JPH07336336A - Data transmitter - Google Patents

Data transmitter

Info

Publication number
JPH07336336A
JPH07336336A JP6132051A JP13205194A JPH07336336A JP H07336336 A JPH07336336 A JP H07336336A JP 6132051 A JP6132051 A JP 6132051A JP 13205194 A JP13205194 A JP 13205194A JP H07336336 A JPH07336336 A JP H07336336A
Authority
JP
Japan
Prior art keywords
block
blocks
error
mode
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6132051A
Other languages
Japanese (ja)
Inventor
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6132051A priority Critical patent/JPH07336336A/en
Publication of JPH07336336A publication Critical patent/JPH07336336A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1809Selective-repeat protocols

Abstract

PURPOSE:To improve transmission efficiency and to make a circuit scale small by switching to a system for retransmitting only erroneous blocks when a reception buffer overflows during transmission by a selective retransmission SR system. CONSTITUTION:Blocks are continuously transmitted from a transmission side in a selective retransmission SR mode and error detection is successively performed for the received blocks on a reception side. During the transmission in the SR mode, the block 12 and the succeeding blocks overflow OFW, the SR mode is switched to an OFW mode corresponding to it and the blocks are transmitted on the transmission side. In the OFW mode, all the error detected blocks among the blocks present in the reception butter are repeatedly transmitted. For instance, the blocks 7 and 11 are retransmitted, the blocks 7 and 11 are alternately transmitted and when both are correctly received, the SR mode is returned and the next transmission is continued. At the time, the overflowed blocks 12, 13, 14, 7 and 11 from the time of overflow until the time when the blocks 7 and 11 are correctly received are abandoned. Thus, transmission efficiency characteristics are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デジタルデータ伝送装
置に関し、ことに自動再送要求方式を用いた誤り制御機
能を有するデジタルデータ伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital data transmission device, and more particularly to a digital data transmission device having an error control function using an automatic repeat request system.

【0002】[0002]

【従来の技術】デジタル・データ通信など高い信頼性が
要求されるシステムにおいては、従来ARQ(自動再送
要求)方式による誤り制御が広く用いられている。AR
Q方式はその再送手順により次の3つの基本方式に分類
できる。
2. Description of the Related Art In systems requiring high reliability such as digital data communication, error control by the ARQ (automatic repeat request) method has been widely used. AR
The Q method can be classified into the following three basic methods depending on the retransmission procedure.

【0003】(1) Stop-And-Wait(SAW)方式 信号ブロックが送信されると、送信側では受信側からの
応答があるまで送信を停止して待ち、ACK(肯定応
答、ここでは確認応答)ならば次ぎのブロックを送信
し、NAK(否定応答、ここでは再送要求応答)ならば
同じブロックを再送する。
(1) Stop-And-Wait (SAW) method When a signal block is transmitted, the transmitting side stops the transmission and waits until there is a response from the receiving side, and ACK (acknowledgement, here, acknowledgment) ), The next block is transmitted, and if NAK (negative response, here, retransmission request response), the same block is retransmitted.

【0004】(2) Go-Back-N(GBN)方式 折り返し遅延時間(RTD)中にも連続的にブロックを
送信し続け、ACKが帰ってきた場合は次のブロックを
送信し続け、NAKが返ってきた時点で、現在送信中の
ブロックを送信し終えてから、誤りのあったブロックに
戻り再送する。ここで、NはRTD中に送信できるブロ
ックの数を表す。この方式は通信路の状態がよく、RT
Dが短い場合は非常に効率が良くなるが、通信路の状態
が悪く、RTDが長い場合には極端に効率が悪化する。
(2) Go-Back-N (GBN) method Blocks are continuously transmitted even during the return delay time (RTD), and when an ACK is returned, the next block is continuously transmitted, and NAK is transmitted. Upon returning, the block currently being transmitted is completely transmitted, and then the block in error is returned and retransmitted. Here, N represents the number of blocks that can be transmitted during RTD. This method has a good communication path and RT
When D is short, the efficiency is very good, but when the condition of the communication path is bad, and when RTD is long, the efficiency is extremely deteriorated.

【0005】(3) Selective-Repeat(SR)方式 折り返し遅延時間(RTD)中にも連続的にブロックを
送信し続け、NAKが返ってきたブロックのみを再送す
る。そのため、誤りのあるブロックの後に受信された正
しいブロックを保存するためのバッファを有し、再送さ
れた信号がACKになったとき、バッファ内に記録され
ているブロックと共に送信された順序でユーザに出力す
る。この方式はこの3つの中で最も効率の良い方法であ
るが、論理が複雑になり、受信側に膨大な容量のバッフ
ァが必要になる。
(3) Selective-Repeat (SR) method Blocks are continuously transmitted during the return delay time (RTD), and only the block for which NAK is returned is retransmitted. Therefore, it has a buffer to store the correct block received after the erroneous block, and when the retransmitted signal becomes an ACK, the user is in the order sent with the block recorded in the buffer. Output. This method is the most efficient method among these three methods, but the logic becomes complicated and a huge capacity buffer is required on the receiving side.

【0006】この問題を解決する手段として、M.J.Mill
er等はSRプロトコルとGBNプロトコルを組み合わせ
ることでバッファのオーバーフローを防ぐ方式を提案し
ている。この方式については例えば IEEE ON COMMUNIC
ATIONSの第COM-29巻 第4号のM.J.Miller他著の論文
“The Analysis of Some Selective-repeat ARQ withFi
nite Receiver Buffer”に記されている。
As a means for solving this problem, MJMill
er et al. have proposed a method of preventing buffer overflow by combining the SR protocol and the GBN protocol. For this method, for example, IEEE ON COMMUNIC
STATES COM-29 Volume 4, MJ Miller et al. “The Analysis of Some Selective-repeat ARQ with Fi
nite Receiver Buffer ”.

【0007】この方式は、SRモードのARQ方式で動
作しているときに、受信側で最初に誤りがあると判断さ
れたブロックがν回の再送に対して全てNAKと送信側
で判断された場合は、モードをSRモードからGBNモ
ードのARQ方式に切り替えて送信を行う。そうして送
信側で最初に誤りがあると判断されたブロックがACK
と判断されれば再びSRモードに戻って伝送を行う。
[0007] In this system, when the ARQ system of the SR mode is operated, all the blocks which are first judged to have an error on the receiving side are NAK for ν retransmissions and are judged on the transmitting side. In this case, the mode is switched from the SR mode to the GBN mode ARQ method and transmission is performed. Then, the block that is first determined to be erroneous on the transmitting side is ACK.
If it is determined, the mode is returned to the SR mode again and the transmission is performed.

【0008】図4にN=5、ν=1の例を示す。この例
を図に添って具体的に説明すると、最初、受信側で誤り
と判断されたブロック2、ブロック4、ブロック7につ
いて受信側で送信側に対してNAKを返し、送信側は先
ずSRモードで再送を行う。
FIG. 4 shows an example in which N = 5 and ν = 1. Explaining this example in detail with reference to the drawings, the receiving side first returns NAK to the transmitting side for the blocks 2, 4, and 7 which are judged to be erroneous by the receiving side, and the transmitting side first sets the SR mode. And resend.

【0009】その結果、ブロック2及びブロック4は今
度は受信側で誤りがないと判断され、ACKが送信側に
返される。一方、ブロック7は受信側で再び誤りと判断
されたので、受信側は送信側にNAKを返す。このNA
Kを受けた送信側では、モードをSRモードからGBN
モードに切り替えて送信を行う。すなわち、再送ブロッ
ク7と、それに続く4つのブロックをブロック7に対し
てACKが返るまでGBNプロトコルで伝送を行う。そ
うして送信側でブロック7に対してACKを受けたと判
断されると、再度SRモードに戻って、その後のブロッ
クの伝送を行う。
As a result, the blocks 2 and 4 are now judged by the receiving side to be error-free, and an ACK is returned to the transmitting side. On the other hand, since the block 7 is again judged to be an error by the receiving side, the receiving side returns NAK to the transmitting side. This NA
On the transmitting side receiving K, the mode is changed from SR mode to GBN.
Switch to the mode and send. That is, the retransmission block 7 and the following four blocks are transmitted by the GBN protocol until ACK is returned to the block 7. Then, when it is determined that the ACK is received for the block 7 on the transmitting side, the mode is returned to the SR mode again and the subsequent block is transmitted.

【0010】このM.J.Miller等の論文には、更にも一つ
の手段として、SRプロトコルと、誤ったブロックをA
CKが戻るまで連続して送信し続けるStutter(ST) モ
ードの組み合わせ方式を提案している。この方式は先ず
SRモードで動作していて、このとき最初に誤りがある
と判断されたブロックがν回の再送に対して全てNAK
と送信側で判断された場合に、モードをSRモードから
STモードに切り替えて送信を行う。そうしてこの誤り
と判断されたブロックを連続的に送信し、ACKが送信
側で受信されれば再びSRモードに戻って次の伝送を行
う。
As another means, the paper of MJ Miller et al.
It proposes a combination method of Stutter (ST) mode that continuously transmits until CK returns. This method operates in the SR mode first, and at this time, all the blocks judged to have an error are NAK for ν retransmissions.
When it is determined by the transmitting side, the mode is switched from the SR mode to the ST mode and transmission is performed. Then, the block judged to be erroneous is continuously transmitted, and if an ACK is received by the transmitting side, the mode is returned to the SR mode again and the next transmission is performed.

【0011】この例を、N=4、ν=1の場合について
図5に示す。この例を図に添って説明すると、受信側で
誤りと判断されたブロック5及びブロック7は、受信側
から送信側にNAKが返され、送信側はSRモードでも
う一度再送を行う。しかしブロック5はまたNAK出会
ったため送信側はSRモードからSTモードに切り替え
てブロック5に対してACKが返るまで連続して再送を
行う。そうして送信側でACKを受けたことが判断され
ると、再びSRモードに戻ってその後の伝送を行う。し
かしブロック5は再びNAKであったため送信側はモー
ドをSRからSTに切り替える。そうしてブロック5が
ACKになるまで連続して送信する。ブロック5につい
て送信側でACKを受けたと判断されると、再びSRモ
ードに戻ってその後のブロックの伝送を行う。
This example is shown in FIG. 5 for the case of N = 4 and ν = 1. Explaining this example with reference to the drawing, with respect to blocks 5 and 7 judged to be erroneous by the receiving side, NAK is returned from the receiving side to the transmitting side, and the transmitting side retransmits again in SR mode. However, since the block 5 also encountered NAK, the transmitting side switches from the SR mode to the ST mode and continuously retransmits until an ACK is returned to the block 5. Then, when it is determined that the ACK is received on the transmitting side, the mode is returned to the SR mode again and the subsequent transmission is performed. However, since the block 5 was NAK again, the transmission side switches the mode from SR to ST. Then, the block 5 is continuously transmitted until it becomes ACK. When it is determined that ACK is received on the transmitting side for block 5, the mode is returned to the SR mode again and the subsequent blocks are transmitted.

【0012】これらのM.J.Miller等が提唱する方法は、
受信バッファのオーバーフローは防ぐことができるが、
複数の論理を切り替えるため、アルゴリズムが複雑にな
る欠点がある。また、GBNモードやSTモードではR
TDの大きなシステムでスループットが極端に悪くなる
ため、その影響を受けて方式全体としてみたスループッ
ト特性もあまり良くならない。
The method proposed by these MJ Miller et al.
You can prevent the overflow of the receive buffer,
There is a drawback that the algorithm is complicated because a plurality of logics are switched. In GBN mode and ST mode, R
Since the throughput is extremely deteriorated in a system having a large TD, the throughput characteristic of the entire system is not so improved due to the influence thereof.

【0013】[0013]

【発明が解決しようとする課題】上述したように従来の
ARQ方式においては、通信状態の悪いところでは、受
信バッファの容量が大きくなり、スループットが急激に
悪くなるなどの現象がみられ、受信バッファのオーバー
フローを防ごうとすると、ややもするとアルゴリズムが
複雑になることが多かった。
As described above, in the conventional ARQ system, when the communication state is poor, the capacity of the receiving buffer becomes large, and the throughput suddenly deteriorates. In many cases, the algorithm was often complicated when trying to prevent the overflow of.

【0014】そこでこの発明では、これらの問題を改良
して、小形携帯端末を用いてデジタル・データ通信を衛
星通信システムなどのRTDが長いシステムで行えるよ
うにすることを目標に、プロトコルをできるだけ簡単
に、バッファはできるだけ小さく、更に端末の消費電力
はできるだけ小さくなるようにシステムを構築して、装
置の小形化を図り、しかもスループットをできるだけ高
くするようにすることをことを目的とする。
Therefore, in the present invention, the protocol is as simple as possible with the goal of improving these problems so that digital data communication can be performed in a system having a long RTD such as a satellite communication system using a small portable terminal. Another object of the present invention is to construct a system in which the buffer is as small as possible and the power consumption of the terminal is as small as possible so that the device can be downsized and the throughput can be maximized.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、送信側から送信されたデータが受信側で
誤りと判断された場合に、送信側からデータの再送を行
うデータ伝送装置において、Nブロックのデータ信号の
送信時間長に相当する折り返し遅延時間を持つ通信経路
に対して信号ブロックを連続して送信する送信手段と、
前記送信手段により送信されたデータ信号を受信し、受
信した各信号ブロックについてあらかじめ送信側で各信
号ブロックに付加した誤り検出用のビットを用いて順次
誤りを検出する検出手段と、前記検出手段による誤り検
出の結果、誤りが検出されなかった場合はその信号ブロ
ックを利用者に出力すると同時に送信側に確認応答(A
CK)を送り返し、誤りが検出された場合にはその信号
ブロックを利用者に出力しないで送信側に再送要求応答
(NAK)を送り返す応答手段と、前記応答手段により
送り返された前記応答を受信し、その応答が再送要求応
答(NAK)であった場合、誤りの検出された信号ブロ
ックを直ぐに再送信する再送信手段と、前記検出手段に
より誤りが検出された信号ブロックに続いて受信される
ブロックのうち誤りが検出されないブロックを保持する
ためのkNブロック(kは自然数)の受信バッファを有
する受信バッファ手段と、前記受信バッファ手段がオー
バーフローした時、受信したブロックを誤りの有無に関
わらず廃棄し、受信側から再送要求応答(NAK)と同
時にオーバーフローしたことを送信側に伝えるオーバー
フロー通知手段と、前記オーバーフロー通知手段の通知
を受けて、送信側でデータ伝送方式を切り替えて、最初
にオーバーフローしたi番目のブロックを基準にi−k
N番目のブロックからi−1番目のブロックの内で誤り
のあるブロックのみを連続して再送信する方式で再送す
る誤ブロック連続再送手段と、前記誤ブロック連続再送
手段の再送によりi−kN番目のブロックからi−1番
目のブロックの内の誤りのあるブロックが全て正しく受
信されると、当初のデータ伝送方式に戻って送信を行わ
せる送信復旧手段とを設ける。
In order to achieve the above object, the present invention provides a data transmission apparatus which retransmits data from the transmitting side when the data transmitted from the transmitting side is judged to be erroneous by the receiving side. In the above, transmitting means for continuously transmitting signal blocks to a communication path having a loopback delay time corresponding to the transmission time length of N blocks of data signals,
Detecting means for receiving the data signal transmitted by the transmitting means, sequentially detecting errors in each received signal block using the error detecting bit added to each signal block on the transmitting side in advance, and the detecting means. If no error is detected as a result of error detection, the signal block is output to the user and at the same time an acknowledgment (A
CK), and when an error is detected, the signal block is not output to the user and a resending request response (NAK) is sent back to the sending side, and the response sent by the responding means is received. If the response is a retransmission request response (NAK), a retransmitting unit that immediately retransmits the signal block in which an error is detected, and a block that is received following the signal block in which the error is detected by the detecting unit. Receive buffer means having a receive buffer of kN blocks (k is a natural number) for holding a block in which no error is detected, and when the receive buffer means overflows, the received block is discarded regardless of whether or not there is an error. And overflow notification means for notifying the transmitting side that the receiving side has overflowed at the same time as the retransmission request response (NAK). Upon receiving the notification of the overflow notification unit, switches the data transmission method on the transmitting side, i-k on the basis of the first overflow the i-th block
An erroneous block continuous retransmitting means for retransmitting only an erroneous block from the Nth block to the i-1th block in a continuous manner, and the ikkNth block by the erroneous block continuous retransmitting means. When all the erroneous blocks in the i-1th block from the block are received correctly, a transmission restoration means for returning to the original data transmission system to perform transmission is provided.

【0016】また、前記応答手段に、受信した信号ブロ
ックの誤り率を測定または推定する誤り率測定手段と、
該誤り率測定手段の求めた誤り率が所定の値よりも低い
場合には、誤りが検出された信号ブロックを誤りが検出
されなかったと見なす許容処理手段とを更に設けたこと
を特徴とする。
The response means includes error rate measuring means for measuring or estimating the error rate of the received signal block,
When the error rate obtained by the error rate measuring means is lower than a predetermined value, a permissible processing means for considering the signal block in which an error has been detected as having no error detected is further provided.

【0017】[0017]

【作用】本発明によれば、選択再送(SR)方式で送信
中に受信バッファがオーバーフローした時、誤りのある
ブロックのみを再送する方式に切り替えることにより、
オーバーフローした受信バッファを効率よくクリアし
て、素早く選択再送(SR)方式に戻ることができ、ス
ループットの向上を図ることができ、また、回路規模を
小さくできる。
According to the present invention, when the receiving buffer overflows during transmission in the selective retransmission (SR) system, the system is switched to the system in which only the erroneous block is retransmitted.
It is possible to efficiently clear the overflowed reception buffer and quickly return to the selective retransmission (SR) method, improve the throughput, and reduce the circuit scale.

【0018】[0018]

【実施例】以下、本発明にかかるデジタルデータ伝送装
置を添付図面を参照にして詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A digital data transmission device according to the present invention will be described in detail below with reference to the accompanying drawings.

【0019】図1は本発明の一実施例の基本概念を説明
するための図である。図2は本発明のデジタルデータ伝
送装置の構成を示すブロック図である。
FIG. 1 is a diagram for explaining the basic concept of one embodiment of the present invention. FIG. 2 is a block diagram showing the configuration of the digital data transmission device of the present invention.

【0020】図2に示すように、デジタルデータ伝送装
置は、情報源1、情報源符号化器2、チャネル符号化器
3、変調器(記録ユニット)4、伝送チャネル5、復調
器(再生ユニット)6、チャネル復号化器7、情報源復
号化器8、着信先9で構成される。
As shown in FIG. 2, the digital data transmission apparatus includes an information source 1, an information source encoder 2, a channel encoder 3, a modulator (recording unit) 4, a transmission channel 5, a demodulator (reproducing unit). ) 6, a channel decoder 7, an information source decoder 8 and a destination 9.

【0021】送信側では、情報源1から出力される信号
は、情報源符号化器2で情報源に適した形で符号化され
信号uになり、チャネル符号化器3でチャネルに適合す
るような符号化が行われ信号vとなり、変調器4で変調
された後。伝送チャネル5を経由して受信側へ送られ
る。このとき伝送チャネル5には雑音が信号に混入す
る。
On the transmitting side, the signal output from the information source 1 is coded by the information source encoder 2 in a form suitable for the information source to become the signal u, and the channel encoder 3 adapts it to the channel. After being encoded into a signal v, which is modulated by the modulator 4. It is sent to the receiving side via the transmission channel 5. At this time, noise is mixed into the signal in the transmission channel 5.

【0022】受信側では伝送チャネル5からの変調され
た信号を復調器6で復調し、信号rとした後、チャネル
復号化器7で復号して信号u´を得、更に情報源復号化
器8で複合した後、情報を着信先9に送る。
On the receiving side, the modulated signal from the transmission channel 5 is demodulated by the demodulator 6 to obtain the signal r, which is then decoded by the channel decoder 7 to obtain the signal u ', and further the information source decoder After being combined in 8, the information is sent to the destination 9.

【0023】本発明は図2に示すチャネル符号化器3の
入力uを送信したとき、チャネル復号化器7の出力u´
に誤りがあれば正しく受信されるまでuの再送を繰り返
す方式に関するものである。
According to the present invention, when the input u of the channel encoder 3 shown in FIG. 2 is transmitted, the output u'of the channel decoder 7 is transmitted.
If there is an error in the packet, it relates to a method of repeating the retransmission of u until it is correctly received.

【0024】図1において折り返し遅延時間(RTD)
中にN個(この例ではN=5)のブロックが送信できる
とすると、バッファサイズがkNブロックの受信バッフ
ァ(ここではk=1としてバッファサイズkN=5)を
構成する。この時、送信側からはSRモードで連続的に
ブロックが送信され、受信側では受けとったブロックに
ついて順次誤りの検出が行われる。この例ではブロック
2、ブロック4、ブロック7、ブロック10に対してN
AKが、その他のブロックにはACKが返されている。
Return delay time (RTD) in FIG.
If N (N = 5 in this example) blocks can be transmitted, a reception buffer having a buffer size of kN blocks (here, k = 1 and buffer size kN = 5) is configured. At this time, blocks are continuously transmitted from the transmitting side in SR mode, and the receiving side sequentially detects errors in the received blocks. In this example, N for block 2, block 4, block 7, and block 10
AK is returned, and ACK is returned to the other blocks.

【0025】送信側ではNAKを受けとるとそのブロッ
クをすぐに再送する。図で、ブロック2、4は1回の再
送で正しく受信された。また、ブロック7は1回目の再
送では受信側で誤りが検出されたため再びNAKを送信
し、送信側では2回目の再送を行った。ところでこの場
合、受信バッファはあるブロックのNAKを送信してか
らそのブロックが正しく受信されるまで受信したブロッ
クを記録するが、受信バッファのサイズがN(=5)で
限られているため、図でブロック12以降がオーバーフ
ローし、これに合わせて送信側ではSRモードからオー
バーフローモードに切り替えてブロックを送信する。
When the transmitting side receives NAK, the block is immediately retransmitted. In the figure, blocks 2 and 4 were correctly received in one retransmission. In block 7, since an error was detected on the receiving side in the first retransmission, NAK was transmitted again, and the transmitting side performed the second retransmission. By the way, in this case, the reception buffer records the received block until the block is correctly received after transmitting the NAK of a block, but since the size of the reception buffer is limited to N (= 5), Then, the block 12 and subsequent blocks overflow, and accordingly, the transmitting side switches the SR mode to the overflow mode and transmits the block.

【0026】オーバーフローモードでは受信バッファに
存在するブロックのうち、誤りの検出されたもの全部を
繰り返し再送する。例の場合ではブロック7の他にブロ
ック11も再送を行う。そうしてブロック7とブロック
11を交互に送信し、2つのブロックが正しく受信され
るとSRモードに戻って次の送信を続ける。このとき、
図に示すようにオーバーフローしてからブロック7とブ
ロック11が正しく受信されるまでのオーバーフローし
たブロック12に続くブロック13、ブロック14、ブ
ロック7、ブロック11は廃棄される。
In the overflow mode, all blocks in the receive buffer in which an error has been detected are repeatedly retransmitted. In the case of the example, the block 11 as well as the block 7 retransmits. Then, block 7 and block 11 are alternately transmitted, and when the two blocks are correctly received, the mode is returned to the SR mode and the next transmission is continued. At this time,
As shown in the figure, the block 13, the block 14, the block 7, and the block 11 following the overflowed block 12 from the overflow until the blocks 7 and 11 are correctly received are discarded.

【0027】図3にブロック長1024ビット、N=1
28とした時の図1に示した例でのスループット特性
を、SR+GNB方式の従来例、SR方式(バッファサ
イズ無限大)、GNB方式の場合と共に示す。この図か
ら、本発明の図1の例は従来例と比較して同じバッファ
サイズで優れた特性を示すことが分かる。ことに本発明
の方式は通信路状態の悪いところで改善効果が高く、移
動帯通信システム等の通信路状態が劣悪なシステムに適
用して効果的である。
In FIG. 3, the block length is 1024 bits and N = 1.
The throughput characteristic in the example shown in FIG. 1 when the value is set to 28 is shown together with the conventional example of the SR + GNB system, the SR system (infinite buffer size), and the GNB system. From this figure, it can be seen that the example of FIG. 1 of the present invention exhibits excellent characteristics with the same buffer size as compared with the conventional example. In particular, the method of the present invention has a high improvement effect in a poor communication channel state, and is effective when applied to a system having a poor communication channel state such as a mobile band communication system.

【0028】なお、受信した信号ブロックの誤り率が所
定の値よりも低い時は、誤りが検出された信号ブロック
を誤りが検出されなかった信号ブロックと同様に誤り処
理を加えないようにしてスループットを一層向上するこ
とができる。
When the error rate of the received signal block is lower than a predetermined value, the signal block in which the error is detected is not processed in the same manner as the signal block in which the error is not detected, and the throughput is improved. Can be further improved.

【0029】本発明は、また、各種の誤り訂正符号と組
み合わせることで一層伝送効率を改善することができ
る。
The present invention can further improve the transmission efficiency by combining with various error correction codes.

【0030】[0030]

【発明の効果】以上説明したように本発明では、送信側
から送信されたデータが受信側で誤りと判断された場合
に、送信側からデータの再送を行うデータ伝送装置にお
いて、SRモードで送信中に、バッファサイズkNの受
信バッファがオーバーフローしてi番目のブロックとそ
れに続くkN−1個のブロックが廃棄されるとき、i−
kN番目のブロックからi−1番目のブロックのうちで
誤りのあるブロックのみを連続して送信するモードに切
り替える。これにより、オーバーフローした受信バッフ
ァを効率よくクリアして素早くSRモードに復帰でき、
伝送効率すなわちスループット特性の良いデータ伝送装
置を実現することができる。
As described above, according to the present invention, when the data transmitted from the transmitting side is judged to be erroneous by the receiving side, the data transmitting apparatus which retransmits the data from the transmitting side transmits in the SR mode. When the receive buffer of buffer size kN overflows and the i-th block and the subsequent kN-1 blocks are discarded, i-
The mode is switched to the mode in which only the erroneous block is continuously transmitted from the kNth block to the i−1th block. This allows you to efficiently clear the overflowed receive buffer and quickly return to SR mode.
It is possible to realize a data transmission device having good transmission efficiency, that is, throughput characteristics.

【0031】また、アルゴリズムを簡略化でき、バッフ
ァを有限な長さで済ますことができ、回路規模を小さく
でき、端末の消費電力を押さえることができる。
Further, the algorithm can be simplified, the buffer can have a finite length, the circuit scale can be reduced, and the power consumption of the terminal can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の伝送手順を示す図。FIG. 1 is a diagram showing a transmission procedure according to an embodiment of the present invention.

【図2】本発明の装置の構成を示すブロック図。FIG. 2 is a block diagram showing the configuration of the device of the present invention.

【図3】図1に示す本発明の実施例のスループット特性
を従来例と比較して示したグラフ。
FIG. 3 is a graph showing the throughput characteristic of the embodiment of the present invention shown in FIG. 1 in comparison with the conventional example.

【図4】一従来例の伝送手順を示す図。FIG. 4 is a diagram showing a transmission procedure of a conventional example.

【図5】他の従来例の伝送手順を示す図。FIG. 5 is a diagram showing another conventional transmission procedure.

【符号の説明】[Explanation of symbols]

1 情報源 2 情報源符号化器 3 チャネル符号化器 4 変調器 5 伝送チャネル 6 復調器 7 チャネル復号化器 8 情報源復号化器 9 着信先 ACK 確認応答 NAK 再送要求応答 1 Information Source 2 Information Source Encoder 3 Channel Encoder 4 Modulator 5 Transmission Channel 6 Demodulator 7 Channel Decoder 8 Information Source Decoder 9 Destination ACK Acknowledgment NAK Resend Request Response

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 送信側から送信されたデータが受信側で
誤りと判断された場合に、送信側からデータの再送を行
うデータ伝送装置において、 Nブロックのデータ信号の送信時間長に相当する折り返
し遅延時間を持つ通信経路に対して信号ブロックを連続
して送信する送信手段と、 前記送信手段により送信されたデータ信号を受信し、受
信した各信号ブロックについてあらかじめ送信側で各信
号ブロックに付加した誤り検出用のビットを用いて順次
誤りを検出する検出手段と、 前記検出手段による誤り検出の結果、誤りが検出されな
かった場合はその信号ブロックを利用者に出力すると同
時に送信側に確認応答を送り返し、誤りが検出された場
合にはその信号ブロックを利用者に出力しないで送信側
に再送要求応答を送り返す応答手段と、 前記応答手段により送り返された前記応答を受信し、そ
の応答が再送要求応答であった場合、誤りの検出された
信号ブロックを直ぐに再送信する再送信手段と、 前記検出手段により誤りが検出された信号ブロックに続
いて受信されるブロックのうち誤りが検出されないブロ
ックを保持するためのkNブロック(kは自然数)の受
信バッファを有する受信バッファ手段と、 前記受信バッファ手段がオーバーフローした時、受信し
たブロックを誤りの有無に関わらず廃棄し、受信側から
再送要求応答と同時にオーバーフローしたことを送信側
に伝えるオーバーフロー通知手段と、 前記オーバーフロー通知手段の通知を受けて、送信側で
データ伝送方式を切り替えて、最初にオーバーフローし
たi番目のブロックを基準にi−kN番目のブロックか
らi−1番目のブロックの内で誤りのあるブロックのみ
を連続して再送信する方式で再送する誤ブロック連続再
送手段と、 前記誤ブロック連続再送手段の再送によりi−kN番目
のブロックからi−1番目のブロックの内の誤りのある
ブロックが全て正しく受信されると、当初のデータ伝送
方式に戻って送信を行わせる送信復旧手段とを具備する
データ伝送装置。
1. A data transmission device that retransmits data from a transmitting side when data transmitted from the transmitting side is judged to be erroneous by the receiving side, and a loopback corresponding to a transmission time length of a data signal of N blocks. Transmitting means for continuously transmitting a signal block to a communication path having a delay time, and a data signal transmitted by the transmitting means are received, and each received signal block is added in advance to each signal block on the transmitting side. Detecting means for sequentially detecting errors using the bit for error detection, and as a result of error detection by the detecting means, when no error is detected, the signal block is output to the user and an acknowledgment is sent to the transmitting side at the same time. When an error is detected, the signal block is not output to the user and a resending request response is sent back to the sending side. Retransmission means for receiving the response sent back by the response means, and when the response is a resend request response, retransmitting means for immediately retransmitting a signal block in which an error has been detected, and a signal in which an error has been detected by the detecting means. Receive buffer means having a receive buffer of kN blocks (k is a natural number) for holding a block in which an error is not detected among blocks received subsequently to the block, and the received block when the receive buffer means overflows. Discarding regardless of the presence or absence of error, overflow notifying means for notifying the transmitting side that an overflow occurs at the same time as the retransmission request response from the receiving side, and receiving the notification of the overflow notifying means, switching the data transmission method at the transmitting side, From the i-kNth block based on the i-th block that overflowed first An error block continuous retransmitting means for retransmitting only an erroneous block in the i-1th block continuously, and an i-kNth block to an i-kNth block by the error block continuous retransmitting means. A data transmission apparatus comprising: a transmission restoration means for returning to the original data transmission method and performing transmission when all erroneous blocks in the first block are correctly received.
【請求項2】 前記応答手段に、受信した信号ブロック
の誤り率を測定または推定する誤り率測定手段と、該誤
り率測定手段の求めた誤り率が所定の値よりも低い場合
には、誤りが検出された信号ブロックを誤りが検出され
なかったと見なす許容処理手段とを更に設けたことを特
徴とする請求項1記載のデータ伝送装置。
2. An error rate measuring means for measuring or estimating an error rate of a received signal block, and an error rate if the error rate obtained by the error rate measuring means is lower than a predetermined value. 2. The data transmission apparatus according to claim 1, further comprising admissive processing means for considering that the signal block in which is detected as having no error detected.
JP6132051A 1994-06-14 1994-06-14 Data transmitter Pending JPH07336336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6132051A JPH07336336A (en) 1994-06-14 1994-06-14 Data transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6132051A JPH07336336A (en) 1994-06-14 1994-06-14 Data transmitter

Publications (1)

Publication Number Publication Date
JPH07336336A true JPH07336336A (en) 1995-12-22

Family

ID=15072380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6132051A Pending JPH07336336A (en) 1994-06-14 1994-06-14 Data transmitter

Country Status (1)

Country Link
JP (1) JPH07336336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049760A1 (en) * 1999-02-19 2000-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for control signalling enabling flexible link adaption in a radiocommunication system
JP2009081567A (en) * 2007-09-25 2009-04-16 Oki Electric Ind Co Ltd Retransmission control system, retransmission control method, transmitter and receiver
JP2010135909A (en) * 2008-12-02 2010-06-17 Toshiba Corp Radio communication apparatus, and radio communication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049760A1 (en) * 1999-02-19 2000-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for control signalling enabling flexible link adaption in a radiocommunication system
US6865233B1 (en) 1999-02-19 2005-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for control signalling enabling flexible link adaptation in a radiocommunication system
JP2009081567A (en) * 2007-09-25 2009-04-16 Oki Electric Ind Co Ltd Retransmission control system, retransmission control method, transmitter and receiver
JP2010135909A (en) * 2008-12-02 2010-06-17 Toshiba Corp Radio communication apparatus, and radio communication method

Similar Documents

Publication Publication Date Title
US5477550A (en) Method for communicating data using a modified SR-ARQ protocol
JP5721301B2 (en) Method and apparatus for asynchronous incremental redundant reception in a communication system
EP1232581B1 (en) Multi channel harq communication method and apparatus
EP0962068B1 (en) Automatic repeat request data communications method and apparatus
US6977888B1 (en) Hybrid ARQ for packet data transmission
US7502981B2 (en) Automatic repeat request (ARQ) scheme
JP3512755B2 (en) Communication system, communication device, and communication system using this communication device
EP0054118A1 (en) Improved go-back-N automatic repeat request communication systems
KR20020003526A (en) Hybrid automatic repeat request method and apparatus for improving mobile communication systems
CN1965520A (en) Packet data transmitting method and mobile communication system using the same
JPH01228340A (en) Error control system
JP3316059B2 (en) Data transmission equipment
KR20010080224A (en) Accumulative arq method and system
JPH06177863A (en) Re-transmission control system
US5483545A (en) Method of automatically requesting retransmission in a duplex digital transmission system having at least one noisy return channel, and an installation for implementing the method
JP4082257B2 (en) Packet retransmission control method, transmitting apparatus and receiving apparatus
CN107181576A (en) A kind of IR HARQ transmission methods of the LDPC code suitable for 5G
JPH07336336A (en) Data transmitter
JP2000078118A (en) Automatic resending request data transmitting method
Li et al. A hybrid ARQ protocol for the communication system with multiple channels
JPS63164533A (en) Majority decisive coding/decoding system
JPH04362819A (en) Broadcast communication equipment
JPH08172425A (en) Carrier changeover type automatic retransmission method and device
JPS61100043A (en) Transmitter for multiple address communication
CiilIRe Analysis of throughput efficiency and delay in ARQ systems