰れないようにするために0.
5kg/cm2 程度の内圧を加えており、そのため、冷
却チューブ4には、1.5kg/cm2 程度の圧力に耐
える強度が必要であるが、冷却チューブ4としてポリ塩
化ビニリデン製チューブまたはポリ塩化ビニリデン製フ
ィルムを基材とした多層フィルム製チューブを用いた場
合、強度の面からは肉厚は0.05mm以上あれば良
く、一方、冷却チューブ4がコイル2または8に密着す
るための柔軟性を考えると、その肉厚は0.15mm以
下であることが望ましい。
Further, in order to prevent the cooling tube 4 from being crushed by the liquid pressure or the like when the epoxy resin is filled in, especially,
Since an internal pressure of about 5 kg / cm 2 is applied, therefore, the cooling tube 4 needs to have a strength to withstand a pressure of about 1.5 kg / cm 2 , but the cooling tube 4 is made of polyvinylidene chloride or polyvinyl chloride. In the case of using a multilayer film tube having a vinylidene film as a base material, the wall thickness may be 0.05 mm or more from the viewpoint of strength, while the flexibility for the cooling tube 4 to adhere to the coil 2 or 8 Considering the above, it is desirable that the wall thickness is 0.15 mm or less.

【0036】[0036]

【発明の効果】以上の説明から明らかなように、本発明
の静止誘導機器巻線およびその製造方法によれば次のよ
うな優れた効果を奏する。請求項1記載の手段によれ
ば、冷却チューブとして、特に気密性が高いポリ塩化ビ
ニリデン製チューブまたはポリ塩化ビニリデン製フィル
ムを基材とした多層フィルム製チューブを用いているの
で、長期使用により冷却チューブが疲労して冷媒が漏出
することを確実に防止できる。しかも、冷却チューブの
熱抵抗が小となり、また、コイルの被覆等の微小な凹凸
に追従するので、コイルの冷却性が向上し、ひいては、
コイルの小形化および軽量化が可能となる。
As is apparent from the above description, the static induction device winding and the method of manufacturing the same according to the present invention have the following excellent effects. According to the means described in claim 1, since the cooling tube is a tube made of polyvinylidene chloride having a particularly high airtightness or a tube made of a multilayer film having a film made of polyvinylidene chloride as a base material, the cooling tube is used for a long time. It is possible to reliably prevent the refrigerant from leaking due to fatigue. Moreover, the thermal resistance of the cooling tube becomes small, and since it follows minute irregularities such as the coating of the coil, the cooling performance of the coil is improved, and
It is possible to reduce the size and weight of the coil.

【0037】請求項2記載の手段によれば、絶縁材料と
してエポキシ樹脂を用いた場合には、燃燃性がより優れ
たものになり、また、シリコーンゲルを用いた場合に
は、過大な圧力で充填作業を行わなくとも、型内の細部
までもれなく充填できる。
According to the second aspect, when the epoxy resin is used as the insulating material, the flammability is more excellent, and when the silicone gel is used, the excessive pressure is applied. It is possible to fill in all the details in the mold without performing the filling work in.

【0038】請求項3記載の手段によれば、絶縁層を形
成するにあたっては、冷却チューブ内を加圧した状態で
絶縁材料の充填硬化作業を行うので、肉厚の薄い冷却チ
ューブを用いているにも係わらず、それらの作業時に冷
却チューブが潰れてしまう虞れはない。
According to the third aspect of the present invention, when forming the insulating layer, the work of filling and hardening the insulating material is performed while the cooling tube is pressurized, so a thin cooling tube is used. Nevertheless, there is no risk that the cooling tube will collapse during these operations.

【0039】請求項4記載の手段によれば、型としての
容器を巻線の一部としているので、成形型を型開きして
製品を取出す等の作業を廃止でき、その結果、製造作業
性が向上する。
According to the means of claim 4, since the container as the mold is a part of the winding, the work such as opening the molding mold and taking out the product can be eliminated, and as a result, the manufacturing workability is improved. Is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を一部破断して示す斜視図FIG. 1 is a perspective view showing a first embodiment of the present invention partially broken away.

【図2】縦断側面図[Figure 2] Vertical side view

【図3】本発明の第2実施例を示す図1相当図FIG. 3 is a view corresponding to FIG. 1 showing a second embodiment of the present invention.

【図4】図2相当図FIG. 4 is a view corresponding to FIG.

【図5】本発明の第3実施例を示す図1相当図FIG. 5 is a view corresponding to FIG. 1 showing a third embodiment of the present invention.

【図6】図2相当図FIG. 6 is a view corresponding to FIG.

【図7】本発明の第4実施例を示す図1相当図FIG. 7 is a diagram corresponding to FIG. 1 showing a fourth embodiment of the present invention.

【図8】図2相当図FIG. 8 is a view corresponding to FIG.

【符号の説明】[Explanation of symbols]

図面中、2はコイル、4は冷却チューブ、6は容器
(型)、7は絶縁層、8はコイルを示す。
In the drawings, 2 is a coil, 4 is a cooling tube, 6 is a container (type), 7 is an insulating layer, and 8 is a coil.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コイルと、このコイルに接触状態で装着
され該コイル冷却用の冷媒が流通する肉厚の薄い絶縁性
の冷却チューブと、前記コイルおよび冷却チューブを覆
う絶縁層とを備え、 前記冷却チューブとして、ポリ塩化ビニリデン製チュー
ブまたはポリ塩化ビニリデン製フィルムを基材とした多
層フィルム製チューブを用いたことを特徴とする静止誘
導機器巻線。
1. A coil, a thin-walled insulating cooling tube which is mounted in contact with the coil and through which a cooling medium for cooling the coil flows, and an insulating layer which covers the coil and the cooling tube, A static induction device winding characterized in that a polyvinylidene chloride tube or a multilayer film tube using a polyvinylidene chloride film as a base material is used as the cooling tube.
【請求項2】 絶縁材料として、シリコーンゲルまたは
エポキシ樹脂を用いたことを特徴とする請求項1記載の
静止誘導機器巻線。
2. The static induction device winding according to claim 1, wherein silicone gel or epoxy resin is used as the insulating material.
【請求項3】 コイルと、このコイルに接触状態で装着
され該コイル冷却用の冷媒が流通する肉厚の薄い絶縁性
の冷却チューブと、前記コイルおよび冷却チューブを覆
う絶縁層とを備え、 前記冷却チューブが装着されたコイルを型内に収容し、
この冷却チューブ内を加圧した状態で、前記型内に絶縁
材料を充填硬化することを特徴とする静止誘導機器巻線
の製造方法。
3. A coil, a thin insulating cooling tube which is mounted in contact with the coil and through which a coolant for cooling the coil flows, and an insulating layer which covers the coil and the cooling tube. The coil with the cooling tube is housed in the mold,
A method of manufacturing a winding of a static induction device, characterized in that an insulating material is filled in the mold and cured while the inside of the cooling tube is pressurized.
【請求項4】 型は絶縁材製の容器で形成され、絶縁材
料が硬化した後に、絶縁層の外殻をなすことを特徴とす
る請求項3記載の静止誘導機器巻線の製造方法。
4. The method for manufacturing a static induction device winding according to claim 3, wherein the mold is formed of a container made of an insulating material and forms an outer shell of the insulating layer after the insulating material is hardened.
JP5182287A 1993-07-23 1993-07-23 Stationary induction equipment winding and its manufacture Pending JPH0737724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5182287A JPH0737724A (en) 1993-07-23 1993-07-23 Stationary induction equipment winding and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182287A JPH0737724A (en) 1993-07-23 1993-07-23 Stationary induction equipment winding and its manufacture

Publications (1)

Publication Number Publication Date
JPH0737724A true JPH0737724A (en) 1995-02-07

Family

ID=16115647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182287A Pending JPH0737724A (en) 1993-07-23 1993-07-23 Stationary induction equipment winding and its manufacture

Country Status (1)

Country Link
JP (1) JPH0737724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107364A1 (en) * 2001-12-21 2003-12-24 Abb T & D Technology Ltd. Integrated cooling duct for resin-encapsulated distribution transformer coils
EP2858076A1 (en) * 2013-10-04 2015-04-08 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US9373436B2 (en) 2014-07-07 2016-06-21 Hamilton Sundstrand Corporation Liquid cooled inductors
EP3373314A1 (en) * 2017-03-10 2018-09-12 ABB Schweiz AG Cooling non-liquid immersed transformers
EP3731246A1 (en) * 2019-04-25 2020-10-28 The Boeing Company Self-contained cooling device for an electromagnetic interference filter

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7023312B1 (en) 2001-12-21 2006-04-04 Abb Technology Ag Integrated cooling duct for resin-encapsulated distribution transformer coils
US7647692B2 (en) 2001-12-21 2010-01-19 Abb Technology Ag Method of manufacturing a transformer coil having cooling ducts
WO2003107364A1 (en) * 2001-12-21 2003-12-24 Abb T & D Technology Ltd. Integrated cooling duct for resin-encapsulated distribution transformer coils
US10225960B2 (en) 2013-10-04 2019-03-05 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
EP2858076A1 (en) * 2013-10-04 2015-04-08 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US9299488B2 (en) 2013-10-04 2016-03-29 Hamilton Sundstrand Corporation Magnetic devices with integral cooling channels
US9373436B2 (en) 2014-07-07 2016-06-21 Hamilton Sundstrand Corporation Liquid cooled inductors
EP3373314A1 (en) * 2017-03-10 2018-09-12 ABB Schweiz AG Cooling non-liquid immersed transformers
WO2018162568A1 (en) * 2017-03-10 2018-09-13 Abb Schweiz Ag Non-liquid immersed transformers with improved coil cooling
CN110383403A (en) * 2017-03-10 2019-10-25 Abb瑞士股份有限公司 With the cooling non-liquid soaking transformer of improved coil
US11355273B2 (en) 2017-03-10 2022-06-07 Hitachi Energy Switzerland Ag Non-liquid immersed transformers with improved coil cooling
CN110383403B (en) * 2017-03-10 2022-09-13 日立能源瑞士股份公司 Non-liquid immersed transformer with improved coil cooling
EP3731246A1 (en) * 2019-04-25 2020-10-28 The Boeing Company Self-contained cooling device for an electromagnetic interference filter

Similar Documents

Publication Publication Date Title
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
US3201728A (en) Evaporative cooled inductive apparatus having cast solid insulation with cooling ducts formed therein
JP2853505B2 (en) Stationary guidance equipment
US4649640A (en) Method for manufacturing a molded transformer
US3629758A (en) Transformer using noncombustible fluid dielectric for cooling
EP2463870A1 (en) Dry transformer with heat pipe inside the high voltage winding
JPH0737724A (en) Stationary induction equipment winding and its manufacture
WO2001043148A1 (en) Cryostat for use with a superconducting transformer
US3229023A (en) Thermal upgrading of electrical apparatus
JP2012523257A (en) Superconducting magnetic coils with different heat transfer regions
JP6409706B2 (en) Reactor
US20030112108A1 (en) Apparatus and method for controlling the temperature of the core of a super-conducting transformer
JP2001237125A (en) Coil bobbin and transformer
US20160322143A1 (en) Cryostat for Superconducting Devices
JP2020141013A (en) Winding device
JP3192860B2 (en) Static induction device winding and manufacturing method thereof
CN220627552U (en) Transformer
JPS6072205A (en) Foil-wound transformer
JP3069011B2 (en) Static induction device winding and method of manufacturing the same
CN115483000B (en) Compact medium-high frequency transformer
JP2000068127A (en) Oil-immersed electric apparatus
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPH0629130A (en) Transformer
JP2002083715A (en) Induction machine
Kudo et al. Development of 275 kV gas cooled type gas-insulated power transformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term