JPH07335582A - Single-wafer heat-treatment apparatus - Google Patents

Single-wafer heat-treatment apparatus

Info

Publication number
JPH07335582A
JPH07335582A JP15174194A JP15174194A JPH07335582A JP H07335582 A JPH07335582 A JP H07335582A JP 15174194 A JP15174194 A JP 15174194A JP 15174194 A JP15174194 A JP 15174194A JP H07335582 A JPH07335582 A JP H07335582A
Authority
JP
Japan
Prior art keywords
container
heat
wafer
treatment apparatus
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15174194A
Other languages
Japanese (ja)
Other versions
JP2884556B2 (en
Inventor
Masaaki Aoyama
雅明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP15174194A priority Critical patent/JP2884556B2/en
Publication of JPH07335582A publication Critical patent/JPH07335582A/en
Application granted granted Critical
Publication of JP2884556B2 publication Critical patent/JP2884556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a heat-treatment apparatus whose sufficient strength can be ensured even when the diameter of a semiconductor wafer to be treated is large to be at 8 to 12'' in a single-wafer treatment apparatus. CONSTITUTION:A single-wafer heat-treatment apparatus is constituted in such a way that a heating element is arranged in the upper-part position of a reaction container 1, that heat from the heating element is passed through a container ceiling part 1a and that a wafer which is arranged and installed in a prescribed position inside the container 1 can be heated and treated. In the single-wafer heat-treatment apparatus, the container ceiling part 1a which receives the heat form the heating element is formed as a substantially transparent quartz glass part, and most regions in the circumferential part of the container up to a lower-end sealing part from a heat-receiving part are formed as a nontransparent (semitransparent and opaque) quartz glass part which is formed by containing air bubbles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はウェーハ熱処理用石英製
熱処理装置に係り、特にウェーハの真空成膜、拡散若し
くは化学(CVD)処理を1枚づつ実施するいわゆる枚
葉式処理装置に好適に使用される石英製熱処理装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz heat treatment apparatus for heat treatment of wafers, and is particularly suitable for use in a so-called single-wafer treatment apparatus for performing vacuum film formation, diffusion or chemical (CVD) treatment of wafers one by one. The present invention relates to a heat treatment apparatus made of quartz.

【0002】[0002]

【従来の技術】従来よりウエーハの成膜、拡散若しくは
化学処理を行う場合複数枚のウエーハをボート上に積層
配置して、該ボートをウエーハとともに、反応容器内に
挿設して所定の熱処理を行ういわゆるバッチ式処理方式
が採用されているが、かかる処理方式はボートとウエー
ハの接触部分で気流の乱れが生じ、その部分における処
理品質が低下する。又ウエーハ口径が、6”(インチ)
から8”更には12”と大口径化するにつれ、前記バッ
チ処理方式では重量負担の増大に対応するボート及びそ
の支持部の製作が困難であること、又口径の増大にとも
なう反応容器の大形化、更には該大形化にともなう加熱
温度分布やガス分布の不均一化、更には加熱電源の無用
の増大につながる。更に次世代の、64M、1G等の高
集積密度化の半導体の製造プロセスではサブミクロン単
位の加工精度が要求され、この為複数のウエーハを一括
処理する方式ではウエーハ積層位置の上側と下側、又ガ
ス流入側と排気側で夫々処理条件にバラツキが生じ、又
積層されたウエーハ間で影響を及ぼし合い、更にはボー
トとの接触部よりパーティクル等が発生し、いずれにし
ても高品質の加工が困難であった。
2. Description of the Related Art Conventionally, when a wafer is subjected to film formation, diffusion or chemical treatment, a plurality of wafers are stacked and arranged on a boat, and the boat is inserted together with the wafer into a reaction vessel for a predetermined heat treatment. A so-called batch-type processing method is used. However, in this processing method, the air flow is disturbed at the contact portion between the boat and the wafer, and the processing quality at that portion is deteriorated. Wafer diameter is 6 "(inch)
From 8 "to 12", it is difficult to manufacture a boat and its supporting portion to cope with an increase in weight burden in the batch processing method, and the size of the reaction vessel becomes large due to the increase in diameter. And further, the heating temperature distribution and the gas distribution become non-uniform due to the increase in size, and further, the heating power source becomes unnecessarily increased. Furthermore, in the manufacturing process of next-generation, highly integrated semiconductors such as 64M and 1G, processing accuracy in submicron units is required. Therefore, in the method of collectively processing a plurality of wafers, the upper and lower sides of the wafer stacking position are Also, the processing conditions on the gas inflow side and the exhaust side respectively vary, and they affect each other between the stacked wafers, and moreover, particles and the like are generated from the contact part with the boat, and in any case high quality processing Was difficult.

【0003】かかる欠点を解消するために、近年ウエー
ハ口径の大口径化、更には次世代の半導体の高集積密度
化及び高品質化に対応する為に、一枚のウエーハ毎に熱
処理を行う枚葉式熱処理装置が注目されている。かかる
枚葉式熱処理装置としてヒータを反応容器内に配設する
ものと、ヒータを反応容器外に配設するものの両者に分
れる。
In order to solve such a drawback, in recent years, in order to cope with the increase in the diameter of wafers and further the higher integration density and higher quality of the next-generation semiconductors, heat treatment is performed for each wafer. Leaf-type heat treatment equipment is drawing attention. Such a single-wafer heat treatment apparatus can be divided into a heater provided inside the reaction container and a heater provided outside the reaction container.

【0004】図9はヒータを反応容器内に配設するもの
(出典:1994年度版、超LSI製造試験装置ガイド
ブック(工業調査会発行)、58頁表5、参照)の1例
を示し、101はステンレス製のチャンバ(反応容器)
で、その中央位置にサセプタ102を介してウエーハ1
03が載設され、その上方位置に加熱体104、下方に
ガスノズル105を配設するとともに、その周囲を水冷
シュラウド106で覆っている。尚、107は真空ポン
プである。
FIG. 9 shows an example of one in which a heater is installed in a reaction vessel (Source: 1994 edition, VLSI manufacturing test equipment guidebook (published by the Industrial Research Board), Table 5, page 58), 101 is a stainless steel chamber (reaction vessel)
Then, at the center position of the wafer 1 via the susceptor 102.
No. 03 is mounted, the heating element 104 is arranged above it, and the gas nozzle 105 is arranged below it, and the surroundings are covered with a water cooling shroud 106. Incidentally, 107 is a vacuum pump.

【0005】一方ヒータ外設型装置としては前記ガイド
ブックの56頁表3にいくつか開示されているが、特に
ウエーハ上部より加熱を行うものとして、図10に示す
ように、ウエーハ110が収納されているステンレス製
容器111の上部開口を石英ガラス窓112で封止する
とともに、該石英ガラス窓112の上部に発熱ランプ1
13及び該ランプハウジング114を配設し、石英ガラ
ス窓112を介してウエーハ110が受熱/加熱するよ
うに構成されている。尚図中115はガス導入口、11
6はガスディストリビュータプレート、117は真空ポ
ンプと連設する排気通路である。
On the other hand, as an external heater type device, some are disclosed in Table 3 on page 56 of the above-mentioned guidebook. Especially, as shown in FIG. 10, a wafer 110 is housed for heating from above the wafer. The upper opening of the stainless steel container 111 is sealed with a quartz glass window 112, and the heat generating lamp 1 is placed on the quartz glass window 112.
13 and the lamp housing 114 are arranged so that the wafer 110 receives / heats heat through the quartz glass window 112. In the figure, 115 is a gas inlet, 11
Reference numeral 6 is a gas distributor plate, and 117 is an exhaust passage connected to a vacuum pump.

【0006】[0006]

【発明が解決しようとする課題】しかしながら図9より
理解されるようにヒータ挿設型装置においては、ヒータ
を容器内に挿設する構成を取るために、反応容器が大形
化する。容器と加熱域間を遮熱する水冷シュラウドが容
器内に配設されているために、均熱分布の面で問題が生
じやすい。ヒータとウエーハが直接対面する為に、ヒー
タよりの汚染物質がウエーハに付着し、汚染しやすい等
の問題があった。
However, as can be understood from FIG. 9, in the heater insertion type apparatus, since the heater is inserted in the container, the reaction container becomes large in size. Since the water-cooled shroud that shields the heat between the container and the heating area is arranged in the container, problems tend to occur in terms of heat distribution. Since the heater and the wafer directly face each other, there is a problem that contaminants from the heater adhere to the wafer and are easily contaminated.

【0007】一方図10に示すヒータ外設型装置におい
ても、ステンレス製容器111の上端の石英ガラス窓部
112との封止部112aに設けたOリングの熱劣化を
防止するために、その封止部112a近傍を水冷する必
要が有り、均熱分布の面で又構造の複雑化の面で前記欠
点の解消につながらない。又前記いずれの技術も、反応
容器にステンレス製容器111を用いている為に金属汚
染の問題が生じる。
On the other hand, in the heater external type apparatus shown in FIG. 10 as well, in order to prevent thermal deterioration of the O-ring provided in the sealing portion 112a at the upper end of the stainless steel container 111 and the quartz glass window portion 112, the sealing is performed. It is necessary to water-cool the vicinity of the stopper 112a, and this does not lead to elimination of the above-mentioned drawbacks in terms of soaking distribution and complication of the structure. Further, in any of the above techniques, the problem of metal contamination occurs because the stainless steel container 111 is used as the reaction container.

【0008】この為、前記反応容器全体を従来の炉心管
と同様に透明ガラス製の容器が検討されており、例えば
前記ガイドブックの56頁表3に鏡板部と下側容器から
なる反応容器が提案されているが、容器を2つに分割す
るとそのシール部分のOリングの劣化がやはり問題にな
り易い。この為、従来の縦型炉心管のように、筒体の一
端を平板若しくは半球状の鏡板で溶接してなる略ドーム
状若しくは略円筒体状の枚葉式ウエーハ熱処理装置も検
討されている。
For this reason, as the whole reaction vessel, a vessel made of transparent glass is being studied like the conventional core tube. For example, in Table 3 on page 56 of the above-mentioned guidebook, a reaction vessel consisting of an end plate and a lower vessel is shown. Although proposed, if the container is divided into two, the deterioration of the O-ring of the sealing portion is still apt to be a problem. Therefore, as in the conventional vertical core tube, a single-wafer wafer heat treatment apparatus having a substantially dome shape or a substantially cylindrical body in which one end of a cylindrical body is welded with a flat plate or a hemispherical end plate is also under study.

【0009】しかしながら、従来はウェーハ形状も殆ど
が6”までで小さく、溶接による反応容器を形成する事
も可能であったが、最近の半導体ウェーハの処理工程で
は8〜12”と大型化が進み、これに伴い、反応容器も
大型化し、溶接加工では加工上も又強度的にも対応が困
難となってきた。又、石英ガラス反応容器は外部より受
熱を可能にする為に、透明で形成されているが、反応容
器を透明で形成することは均熱性を高めるために、ウエ
ーハの加熱に不要な範囲まで加熱する必要があり、結果
として不必要な反応や周辺設備まで熱による悪影響が発
生してしまう。而も透明であることは熱伝播性もよいた
めに加熱域より相当遠ざけた位置に封止部を構成するフ
ランジ等を設けねばならず、結果としてウエーハの大口
径化にともなう容器径の増大とともに、併せて封止部を
加熱域から退避させるために、背高も増大し、大形化し
てしまう。本発明は、ヒータ外設型の枚葉式熱処理装置
において、処理すべき半導体ウェーハが8〜12”と大
口径化した場合にも、言い換えれば反応容器が大型化し
た場合にも充分な強度を確保し得る熱処理装置を提供す
る事を目的とする。本発明の他の目的は、ウエーハ加熱
区域の保温性と均熱性を確保しつつ、ウエーハの加熱に
不要な範囲までの加熱を阻止し、不必要な反応や封止部
や周辺設備まで熱による悪影響の発生を有効に阻止し得
る熱処理装置を提供する事にある。本発明の他の目的
は、ウエーハの交換等の作業性の向上と操作の容易化を
図った熱処理装置を提供する事にある。
However, in the past, the shape of the wafer was almost as small as 6 ", and it was possible to form a reaction container by welding. However, in recent semiconductor wafer processing steps, the size is increased to 8-12". Along with this, the reaction vessel has become large in size, and it has become difficult to perform welding processing in terms of processing and strength. Also, the quartz glass reaction vessel is made transparent to allow heat to be received from the outside, but making the reaction vessel transparent makes it possible to heat the wafer to an unneeded range in order to improve the thermal uniformity. As a result, unnecessary reactions and adverse effects of heat on peripheral equipment occur. Since it is also transparent and has good heat conductivity, it is necessary to provide a flange or the like that constitutes the sealing portion at a position considerably distant from the heating area, and as a result, the diameter of the container increases as the diameter of the wafer increases. At the same time, since the sealing portion is retracted from the heating area, the height also increases and the size becomes large. INDUSTRIAL APPLICABILITY The present invention, in a single-wafer heat treatment apparatus with an external heater, provides sufficient strength even when the semiconductor wafer to be processed has a large diameter of 8 to 12 ″, in other words, even when the reaction container is large. It is an object of the present invention to provide a heat treatment apparatus that can secure the heat treatment device while preventing heat to a range unnecessary for heating the wafer while ensuring heat retention and soaking property of the wafer heating area. Another object of the present invention is to provide a heat treatment apparatus that can effectively prevent unnecessary reactions and adverse effects of heat on the sealing unit and peripheral equipment. The object is to provide a heat treatment apparatus that facilitates the operation.

【0010】[0010]

【課題を解決する為の手段】本発明は、反応容器の上方
位置に発熱体を配し、該発熱体よりの熱を容器天井部を
通して容器内の所定位置に配設したウエーハを加熱処理
可能に構成したヒータ外設型の枚葉式ウエーハ熱処理装
置に関するもので、図1及び図2に示すように、前記発
熱体の熱を受熱する容器天井部が実質的に透明な石英ガ
ラス部位であり、又該受熱部より下端封止部に至る容器
周囲部のほとんどの領域が、気泡を含有させることによ
り形成される非透明(半透明及び不透明)な石英ガラス
部位であることを特徴とする。そして、前記反応容器は
略半球状、略ドーム状、若しくは略円筒体状で形成され
るが、かかる反応容器は、該容器の容器天井部とその周
囲部の非透明部位が、溶接箇所が存在しない実質的に一
体物であるのが好ましい。この場合、好ましくは前記容
器はフランジ部を除く全体が一体ものである事が好まし
い。そして前記反応容器の下端開口はそのまま一体化さ
せてもよいが、フランジ等を円形状下端開口外縁に接合
することや又非加熱部に他の部材を溶着する必要もあ
り、従って少なくとも前記容器周囲部の容器天井部に隣
接する加熱領域部が前記容器天井部とともに、溶接箇所
が存在しない実質的に一体物であることが後記作用を達
成する上で必要である。
According to the present invention, a heating element is arranged above a reaction container, and heat from the heating element can be heat-treated on a wafer arranged at a predetermined position in the container through the ceiling of the container. The present invention relates to a single-wafer-type wafer heat treatment apparatus with an external heater, as shown in FIGS. 1 and 2, in which the container ceiling for receiving the heat of the heating element is a substantially transparent quartz glass portion. Further, most of the area around the container from the heat receiving portion to the lower end sealing portion is a non-transparent (translucent and opaque) quartz glass portion formed by containing bubbles. The reaction container is formed in a substantially hemispherical shape, a substantially dome shape, or a substantially cylindrical shape. In such a reaction container, a non-transparent portion of the container ceiling portion and the peripheral portion thereof has a welded portion. It is preferred that it is not substantially a unitary body. In this case, it is preferable that the entire container except the flange portion is integrally formed. The lower end opening of the reaction vessel may be integrated as it is, but it is also necessary to join a flange or the like to the outer edge of the circular lower end opening and to weld other members to the non-heated portion. In order to achieve the later-described action, it is necessary that the heating region part adjacent to the container ceiling part of the above-mentioned part is, together with the container ceiling part, a substantially one-piece body in which no welding portion exists.

【0011】尚、前記透明、非透明の定義は、前記容器
天井部よりウエーハ面に熱線を透過させる必要がある事
から熱線で定義する事が好ましく、この為前記容器天井
部は熱線(波長2μm)透過率が85%以上の透明部位
であり、又少なくとも容器天井部に隣接する加熱領域部
を除くその下側が、熱線(波長2μm)透過率が30%
以下の容器周囲部であるように設定するのが、後記作用
を達成する上で好ましい。又前記容器周囲部はサンドブ
ラストのように、表面のみが非透明で構成すると容器壁
内部より下端開口側に熱が伝播し、好ましくない結果が
生じるために、気泡を壁内部に包含させて熱伝播を阻止
するのが好ましい。即ち具体的には前記容器天井部の隣
接区域、言換えれば加熱領域を除く、前記気泡密度が安
定している容器周囲部の気泡含有量が、直径10〜25
0μmの気泡を20,000個/cm3以上、好ましくは4
0,000個/cm3以上であるのがよい。
The definition of transparent or non-transparent is preferably defined by heat rays because it is necessary to allow heat rays to pass from the container ceiling to the wafer surface. Therefore, the container ceiling has a heat ray (wavelength 2 μm). ) A transparent part having a transmittance of 85% or more, and at least the heating region adjacent to the container ceiling has a heat ray (wavelength 2 μm) transmittance of 30% underneath.
It is preferable to set the following container peripheral portion in order to achieve the later-described action. Further, if only the surface is made non-transparent like the sand blast in the container peripheral part, heat is propagated from the inside of the container wall to the lower end opening side, which causes an unfavorable result. Is preferably prevented. That is, specifically, the bubble content of the peripheral region of the container, where the bubble density is stable, excluding the area adjacent to the container ceiling, in other words, the heating region, is 10 to 25 mm in diameter.
0 μm bubbles 20,000 / cm 3 or more, preferably 4
It is preferable that the number is 50,000 / cm 3 or more.

【0012】尚、前記容器天井部と容器周囲部間に溶接
の様に明瞭な界面が存在すると、その界面部分が局部的
に加熱されたり、又、熱線を不均質に散乱、反射させた
りすることで内填された被加熱体が不均質に加熱される
恐れがあるために、本発明は前記容器天井部と容器周囲
部間に包含気泡の明瞭な界面が存在せず、無段階的に包
含気泡密度を変化可能に構成する。そして前記気泡密度
が変化している部位が実質的には加熱領域に対応するの
が好ましい。尚、気泡密度が安定している容器周囲部で
あっても、窓部等の部分的に透明部位を設ける場合もあ
る。この場合、前記容器周囲部にウエーハ処理状態を把
握する透明窓部を設け、該窓部と容器周囲部の非透明部
位が、溶接箇所が存在しない実質的に一体物であるのが
好ましい。又前記ウエーハの配設位置は、容器天井部の
透明部位より下側の非透明部位内に位置しているのがよ
い。更に、前記反応容器が封止部を介してウエーハが設
置された支持台上に載置されるとともに、該反応容器と
支持台間が接離方向に分離可能に構成するのがよく、こ
の場合反応容器側にガス導入通路及び排出口を設ける事
なく、これらの流体経路を支持台側にのみ設けるのがよ
い。
If there is a clear interface between the ceiling of the container and the peripheral part of the container, such as by welding, the interface is locally heated, or heat rays are scattered and reflected inhomogeneously. Therefore, since there is a possibility that the body to be heated filled therein is heated inhomogeneously, the present invention does not have a clear interface of contained bubbles between the container ceiling part and the container peripheral part, and is stepless. The included bubble density is variable. Then, it is preferable that the portion where the bubble density is changed substantially corresponds to the heating region. Even in the peripheral portion of the container where the bubble density is stable, a transparent portion such as a window may be partially provided. In this case, it is preferable that a transparent window portion for grasping a wafer processing state is provided in the peripheral portion of the container, and the non-transparent portion of the window portion and the peripheral portion of the container is substantially a single body where no welding portion exists. Further, the wafer is preferably arranged in a non-transparent region below the transparent region of the container ceiling. Further, it is preferable that the reaction container is placed on a support table on which a wafer is installed via a sealing part, and the reaction container and the support table are separable in the contact and separation directions. It is preferable to provide these fluid paths only on the support base side without providing the gas introduction passage and the discharge port on the reaction container side.

【0013】[0013]

【作用】かかる技術手段によれば、天井側に位置する容
器天井部(及び必要があればのぞき窓部)が実質的に透
明、より具体的には熱線透過率が85%以上の透明部位
である為に、熱線を無駄なく容器内のウエーハ上に取込
み、ヒータ外設型の装置であっても効果的な加熱が可能
となる。又容器天井部より下端開口に至る容器周囲部の
ほとんどの領域が熱線透過及び熱伝導の悪い非透明ガラ
ス、具体的には熱線透過率が30%以下の容器周囲部で
ある為に、その部位に位置するウエーハ加熱域の保温性
改善、及び前記容器周囲部の不透明部位の、いわゆる不
要加熱域への不良熱線の侵入が有効に阻止され、容器内
の均熱性の向上とともに、バラツキのない高品質な生産
性を得る事が出来る。又、容器周囲部の非透明部は熱線
の透過が少なく、言換えれば容器天井部を介してウエー
ハを加熱しても、下端開口に至る容器周囲部での温度が
無用に上昇することなく、そのままOリングなどを使用
してのフランジ封止が可能である。
According to the above technical means, the container ceiling portion (and the peep window portion if necessary) located on the ceiling side is substantially transparent, and more specifically, it is a transparent portion having a heat ray transmittance of 85% or more. For this reason, the heat rays can be taken into the wafer in the container without waste, and effective heating can be performed even with an external heater type device. Also, most of the area around the container from the ceiling of the container to the lower end opening is non-transparent glass with poor heat ray transmission and heat conduction, specifically, the area around the vessel having a heat ray transmittance of 30% or less. Improving the heat retention of the wafer heating area located at, and effectively preventing the entry of bad heat rays into the so-called unnecessary heating area of the opaque area around the container, improving the uniform heat distribution inside the container, and ensuring high uniformity. You can get quality productivity. Further, the non-transparent portion of the container peripheral portion has a low heat ray transmission, in other words, even if the wafer is heated through the container ceiling portion, the temperature in the container peripheral portion reaching the lower end opening does not unnecessarily rise, Flange sealing is possible using the O-ring as it is.

【0014】従ってウエーハの加熱に不要な範囲まで加
熱する必要がなく、又不必要な反応や周辺設備まで熱に
よる悪影響が発生する事もなく、又前記容器周囲部で加
熱域と封止部を熱遮断することが出来るために、水冷ジ
ャケット等を設けずに加熱域と封止部をある程度近づけ
ることが可能であり、結果として小型偏平化と装置の簡
素化を図ることが出来る。又本発明は少なくとも容器天
井部及びその周囲の加熱域が溶接箇所を有しない実質的
に一体もので形成されている為に、言換えれば溶接界面
等が存在しないために、その部分における熱残留歪によ
る破損や破壊を回避し得る。
Therefore, it is not necessary to heat the wafer to an unneeded range, and unnecessary reactions and adverse effects due to heat do not occur in peripheral equipment, and the heating area and the sealing section are provided around the container. Since the heat can be cut off, it is possible to bring the heating area and the sealing portion close to each other to some extent without providing a water cooling jacket or the like, and as a result, it is possible to reduce the size and flatten the device. Further, since the present invention has at least the container ceiling portion and the heating area around it which are substantially integrally formed without welding portions, in other words, there is no welding interface, etc. Damage and destruction due to distortion can be avoided.

【0015】又実質的に一体ものであることは、局所歪
や偏荷重等が発生することなく真空下及び1000℃前
後に加熱した場合でも機械的強度が部分的、局所的にも
低下することはない。非透明化はサンドブラスト処理で
も行うことが出来るが、サンドブラスト処理は透明な石
英ガラスの表面のみにサンドを吹き付けて凹凸処理を行
うものであり、従ってかかる方式では、外表面のみの不
透明化処理であるために、エッチングや加熱処理が施さ
れると、透明化してしまい、又内部が透明であるため
に、その壁内部を通しフランジ側に熱線が伝播してしま
う。
Further, being substantially integrated means that the mechanical strength is locally or locally reduced even when heated under vacuum or around 1000 ° C. without causing local strain or unbalanced load. There is no. The non-transparency can also be performed by sandblasting, but the sandblasting is performed by spraying sand only on the surface of the transparent quartz glass to perform the unevenness treatment. Therefore, in such a method, only the outer surface is made opaque. Therefore, when etching or heat treatment is performed, it becomes transparent, and since the inside is transparent, heat rays propagate through the inside of the wall to the flange side.

【0016】本発明によれば前記容器周囲部はサンドブ
ラストのように、表面のみが非透明で構成したものでは
なく、気泡により内部まで非透明化を図ったものである
ために、前記欠点のいずれをも解消できる。更に本発明
は前記容器天井部と容器周囲部間に包含気泡の明瞭な界
面が存在せず、無段階的に包含気泡密度を変化させる事
により、気泡界面すら存在せず、強度性が一層向上する
のみならず、容器天井部から延在部に進むにつれ徐々に
熱降下させる事が出来、熱バランスのよい高品質なウエ
ーハ処理が可能な熱雰囲気を得ることが出来る。
According to the present invention, the peripheral portion of the container is not made to be non-transparent only by sandblasting, but is made to be non-transparent to the inside by air bubbles. Can be eliminated. Furthermore, the present invention does not have a clear interface of contained bubbles between the container ceiling part and the container peripheral part, and by changing the included bubble density steplessly, even the bubble interface does not exist, and the strength is further improved. In addition, the heat can be gradually lowered as the container goes from the ceiling to the extension, and a hot atmosphere capable of high-quality wafer processing with good heat balance can be obtained.

【0017】又本発明によれば、機械的強度増大によ
り、ウェーハ処理工程に於いて、高速加熱、高速冷却が
可能となり、生産性も改善できた。
Further, according to the present invention, by increasing the mechanical strength, it becomes possible to perform high-speed heating and high-speed cooling in the wafer processing process, thereby improving the productivity.

【0018】尚、容器周囲部に設けた透明窓部は、溶接
箇所が存在しない実質的に一体物である為に、気密的に
も又製造上からも好ましい。又前記ウエーハの配設位置
は、容器天井部の透明部位より下側の非透明部位内に位
置させる事により、視認的にも又保温の面からも好まし
い。更に、前記反応容器とウエーハが設置された支持台
間が接離方向に分離可能に構成する事によりウエーハの
交換作業が容易になるとともに、特に反応容器側にガス
導入通路及び排出口を設ける事なく、これらの流体経路
を支持台側にのみ設けることにより、昇降を行うための
可動部が反応容器とその上方の発熱体部分とする事が出
来、言い換えれば流体経路を昇降させる必要がないため
に、設備の簡素化が実現できる。更に反応容器に金属ジ
ャケットを用いないために、装置内部の確認が容易であ
るのみならず、窓部等を一体的に形成する事も容易であ
る。
Since the transparent window portion provided around the container is a substantially integrated body with no welded portion, it is preferable in terms of airtightness and manufacturing. Moreover, the wafer is preferably arranged in a non-transparent region below the transparent region on the ceiling of the container so that the wafer can be visually recognized and heat can be kept. Further, by making the reaction vessel and the support table on which the wafer is installed separable in the contact and separation directions, the wafer replacement work is facilitated, and a gas introduction passage and a discharge port are provided especially on the reaction vessel side. However, by providing these fluid paths only on the side of the support base, the movable part for moving up and down can be the reaction container and the heating element above it, in other words, there is no need to move the fluid path up and down. In addition, the equipment can be simplified. Further, since a metal jacket is not used for the reaction container, not only the inside of the apparatus can be easily confirmed, but also the window and the like can be easily formed integrally.

【0019】[0019]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much.

【0020】図4は、図3に示す本発明の略ドーム状の
反応容器を製造するための製造装置で、回転自在なモー
ルド10(回転容器)と、該モールド10を脱着自在に
保持するモールドホルダ11と、該ホルダ11とともに
モールド10を回転させる回転手段12と、前記前記ホ
ルダ11を冷却する手段13と、前記ホルダ11に設け
た不図示の吸引室を介して前記モールド底部10aと該
モールド側壁10bに穿孔した吸引穴10cと連通する
吸引管14、及び該吸引管14に接続された減圧吸引ポ
ンプ15と減圧ゲージ16よりなる。
FIG. 4 shows a manufacturing apparatus for manufacturing the substantially dome-shaped reaction container of the present invention shown in FIG. 3, which includes a rotatable mold 10 (rotating container) and a mold for holding the mold 10 in a detachable manner. A holder 11, a rotating means 12 for rotating the mold 10 together with the holder 11, a means 13 for cooling the holder 11, a mold bottom 10a and the mold via a suction chamber (not shown) provided in the holder 11. The side wall 10b includes a suction pipe 14 that communicates with a suction hole 10c, and a vacuum suction pump 15 and a vacuum gauge 16 connected to the suction pipe 14.

【0021】モールド10は上方が開口し、その内壁面
を反応容器外形に成型後の研削代を加えて僅かに相似形
に大なる形状に形成するとともに、反応容器1の容器天
井部1aに対応する底部10aを通気性炭素で、側壁部
10bを気密性炭素で夫々構成するとともに側壁部10
bの容器窓部1cに対応する部位の、具体的には3cm
×3cmの範囲の部位に9ケの直径0.7mmの吸引穴
10cを複数設ける。又前記モールド10の上方には、
加熱溶融を行う上下動自在な熱源17が配設されてい
る。
The mold 10 is opened at the upper side, and its inner wall surface is formed into a slightly large shape similar to the outer shape of the reaction container by adding a grinding allowance after the molding, and corresponds to the container ceiling portion 1a of the reaction container 1. The bottom portion 10a is made of breathable carbon, and the side wall portion 10b is made of airtight carbon.
3 cm of the part corresponding to the container window 1c of b.
A plurality of suction holes 10c having a diameter of 0.7 mm are provided in a region of x3 cm. Also, above the mold 10,
A vertically movable heat source 17 for heating and melting is provided.

【0022】尚、前記減圧排気ポンプ15は、排気能力
を2.5m3/分、好ましくは5m3/分以上のものを用
いるのがよい。本実施例では4m3/分の排気ポンプ1
5を用いている。
The decompression exhaust pump 15 has an exhaust capacity of 2.5 m 3 / min, preferably 5 m 3 / min or more. In this embodiment, an exhaust pump 1 of 4 m 3 / min
5 is used.

【0023】次に前記装置を用いて反応容器1を製造す
る方法を説明する。先ず、モールド10をホルダ11と
ともに回転させた後、このモールド10の中に結晶若し
くは非結晶の石英粉体を投入し、遠心力を利用してモー
ルド10の内周面に沿って厚さ20mmの石英充填層1
8を形成した。引続き熱源17をモールド10内側の中
央部に設置した後、吸引減圧ポンプ15を駆動して石英
充填層18を減圧ゲージ16による吸引減圧量が−60
0mmHg以上、好ましくは−700mmHgになるま
で減圧を行った後、前記熱源17により加熱溶融を行
う。
Next, a method of manufacturing the reaction container 1 using the above apparatus will be described. First, after rotating the mold 10 together with the holder 11, crystalline or non-crystalline quartz powder is put into the mold 10, and centrifugal force is used to make a 20 mm-thick film along the inner peripheral surface of the mold 10. Quartz packing layer 1
8 was formed. After the heat source 17 is continuously installed in the center of the mold 10, the suction pressure reducing pump 15 is driven to suck the quartz filling layer 18 by the pressure reducing gauge 16 so that the suction pressure reducing amount is -60.
After the pressure is reduced to 0 mmHg or more, preferably -700 mmHg, heating and melting are performed by the heat source 17.

【0024】前記加熱溶融により石英充填層18の内周
面に薄い溶融層が形成されると減圧ゲージ16による吸
引減圧量が更に低下し−700mmHg以上に達する
が、この減圧量を維持しながら前記前記モールド10を
回転しつつ加熱溶融を継続すると、前記モールド底部1
0aと窓部1cに対応する部分が透明で側壁部1bが不
透明に形成された所定形状の反応容器1が形成し得る。
尚、前記減圧を石英充填層18の内周面に薄い溶融層が
形成される以後に開始すると、前記溶融層に微小気泡が
残存し、好ましくない。この為減圧は前記薄い溶融層が
形成される以前には少なくとも行う必要があり、好まし
くは加熱溶融開始直前か少なくとも同時に行うのがよ
い。そして前記の方法で製造された容器1は外表面、内
壁面側を研削及び鏡面研磨処理を行い、又開口端側を面
一に研削してその部分に必要に応じてフランジ2を接合
することにより、図3に示すように天井部(容器天井部
1a)及び窓部1cが透明で側壁部1bの反応容器1が
形成出来る。
When a thin molten layer is formed on the inner surface of the quartz filling layer 18 by the heating and melting, the suction decompression amount by the decompression gauge 16 further decreases to -700 mmHg or more, but while maintaining this decompression amount, When heating and melting are continued while rotating the mold 10, the mold bottom 1
A reaction container 1 having a predetermined shape can be formed in which a portion corresponding to 0a and the window portion 1c is transparent and the side wall portion 1b is opaque.
If the depressurization is started after the thin molten layer is formed on the inner peripheral surface of the quartz filling layer 18, fine bubbles remain in the molten layer, which is not preferable. Therefore, the depressurization needs to be performed at least before the thin molten layer is formed, and is preferably performed immediately before the start of heating and melting or at least simultaneously. The container 1 manufactured by the above method is ground and mirror-polished on the outer surface and the inner wall surface, and the opening end side is ground to be flush with the flange 2 if necessary. As a result, as shown in FIG. 3, the reaction container 1 having a transparent ceiling portion (container ceiling portion 1a) and window portion 1c and a side wall portion 1b can be formed.

【0025】そして前記反応容器1の側壁部1bの不透
明部位の気泡含有量を計測してみると、直径10〜25
0μmの気泡が、40,000個/cm3以上有していた。
又、前記の方法では透明部位(容器天井部1a、窓部1
c)と不透明部位(側壁部1b)の間には明瞭な界面が
存在していない事が確認された。
Then, when the bubble content in the opaque portion of the side wall 1b of the reaction vessel 1 is measured, the diameter is 10 to 25.
There were 40,000 bubbles / cm 3 or more of 0 μm bubbles.
Further, in the above method, transparent parts (container ceiling 1a, window 1
It was confirmed that there was no clear interface between c) and the opaque site (side wall 1b).

【0026】尚、前記容器天井部1aに波長2μmの熱
線を透過させたところ、その透過率は85%を大幅に越
え90%以上有しており、又、側壁部1bの不透明部位
の熱線透過率は30%より大幅に低く、10%以下であ
った。
When a heat ray having a wavelength of 2 μm is transmitted through the container ceiling portion 1a, the transmittance thereof greatly exceeds 85% and is 90% or more, and the heat ray transmission of the opaque portion of the side wall portion 1b is performed. The rate was significantly lower than 30% and 10% or less.

【0027】図6は前記容器天井部1aの透明部位と側
壁部1bの不透明部位間に半透明層1dを形成するため
の製造装置を示し、モールド10の容器天井部1aを形
成するための底部に隣接する側壁下端側に通気炭素が充
填された吸引穴10dを設けている。かかる装置により
前記と同様な方法で反応容器1を製造した所、図5に示
す葉に容器天井部1aの透明部位の周囲に半透明の加熱
領域1dが形成され前記実施例より一層好ましい無段階
的に包含気泡密度を変化させる事が出来た。尚、前記不
透明部位と半透明部位の隣接する部分の気泡含有量は、
直径10〜250μmの気泡を20,000個/cm3以上
有することが確認でき、そしてその熱線透過率も30%
以下と本発明を満足している事が確認出来た。
FIG. 6 shows a manufacturing apparatus for forming the translucent layer 1d between the transparent portion of the container ceiling portion 1a and the opaque portion of the side wall portion 1b, and the bottom portion of the mold 10 for forming the container ceiling portion 1a. A suction hole 10d filled with permeable carbon is provided on the lower end side of the side wall adjacent to. When the reaction container 1 was manufactured by the same method as described above using such an apparatus, a semi-transparent heating region 1d was formed around the transparent portion of the container ceiling 1a on the leaf shown in FIG. It was possible to change the included bubble density. In addition, the bubble content of a portion adjacent to the opaque portion and the translucent portion,
It can be confirmed that it has 20,000 bubbles / cm 3 or more with a diameter of 10 to 250 μm, and its heat ray transmittance is 30%.
It was confirmed that the following satisfied the present invention.

【0028】図8は図7に示す半球状の反応容器20を
製造する為の装置を示し、本装置も前記実施例と同様な
方法で天井容器天井部20aが透明でその下方延在部、
即ち下端開口のフランジ2に至る部位1bが前記した気
泡が含有された不透明部位を有する半球状の反応容器2
0を製造できる。
FIG. 8 shows an apparatus for manufacturing the hemispherical reaction vessel 20 shown in FIG. 7, and this apparatus also has a ceiling container ceiling 20a which is transparent and has a downwardly extending portion in the same manner as in the above embodiment.
That is, the hemispherical reaction container 2 having the opaque portion containing the above-mentioned bubbles in the portion 1b reaching the flange 2 at the lower end opening
0 can be manufactured.

【0029】図1は図3に示す反応容器1を用いて形成
された枚葉式CVD装置で、石英ガラス製の支持台3上
に、前記円筒ドーム状の反応容器1が設置されている。
前記反応容器1の下端開口外縁にはフランジ2が囲繞接
合され、該フランジ2の支持台3と対面する部位にはO
リング4が介装されており、反応容器1と支持台3との
間の気密封止を図る。又フランジ2は支持台3外周より
更に外方に張り出しており、該張り出し部2aにリフタ
5を係止しながら発熱ランプとともに反応容器1を上昇
させ、これによりウエーハ6が反応容器1外に開放さ
れ、容易に交換することが出来るように構成している。
FIG. 1 shows a single-wafer CVD apparatus formed by using the reaction container 1 shown in FIG. 3, in which the cylindrical dome-shaped reaction container 1 is installed on a support base 3 made of quartz glass.
A flange 2 is surroundingly joined to the outer edge of the lower end opening of the reaction vessel 1, and O is provided at a portion of the flange 2 facing the support base 3.
A ring 4 is provided to provide an airtight seal between the reaction container 1 and the support base 3. Further, the flange 2 projects further outward than the outer periphery of the support base 3, and the reaction container 1 is raised together with the heat generating lamp while the lifter 5 is locked to the projecting portion 2a, whereby the wafer 6 is opened to the outside of the reaction container 1. It is configured so that it can be easily replaced.

【0030】支持台3上には、ウエーハ6を設置するた
めのグラファイト若しくは石英ガラス製のサセプタ7、
ガス導入管8及び排気口9が設けられている。サセプタ
7にはウエーハ6裏面を加熱させる発熱源7aが内蔵さ
れている。この結果ウエーハ6は反応容器1の透明容器
天井部1aよりのランプ30加熱とともに、前記発熱源
よりウエーハ6裏面よりも加熱され、この結果、ウエー
ハ6は表裏両面よりも加熱されるため、成膜温度に達す
るまでの時間が短縮される。
On the support base 3, a susceptor 7 made of graphite or quartz glass for mounting the wafer 6 is provided.
A gas introduction pipe 8 and an exhaust port 9 are provided. A heat source 7a for heating the back surface of the wafer 6 is built in the susceptor 7. As a result, the wafer 6 is heated from the heating source from the back surface of the wafer 6 together with the heating of the lamp 30 from the transparent container ceiling portion 1a of the reaction container 1. As a result, the wafer 6 is heated from both the front and back surfaces, so that the film is formed. The time to reach temperature is reduced.

【0031】又前記発熱源7aは容器1内にあるもウエ
ーハ6の下方位置であり、而も該発熱源7aはサセプタ
7により包囲されているために、発熱源7aよりのパー
ティクルがウエーハ6表面に付着する恐れは全くない。
又前記ウエーハ6の配設位置は容器天井部1a下方の不
透明部位1b域に位置させるのがよく、これにより保温
性及び均熱性の確保が図れる。又好ましくは前記ウエー
ハ6の成膜状態が窓部1cを通して容器1外よりも把握
されるように、ウエーハ6の載置高さを窓部1cと同等
若しくは窓部1cより僅かに低い位置に設定するのがよ
い。
The heat source 7a is located inside the container 1 but below the wafer 6, and since the heat source 7a is surrounded by the susceptor 7, the particles from the heat source 7a are on the surface of the wafer 6. There is no danger of sticking to.
Further, the wafer 6 is preferably arranged in the opaque portion 1b region below the container ceiling portion 1a, so that heat retention and heat uniformity can be secured. Further, preferably, the mounting height of the wafer 6 is set to be equal to or slightly lower than the window portion 1c so that the film formation state of the wafer 6 can be grasped from the outside of the container 1 through the window portion 1c. Good to do.

【0032】ガス導入管8は先端ノズル8aをウエーハ
6上に垂設した後、ノズル8aを僅かに下向きに設定し
てウエーハ6上全域にガスが流れるように構成する。こ
の場合ノズルの傾斜角度は0から45°好ましくは15
〜30°程度に設定するのがよい。又反応容器1の透明
容器天井部1a上方には熱源としての発熱ランプ30が
配設されている。
The gas introducing pipe 8 is constructed such that the tip nozzle 8a is hung vertically on the wafer 6 and then the nozzle 8a is set slightly downward so that the gas flows over the entire area of the wafer 6. In this case, the inclination angle of the nozzle is 0 to 45 °, preferably 15
It is preferable to set it at about 30 °. A heat generating lamp 30 as a heat source is arranged above the transparent container ceiling portion 1a of the reaction container 1.

【0033】かかる装置によりCVD膜を成膜する場
合、先ず図7の状態で発熱ランプ30と発熱源7aの両
面よりウエーハ6を所定温度に加熱した後、ガス導入管
7のノズル7aより反応ガスを流しながら、CVD処理
を行うことにより、成膜反応が行われる。そして成膜反
応終了後、リフタ5を上昇させることにより、反応容器
1が上昇し、この結果ウエーハ6が反応容器1外に開放
され、容易に交換することが出来る。前記処理動作を簡
単且つ容易に繰り返し行う事が出来る。
When the CVD film is formed by such an apparatus, first, in the state shown in FIG. 7, the wafer 6 is heated to a predetermined temperature from both sides of the heat generating lamp 30 and the heat generating source 7a, and then the reaction gas is supplied from the nozzle 7a of the gas introducing pipe 7. A film forming reaction is performed by performing a CVD process while flowing. After the film formation reaction is completed, the lifter 5 is raised to raise the reaction vessel 1, and as a result, the wafer 6 is opened to the outside of the reaction vessel 1 and can be easily replaced. The processing operation can be repeated easily and easily.

【0034】図2は図7に示す半球状の反応容器1を用
いて形成された枚葉式CVD装置である。前記実施例と
の差異を中心に説明するに、支持台3中心には、軸受3
aを介して回転可能に構成された回転軸3bが垂設され
ており、該回転軸3bの上端にサセプタ7が固定されて
いる。サセプタ7は軸受3aに悪影響を及ぼさないよう
にするために、発熱源を内蔵していないが、反応容器1
を円筒ドーム状ではなく半球状にし、容器20上方に配
した発熱ランプ30とウエーハ6間の距離を極力少なく
して短時間でウエーハ6が所定温度に加熱されるように
構成している。
FIG. 2 shows a single-wafer CVD apparatus formed by using the hemispherical reaction vessel 1 shown in FIG. The difference from the above-described embodiment will be mainly described. The bearing 3 is provided at the center of the support base 3.
A rotary shaft 3b configured to be rotatable via a is vertically provided, and a susceptor 7 is fixed to an upper end of the rotary shaft 3b. The susceptor 7 does not have a built-in heat source in order to prevent the bearing 3a from being adversely affected.
Is made into a hemispherical shape instead of a cylindrical dome shape, and the distance between the heat generating lamp 30 arranged above the container 20 and the wafer 6 is minimized to heat the wafer 6 to a predetermined temperature in a short time.

【0035】一方このように構成すると、反応容器20
下端の封止部20dと容器天井の容器天井部20a間の
距離も短縮されるが、封止20d部と容器天井部20a
間は不透明域20bで形成されているために、熱伝播が
生じる事なく、前記距離短縮による封止部20dの熱劣
化等の不具合が生じる事がない。
On the other hand, with this structure, the reaction container 20
Although the distance between the sealing portion 20d at the lower end and the container ceiling portion 20a of the container ceiling is also shortened, the sealing 20d portion and the container ceiling portion 20a are reduced.
Since the space is formed by the opaque region 20b, heat propagation does not occur, and problems such as heat deterioration of the sealing portion 20d due to the distance reduction do not occur.

【0036】又前記いずれの実施例も配管は全て支持台
3下面に取り付けられているために、言い換えれば反応
容器1側には流体機器が一切取り付けられていないため
に、容易に発熱ランプ30とともに反応容器1を上昇さ
せる事が可能となり、これによりウエーハ6交換やメイ
ンテナンスの容易化等作業性が向上するとともに、設備
の簡素化が図れる。
Further, in all of the above-mentioned embodiments, since all the pipes are attached to the lower surface of the support base 3, in other words, no fluid equipment is attached to the reaction vessel 1 side, so that the heat generating lamp 30 can be easily attached. It is possible to raise the reaction vessel 1, which improves the workability such as exchanging the wafer 6 and facilitating maintenance, and simplifies the equipment.

【0037】[0037]

【効果】以上記載のごとく本発明によれば、ウェーハの
大口径化に対応させて溶接部を形成する事なく反応容器
を容易に大型化し得るとともに、充分なる機械的強度を
得る事の出来、これにより、最近の半導体ウェーハの処
理工程で8〜12”と大型化した場合でも前記機械強度
の増大により、高速加熱、高速冷却が可能であり、生産
性が増大する。又、石英ガラス反応容器は容器天井部
(及び透明窓部)のみ透明にし、その周囲を非透明化し
ているために、ウエーハの加熱に不要な範囲まで加熱す
る事なく容器内の保温性が向上するとともに、又ウエー
ハの加熱に不要な範囲まで熱伝播する事なく、結果とし
て不必要な反応や周辺設備や封止部への熱による悪影響
を完全に阻止出来る。而も容器天井部の周囲に非透明域
を設ける事は、加熱域と有る程度近づけた位置に封止部
を構成しても、封止部の熱劣化が生じる事なく、結果と
して容器の小形化と偏平化が可能であり、熱効率及び均
熱性の向上につながる。又本発明によれば、ウエーハ加
熱区域の保温性と均熱性を確保しつつ、ウエーハの加熱
に不要な範囲までの加熱を阻止し、不必要な反応や封止
部や周辺設備まで熱による悪影響の発生を有効に阻止し
得る。更に本発明によれば、ウエーハの交換等の作業性
の向上と操作の容易化を図る事が出来る。等の種々の著
効を有す。
[Effect] As described above, according to the present invention, it is possible to easily increase the size of the reaction vessel without forming a welded portion corresponding to the increase in the diameter of the wafer and to obtain sufficient mechanical strength. As a result, even if the size of recent semiconductor wafers is increased to 8 to 12 ″, the mechanical strength is increased, so that high-speed heating and high-speed cooling are possible, and the productivity is increased. Since only the container ceiling (and the transparent window) is transparent and the surrounding area is non-transparent, the heat retention inside the container is improved without heating to a range unnecessary for heating the wafer. As a result, it is possible to completely prevent unnecessary reactions and adverse effects of heat on peripheral equipment and sealing parts without propagating heat to areas not required for heating. Is heating Even if the sealing portion is formed at a position as close as possible, thermal deterioration of the sealing portion does not occur, and as a result, the container can be downsized and flattened, leading to improvement in thermal efficiency and thermal uniformity. Further, according to the present invention, while ensuring the heat retention and soaking property of the wafer heating area, the heating to a range unnecessary for heating the wafer is prevented, and unnecessary reactions and adverse effects of heat on the sealing part and peripheral equipment are exerted. Further, according to the present invention, it is possible to improve workability such as exchanging a wafer and to facilitate the operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】図3の反応容器を用いた本発明の実施例に係る
枚葉式熱処理装置を示す。
1 shows a single-wafer heat treatment apparatus according to an embodiment of the present invention using the reaction vessel of FIG.

【図2】図7の反応容器を用いた本発明の他の実施例に
係る枚葉式熱処理装置を示す。
2 shows a single-wafer heat treatment apparatus according to another embodiment of the present invention using the reaction vessel of FIG.

【図3】図1の装置に用いる反応容器の断面形状を示
す。
FIG. 3 shows a sectional shape of a reaction container used in the apparatus of FIG.

【図4】図3の反応容器の製造装置を示す。FIG. 4 shows an apparatus for manufacturing the reaction container of FIG.

【図5】図1の装置に用いる反応容器の断面形状を示
す。
5 shows a sectional shape of a reaction container used in the apparatus of FIG.

【図6】図5の反応容器の製造装置を示す。6 shows an apparatus for manufacturing the reaction container of FIG.

【図7】図2の装置に用いる反応容器の断面形状を示
す。
FIG. 7 shows a sectional shape of a reaction container used in the apparatus of FIG.

【図8】図7の反応容器の製造装置を示す。8 shows an apparatus for manufacturing the reaction container of FIG.

【図9】従来技術に係る枚葉式熱処理装置を示す。FIG. 9 shows a conventional single-wafer heat treatment apparatus.

【図10】従来技術に係る他の枚葉式熱処理装置を示
す。
FIG. 10 shows another conventional single-wafer heat treatment apparatus.

【符号の説明】[Explanation of symbols]

1、20 熱処理用反応容器 1a、20a 容器天井部 1b、20b 容器周囲部(側壁) 1d 加熱領域部 2 フランジ 3 支持台 4 Oリング 5 リフタ 7 サセプタ 8 ガス導入管 9 排気口 10 回転容器 18 石英粉体充填体 10a、10c 吸引減圧部 8 吸引減圧用排気装置 30 発熱ランプ 1, 20 Heat treatment reaction container 1a, 20a Container ceiling 1b, 20b Container peripheral part (side wall) 1d Heating area 2 Flange 3 Support 4 O-ring 5 Lifter 7 Susceptor 8 Gas inlet pipe 9 Exhaust port 10 Rotating container 18 Quartz Powder packing 10a, 10c Suction decompression unit 8 Suction decompression exhaust device 30 Exothermic lamp

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 反応容器の上方位置に発熱体を配し、該
発熱体よりの熱を容器天井部を通して容器内の所定位置
に配設したウエーハを加熱処理可能に構成した枚葉式ウ
エーハ熱処理装置において、 前記発熱体の熱を受熱する容器天井部が実質的に透明な
石英ガラス部位であり、又該受熱部より下端封止部に至
る容器周囲部のほとんどの領域が、気泡を含有させるこ
とにより形成される非透明(半透明及び不透明)な石英
ガラス部位であることを特徴とする枚葉式ウエーハ熱処
理装置
1. A single wafer heat treatment wherein a heating element is arranged above the reaction vessel, and heat from the heating element is heat-processed on a wafer disposed at a predetermined position in the vessel through the ceiling of the vessel. In the apparatus, the container ceiling for receiving the heat of the heating element is a substantially transparent quartz glass part, and most of the peripheral region of the container from the heat receiving part to the lower end sealing part contains bubbles. Single wafer type wafer heat treatment apparatus, which is a non-transparent (semi-transparent and opaque) quartz glass part formed by
【請求項2】 前記反応容器が略半球状、略ドーム状、
若しくは略円筒体状であり、該容器の容器天井部とその
周囲部の非透明部位が、溶接箇所が存在しない実質的に
一体物であることを特徴とする請求項1記載の熱処理装
置。
2. The reaction container has a substantially hemispherical shape, a substantially dome shape,
Alternatively, the heat treatment apparatus according to claim 1, wherein the heat treatment apparatus has a substantially cylindrical shape, and the container ceiling part and the non-transparent part of the peripheral part of the container are substantially one body with no welded part.
【請求項3】 前記容器天井部が、熱線(波長2μm)
透過率が85%以上の透明部位であり、又少なくとも容
器天井部に隣接する加熱領域部を除くその下側の容器周
囲部が、熱線(波長2μm)透過率が30%以下の非透
明部位であることを特徴とする請求項1記載の熱処理装
置。
3. The ceiling of the container is a heat ray (wavelength 2 μm)
A transparent part with a transmissivity of 85% or more, and at least a non-transparent part with a heat ray (wavelength of 2 μm) transmissivity of 30% or less in the peripheral part of the container below the heating region part adjacent to the container ceiling part. The heat treatment apparatus according to claim 1, wherein the heat treatment apparatus is provided.
【請求項4】 前記容器天井部と容器周囲部間に包含気
泡の明瞭な界面が存在せず、無段階的に包含気泡密度を
変化可能に構成した請求項1記載の熱処理装置。
4. The heat treatment apparatus according to claim 1, wherein there is no clear interface of the included bubbles between the container ceiling portion and the container peripheral portion, and the included bubble density can be changed steplessly.
【請求項5】 前記容器天井部の隣接区域を除く、前記
気泡密度が安定している容器周囲部の気泡含有量が、直
径10〜250μmの気泡を20,000個/cm3以上、
好ましくは40,000個/cm3以上である事を特徴とす
る請求項1記載の熱処理装置
5. The content of bubbles in the peripheral portion of the container where the bubble density is stable, excluding the area adjacent to the ceiling of the container, is 20,000 cells / cm 3 or more of bubbles having a diameter of 10 to 250 μm,
The heat treatment apparatus according to claim 1, wherein the number is preferably 40,000 pieces / cm 3 or more.
【請求項6】 前記反応容器の接合部が、円形状下端開
口外縁に接合したフランジのみである事を特徴とする請
求項1記載の熱処理装置
6. The heat treatment apparatus according to claim 1, wherein the joint portion of the reaction container is only a flange joined to the outer edge of the circular lower end opening.
【請求項7】 前記ウエーハの配設位置が、容器天井部
の透明部位より下側の非透明部位内に位置している事を
特徴とする請求項1記載の熱処理装置
7. The heat treatment apparatus according to claim 1, wherein the wafer is arranged in a non-transparent region below the transparent region of the container ceiling.
【請求項8】 前記容器周囲部にウエーハ処理状態を把
握する透明窓部を設け、該窓部と容器周囲部の非透明部
位が、溶接箇所が存在しない実質的に一体物であること
を特徴とする請求項1記載の熱処理装置。
8. A transparent window portion for grasping a wafer processing state is provided in the peripheral portion of the container, and the non-transparent portion of the window portion and the peripheral portion of the container is a substantially integrated body having no welded portion. The heat treatment apparatus according to claim 1.
【請求項9】 前記反応容器が封止部を介してウエーハ
が設置された支持台上に載置されるとともに、該反応容
器と支持台間が接離方向に分離可能に構成した請求項1
記載の熱処理装置
9. The reaction container is placed on a support table on which a wafer is placed via a sealing portion, and the reaction container and the support table are separable in the contact and separation directions.
Heat treatment equipment described
【請求項10】 反応容器側にガス導入通路及び排出口
を設ける事なく、これらの流体経路を支持台側にのみ設
けた事を特徴とする請求項9記載の熱処理装置
10. The heat treatment apparatus according to claim 9, wherein the gas introduction passage and the discharge port are not provided on the reaction container side, and these fluid paths are provided only on the support base side.
JP15174194A 1994-06-10 1994-06-10 Single wafer processing equipment Expired - Fee Related JP2884556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15174194A JP2884556B2 (en) 1994-06-10 1994-06-10 Single wafer processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15174194A JP2884556B2 (en) 1994-06-10 1994-06-10 Single wafer processing equipment

Publications (2)

Publication Number Publication Date
JPH07335582A true JPH07335582A (en) 1995-12-22
JP2884556B2 JP2884556B2 (en) 1999-04-19

Family

ID=15525276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15174194A Expired - Fee Related JP2884556B2 (en) 1994-06-10 1994-06-10 Single wafer processing equipment

Country Status (1)

Country Link
JP (1) JP2884556B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862302A (en) * 1994-09-28 1999-01-19 Tokyo Electron Limited Thermal processing apparatus having a reaction tube with transparent and opaque portions
US6002109A (en) * 1995-07-10 1999-12-14 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6046439A (en) * 1996-06-17 2000-04-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
WO2001031694A1 (en) * 1999-10-28 2001-05-03 Applied Materials Inc. Apparatus for manufacturing semiconductor device
JP2002075900A (en) * 2000-08-31 2002-03-15 Ulvac-Riko Inc Uniformly heating method for circular plate sample
JP2009266887A (en) * 2008-04-22 2009-11-12 Sumco Corp Semiconductor manufacturing device
JP2015502055A (en) * 2011-12-15 2015-01-19 ソイテック Deposition system having reaction chamber configured for in-situ metrology and related method
JP2015133405A (en) * 2014-01-14 2015-07-23 日立金属株式会社 Semiconductor manufacturing apparatus
US9644285B2 (en) 2011-08-22 2017-05-09 Soitec Direct liquid injection for halide vapor phase epitaxy systems and methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862302A (en) * 1994-09-28 1999-01-19 Tokyo Electron Limited Thermal processing apparatus having a reaction tube with transparent and opaque portions
US6002109A (en) * 1995-07-10 1999-12-14 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6403925B1 (en) 1995-07-10 2002-06-11 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6046439A (en) * 1996-06-17 2000-04-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
US6399921B1 (en) 1996-06-17 2002-06-04 Mattson Technology, Inc. System and method for thermal processing of a semiconductor substrate
WO2001031694A1 (en) * 1999-10-28 2001-05-03 Applied Materials Inc. Apparatus for manufacturing semiconductor device
JP2002075900A (en) * 2000-08-31 2002-03-15 Ulvac-Riko Inc Uniformly heating method for circular plate sample
JP2009266887A (en) * 2008-04-22 2009-11-12 Sumco Corp Semiconductor manufacturing device
US9644285B2 (en) 2011-08-22 2017-05-09 Soitec Direct liquid injection for halide vapor phase epitaxy systems and methods
JP2015502055A (en) * 2011-12-15 2015-01-19 ソイテック Deposition system having reaction chamber configured for in-situ metrology and related method
JP2015133405A (en) * 2014-01-14 2015-07-23 日立金属株式会社 Semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
JP2884556B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
US5651827A (en) Single-wafer heat-treatment apparatus and method of manufacturing reactor vessel used for same
JP3011866B2 (en) Single wafer processing equipment
KR100443415B1 (en) Heat treatment device
JP5982758B2 (en) Microwave irradiation device
JPH05291158A (en) Heat treatment device
KR20100017197A (en) Erosion resistance enhanced quartz used in plasma etch chamber
JPH07335582A (en) Single-wafer heat-treatment apparatus
JPH08102447A (en) Quartz glass jig for semiconductor heat treatment and manufacture thereof
KR20050031058A (en) Thermal treating apparatus
WO2005041284A1 (en) Vertical heat treatment device
JP4200844B2 (en) Heat treatment equipment
TWI484555B (en) Substrate processing apparatus and semiconductor devices manufacturing method
CN100477087C (en) Loading table and heat treating apparatus having the loading table
TW201334105A (en) Substrate processing device, method for manufacturing semiconductor device and roof insulator
JP3001374B2 (en) Reaction vessel for wafer heat treatment and method for producing the same
TWI548016B (en) A substrate stage, a substrate processing apparatus, and a semiconductor device
JP3131860B2 (en) Film processing equipment
JP3915314B2 (en) Single wafer processing equipment
JP2935468B2 (en) Vertical heat treatment equipment
JPS61156730A (en) Vertical thermal treatment apparatus for semiconductor article
JP2010086985A (en) Wafer-processing apparatus
US20030205192A1 (en) Film forming method
JP3412735B2 (en) Wafer heat treatment equipment
JP2001257167A (en) Semiconductor manufacturing device
JP2005032883A (en) Substrate treatment equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130212

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20140212

LAPS Cancellation because of no payment of annual fees