JPH07302706A - Magnetic garnet oxide powder and its manufacture - Google Patents

Magnetic garnet oxide powder and its manufacture

Info

Publication number
JPH07302706A
JPH07302706A JP6093334A JP9333494A JPH07302706A JP H07302706 A JPH07302706 A JP H07302706A JP 6093334 A JP6093334 A JP 6093334A JP 9333494 A JP9333494 A JP 9333494A JP H07302706 A JPH07302706 A JP H07302706A
Authority
JP
Japan
Prior art keywords
bi
magnetic garnet
oxide powder
method
garnet oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6093334A
Other languages
Japanese (ja)
Other versions
JP3463180B2 (en
Inventor
Tsutomu Otsuka
Etsuo Otsuki
Yoshitaka Yasuda
努 大塚
悦夫 大槻
吉孝 安田
Original Assignee
Tokin Corp
株式会社トーキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp, 株式会社トーキン filed Critical Tokin Corp
Priority to JP09333494A priority Critical patent/JP3463180B2/en
Publication of JPH07302706A publication Critical patent/JPH07302706A/en
Application granted granted Critical
Publication of JP3463180B2 publication Critical patent/JP3463180B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Abstract

PURPOSE: To obtain magnetic garnet oxide powder having fine anisotropic shape, by mixing carboxylic acid containing amino group or imino group in the respective nitrate solutions of Bi, Fe and R (one kind of rare earth elements containing Y) whose mole ratio is previously determined.
CONSTITUTION: Carboxylic acid containing amino group or imino group is mixed in the solution containing the respective nitrates of Bi, Fe and R (one kind of rare earth elements containing Y) whose mole ratio is previously determined. Thereby Bi based magnetic garnet oxide powder having chemical composition expressed by a general formula (BixR1-x)3Fe2O12 (2/3≤X<1). An optical switch wherein the Bi based magnetic garnet thin film is applied to a magnetic optical element 1 is constituted of a first double refraction crystal plate 2, a magnetic optical element 1, a second double refraction crystal plate 4 and a photodetector 5. A coil 6 for applying a magnetic field is formed around the magnetic optical element 1, and the direction of a current applied to the coil 6 can be inverted.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は,磁気光学デバイスの原料となる高純度で,組成が均一であり,かつ微細粒径であるようなBi系磁性ガーネット酸化物粉末とその製造方法及びそれを用いたBi系磁性ガーネット薄膜と,このBi系磁性ガーネット薄膜を磁気光学素子として使用し外部磁界の反転,もしくは外部磁界の印加と解除により光の通過と遮断を制御できるようにした光スイッチとその製造方法に関する。 BACKGROUND OF THE INVENTION The present invention is a high purity as a raw material for magneto-optical device, the composition is uniform, and Bi-based magnetic garnet oxide powder such that the fine particle size and its manufacturing method and the same and Bi-based magnetic garnet films used, the Bi-based using an external magnetic field inverting the magnetic garnet thin film as a magneto-optical device, or application of an external magnetic field and the optical switch to be controlled and blocking passage of light by the release and its It relates to a method for manufacturing.

【0002】 [0002]

【従来の技術】光スイッチは光の伝送方向を制御するための重要な光機能素子であり,その一つに磁気光学効果を利用したものである。 BACKGROUND OF THE INVENTION Optical switches are an important optical function element for controlling a transmission direction of light is obtained by utilizing a magneto-optical effect to that one. この光スイッチは,磁気回転素子に印加する磁界の方向を反転させることにより光をスイッチングするもので,この光スイッチは第1の複屈折結晶板と磁気光学素子と1/2波長板と,第1のものと同じ結晶方位を有し同じ厚さの第2の複屈折結晶板と光検出器とを光路中でこの順序に並べた構成である。 The optical switch is for switching the light by reversing the direction of the magnetic field applied to the magnetic rotator, the optical switch has a first birefringent crystal plate and the magneto-optical element and the half-wave plate, the and one of those and having the same crystal orientation and same thickness second birefringent crystal plate photodetector is configured by arranging in this order on the optical path. そして,磁気光学素子の周囲には磁場を印加するためのコイルが設けられており,印加する電流の方向を反転できるように構成される。 Then, around the magneto-optical element is provided with a coil for applying a magnetic field configured to allow reversing the direction of current to be applied. この光スイッチがオンの状態には, The light switch is turned on,
コイルに流す電流により磁気光学素子には,光軸方向に外部磁界が印加される。 The magneto-optical element by a current flowing through the coil, the external magnetic field is applied in the optical axis direction. その時,第1の複屈折結晶板で光はP成分とS成分に分離され,磁気光学素子でその偏波面が同方向にさらに45度回転する。 At that time, the light in the first birefringent crystal plate is separated into P component and S component, the polarization plane in the magneto-optical element is rotated further 45 ° in the same direction. この結果,S成分はP成分に,またP成分に変換されて第2の複屈折結晶板に入射する。 As a result, S components in P component, also enters into the second birefringent crystal plate is converted into P component. そのため分離されていた光は再び一致し第2の複屈折結晶板から出る光は1本に集められ光検出器で受光される。 Therefore light which has been separated match again the light exiting from the second birefringent crystal plate is received by the collected light detector into one. 一方,光スイッチがオフ状態の時には,コイルに逆向きの電流を流し,磁気光学素子に印加する磁場の方向を反転させると,第1の複屈折結晶板で分離されたP成分とS成分は磁気光学素子では前記オンの時とは逆方向に45度偏波面が回転する。 On the other hand, when the light switch is in the OFF state, flowing reverse current to the coil, when reversing the direction of the magnetic field applied to the magneto-optical element, P component and S component separated in the first birefringent crystal plate 45 ° polarization in the opposite direction to rotate the case of the on the magneto-optical element. ついで,1 Then, 1
/2波長板ではオンの時と同じように45度回転するので,磁気光学素子による偏波面の回転と1/2波長板による偏波面の回転とはちょうど相殺されS成分はS成分のまま,またP成分はP成分のまま第2の複屈折結晶板に達する。 / Because the half-wave plate rotates just as 45 degrees and when on, just offset S component of the rotation of the polarization plane by rotating and half-wave plate of the polarization due to the magneto-optical element as S-component, the P component reaches the second birefringent crystal plate as the P component. したがってそれを通過した光はさらに分離した光検出器には達しない。 Light passing through it is therefore not yet reach the separate photodetector.

【0003】ところで,光スイッチは,外部磁界のオンオフによりスイッチング制御するもので,ファラデー回転角が90度の磁気光学素子を挾んでその前後に偏光子を配設した構成を有している。 Meanwhile, the optical switch is for switching control by the on-off of the external magnetic field, the Faraday rotation angle has a structure which is disposed a polarizer before and after sandwiching the magneto-optical element 90 degrees. この光スイッチの2個の偏光子の偏波面の方向は動作モードに応じて同一であっても,90度異なるように設けてもよい。 Be the same in accordance with the two directions of polarization of the polarizer of the optical switch operation mode may be provided differently 90 degrees.

【0004】従来,このような磁気回転効果を応用した光スイッチにおいて,磁気光学素子には磁性ガーネット結晶板が用いられていた。 Conventionally, in the optical switch which employ such gyromagnetic effect, the magnetic garnet crystal plate has been used in the magneto-optical element. その磁性ガーネットの結晶板の製造方法としては液層エピタキシャル法やスパッタ法が考えられる。 As a method for producing the crystal plate of the magnetic garnet liquid layer epitaxial method or a sputtering method can be considered.

【0005】一方,磁性ガーネット膜の製法としては, [0005] On the other hand, as a manufacturing method of a magnetic garnet film,
磁性ガーネット粉末を用いる方法が検討されている。 A method using a magnetic garnet powder has been studied. この方法で磁気光学素子用の磁性ガーネット膜を製造するためには,組成及び形状が均一であるような粉末の製造方法が必要である。 To produce the magnetic garnet film for magneto-optical element in this way, there is a need for method of producing a powder, such as composition and shape is uniform. これまでの磁性ガーネット粉末の製造方法には,一般的な粉末冶金による固相反応を利用した製法や共沈法が用いられてきた。 Previous to the method of manufacturing a magnetic garnet powder, general method and coprecipitation method using the solid-phase reaction by powder metallurgy have been used.

【0006】粉末冶金による固相反応法においては,磁性ガーネットの構成元素である,鉄(Fe),ビスマス(Bi),希土類元素(以下,Rと呼ぶ)の各々の酸化物粉末を目的組成になるように秤量し,湿式もしくは乾式で混合し,乾燥,熱処理を施して製造される。 In [0006] the solid phase reaction method by powder metallurgy, which are constituent elements of the magnetic garnet, iron (Fe), bismuth (Bi), a rare earth element (hereinafter, referred to as R) the target composition of the oxide powder of each were weighed such that, mixed with wet or dry, drying, is produced by heat treatment.

【0007】また,共沈法によってもBi系磁性ガーネット薄膜の研究開発が進められている。 [0007] In addition, research and development of the Bi-based magnetic garnet thin film has been promoted also by co-precipitation method. 共沈法による磁性ガーネット粉末の製造工程は以下の通りである。 The manufacturing process of the magnetic garnet powder according to the coprecipitation method is as follows. 目標の組成になるように調整した硝酸塩混合水溶液中に,アンモニア水等のアルカリ溶液をPHが9〜11前後になるように加え共沈澱物を得る。 Nitrate mixed aqueous solution was adjusted to the composition of the target, an alkaline solution such as aqueous ammonia PH is 9-11 obtain such added co precipitate be around. この共沈澱物を蒸留水等で充分に洗浄し,遠心分離機等により脱水したのち乾燥し500〜700℃で熱処理して磁性ガーネット粉末が製造される。 The co-precipitate was thoroughly washed with distilled water or the like, the magnetic garnet powder is produced by heat-treating in a dry 500 to 700 ° C. After dehydrated by a centrifugal separator or the like.

【0008】 [0008]

【発明が解決しようとする課題】年々光スイッチの低コスト化の要求が高まってきている。 The object of the invention is to be Solved has been increasing year by year request of the cost of the optical switch. 従来の光スイッチでは磁気光学素子に単結晶の磁性ガーネット膜が使用されてきた。 Magnetic garnet film of a single crystal have been used in the magneto-optical element in the conventional optical switch. しかし,上述の液相エピタキシャル法やスパッタ法では大面積の磁性ガーネット膜が得られず結晶育成にも長時間を要する。 However, it takes a long time to crystal growth can not be obtained the magnetic garnet film having a large area in the liquid phase epitaxial method or a sputtering method described above. これがコスト高の原因になっており改善の要求がなされている。 This demand for improvement has become a cause of high cost have been made.

【0009】一方では,光透過率の大きい光スイッチの要求がなされている。 [0009] While the request of a large optical switch of the optical transmittance have been made. この要求に応えるためには,必要とするファラデー回転材料の光透過方向の厚さを小さくすればよく,ファラデー回転係数の大きな磁性膜が必要となる。 This in order to meet the requirements, may be reduced light transmission direction of the thickness of the Faraday rotation materials requiring requires a large magnetic film of the Faraday rotation coefficient. したがって,例えば,(R 1-x Bi x3 Fe Thus, for example, (R 1-x Bi x ) 3 Fe
512 (0≦x≦1)で与えられる磁性ガーネット膜において,ファラデー回転係数を大きくするためにはxを増大させればよく,x=1の時ファラデー回転係数が最大となる。 In 5 O 12 magnetic garnet film given by (0 ≦ x ≦ 1), in order to increase the Faraday rotation coefficient it is sufficient to increase the x, Faraday rotation coefficient when x = 1 is maximized. しかし液相エピタキシャル法では,Bi系ガーネットの製造においてBiの組成を(R 1-x Bi x In However the liquid phase epitaxial method, the composition of Bi in the manufacture of a Bi-based garnet (R 1-x Bi x)
3 Fe 512 (0≦x≦1)としたときx=1であるような組成の結晶を製造することは未だ成功していない。 3 Fe 5 O 12 (0 ≦ x ≦ 1) and the fact that the production of crystals of composition such that x = 1 when has not yet succeeded.

【0010】現在の所,Bi系磁性ガーネット(R 1-x [0010] of the current place, Bi-based magnetic garnet (R 1-x
Bi x3 Fe 512 (0≦x≦1)において,x=1 Bi x) 3 Fe 5 O 12 in (0 ≦ x ≦ 1), x = 1
の材料はスパッタ法による薄膜のみしか得られていない。 Materials are not only obtained only thin film by sputtering. しかしスパッタ法では膜の成長速度がおよそ0.0 However, in the sputtering film growth rate of approximately 0.0
6μm/Hrと非常に遅い。 Very slow and 6μm / Hr. そのためファラデー回転角の大きい特性が要求されるような製品に応用するのに充分な膜厚(例えば波長0.8μmの光の偏光面が45° Therefore polarization plane of sufficient thickness (e.g. with a wavelength of 0.8μm light to be applied to products, such as large characteristic of Faraday rotation angle is required to 45 °
回転するのに必要な膜厚はおよそ20μm)を得るには非常に時間がかかり,製造コストが高いという欠点がある。 The film thickness required to rotate get approximately 20 [mu] m) is very time consuming, there is a disadvantage that the manufacturing cost is high.

【0011】一方,上述したように,磁性ガーネット膜の製造方法として,磁性ガーネット粉末を用いる方法も検討されてきた。 Meanwhile, as described above, as a method for producing a magnetic garnet film, a method of using the magnetic garnet powder have also been studied. この場合,組成が均一で,形状が均一な粉末が要求される。 In this case, a uniform composition, shape uniform powder is required.

【0012】従来の一般的な粉末冶金による製法を用いてBi系磁性ガーネットを製造しようとする場合,B [0012] When trying to produce a Bi-based magnetic garnet with the preparation by conventional general powder metallurgy, B
i,Fe及びRの原料粉末を均一に混合することは非常に難しく,分散剤を溶媒に加えて粉末同志の凝集を防ぎ,さらに長時間混合しなければならない。 i, it is very difficult to uniformly mix the raw material powder of Fe and R, prevents agglomeration of the powder each other by adding a dispersing agent in a solvent, it must be mixed for a longer time. しかし,長時間混合する場合には,外部やボールミル装置等から不純物が混入する可能性がある。 However, in the case of mixing a long time, there is a possibility that impurities are mixed from the outside or a ball mill device or the like. 製造工程の管理が難しい。 It is difficult to control of the manufacturing process. また長時間混合することはコストアップにもつながる。 The mixing long time leads to cost. 特に,湿式混合の場合,脱水,乾燥の工程を経た後,熱処理を施さなければならないため非常に手間がかかるコスト高の要因になるという欠点がある。 In particular, in the case of wet mixing, dehydration, after a drying step, has the disadvantage that very a factor of time-consuming expensive because they must subjected to heat treatment.

【0013】また,一般的な粉末冶金による製造方法においては,熱処理の段階では,粉末冶金法の場合反応が固相反応であるため,均一に構成元素同志を反応させることは非常に困難で,均一な組成のBi系磁性ガーネット粉末の製造は難しい。 [0013] In a typical manufacturing process according to powder metallurgy, in the stage of heat treatment, for the case of powder metallurgy the reaction is a solid-phase reaction, reacting the uniform configuration elements comrades is very difficult, manufacturing a Bi-based magnetic garnet powder of uniform composition is difficult. またBi系磁性ガーネット(R The Bi-based magnetic garnet (R
1-x Bi x3 Fe 512 (0≦x≦1)においてxが2/3以上(但しRによりxの最大値は異なる)とすることは,Biの反応性の問題から極めて困難である。 1-x Bi x) 3 Fe 5 O 12 (0 ≦ x ≦ 1) x is less than 2/3 in (but that the maximum value of x is different) by R is very difficult reactivity problems Bi it is.

【0014】一方,共沈法の場合には,組成の均一な粉末ができる。 [0014] On the other hand, in the case of the coprecipitation method can uniformly powder composition. しかしこの方法でBi系の磁性ガーネット(R 1-x Bi x3 Fe 512 (0≦x≦1)を製造してもx=1の粉末は得られていない。 But not the powder obtained x = 1 be manufactured of Bi-based magnetic garnet (R 1-x Bi x) 3 Fe 5 O 12 (0 ≦ x ≦ 1) in this way.

【0015】ところで,Bi系磁性ガーネット{(Bi [0015] By the way, Bi-based magnetic garnet {(Bi
x1-X3 Fe 512 (0≦x≦1)}において,B In x R 1-X) 3 Fe 5 O 12 (0 ≦ x ≦ 1)}, B
iの量を増大させる,即ち,xを限りなく,1に近づける)ことによりファラデー回転角を増大させる効果のあることは,既に知られている。 i increases the amount of, i.e., unlimitedly x, 1 to close) that is effective to increase the Faraday rotation angle by are already known.

【0016】しかし,粉末冶金法において,Bi系磁性ガーネット((Bi x1-X3 Fe 512 (0≦x≦ [0016] However, in powder metallurgy, Bi-based magnetic garnet ((Bi x R 1-X ) 3 Fe 5 O 12 (0 ≦ x ≦
1))においてxが2/3以上(但し,Rによりxの最大値は異なる)とすることは,Biの反応性の問題から不可能である。 1)) x 2/3 or more in (However, the maximum value of x by R are different) and that is not possible from the reaction of the problems of Bi.

【0017】一方,共沈法の場合には,組成の均一な酸化物粉末ができるという利点がある。 Meanwhile, in the case of the coprecipitation method, there is the advantage that it is homogeneous oxide powder composition. しかし,この方法でBi系の磁性ガーネット(Bi x1-X3 Fe 5 However, the magnetic garnet Bi-based in this method (Bi x R 1-X) 3 Fe 5 O
12 (0≦x<1)を製造することができるがRを含まない,即ち,x=1の粉末は得られていない。 12 it is possible to produce a (0 ≦ x <1) does not include the R, i.e., x = 1 of the powder is not obtained.

【0018】また近年,平均粒径0.5μm以下でかつ粒度分布の狭いBi系磁性ガーネット酸化物粉末の要求が高まってきている。 [0018] In recent years, there has been an increasing demand for an average particle size of 0.5μm or less and a narrow Bi-based magnetic garnet oxide powder particle size distribution. しかし,粉末冶金的な製造方法では原料の粉末が0.5μm以上ありかつ,熱処理を施すため粒成長を引き起こし,この要求に応えることができない。 However, the powder metallurgy production method has the raw material powder than 0.5μm and causes grain growth for the heat treatment, it can not meet this demand. 一方,共沈法によっても500〜700℃で熱処理をほどこさねばならず粒成長が進みこの要求を満たすことができない。 Meanwhile, grain growth without must given a heat treatment at 500 to 700 ° C. proceeds can not satisfy this requirement by coprecipitation.

【0019】更に,最近になってBi系磁性ガーネット酸化物粉末を磁界で駆動させる液晶ディスプレイについて検討されている。 Furthermore, it has been studied for a liquid crystal display for driving in the magnetic field of the Bi-based magnetic garnet oxide powder recently. この場合粉末の形状としては,針状もしくは平板状の粉末が要求される。 In this case the shape of powder, the acicular or plate-like powder is required. しかし,従来の製造方法では,等方的な球に近い形状のものしか得られなかった。 However, in the conventional manufacturing method, not only obtained a shape close to a isotropic spheres.

【0020】そこで,本発明の第1の技術的課題は,微細であり,異方的な形状を有するBi系磁性ガーネット酸化物粉末を提供することにある。 [0020] Accordingly, a first technical object of the present invention is a fine, is to provide a Bi-based magnetic garnet oxide powder having an anisotropic shape.

【0021】また,本発明の第2の技術的課題は,共沈法等の製造方法に比べて,その組成を(R 1-x Bi x [0021] The second technical object of the present invention, as compared to the manufacturing method such as a coprecipitation method, the composition (R 1-x Bi x)
3 Fe 512 (但し0≦x≦1)と表したとき,xの大きい粉末が得られるBi系磁性ガーネット酸化物粉末の製造方法を提供することにある。 3 Fe 5 O 12 (where 0 ≦ x ≦ 1) when expressed and is to provide a method for producing a Bi-based magnetic garnet oxide powder having a large powder x is obtained.

【0022】また,本発明の第3の技術的課題は,Bi [0022] The third technical object of the present invention, Bi
系磁性ガーネット膜に用いられる酸化物粉末の製造が可能であるBi系磁性ガーネット酸化物粉末とその製造方法とを提供することにある。 And to provide a Bi-based magnetic garnet oxide powder and its manufacturing method it is possible to produce the oxide powder used in the system magnetic garnet film.

【0023】また,本発明の第4の技術的課題は,ファラデー回転角の大きなBi系磁性ガーネット膜を提供することにある。 [0023] The fourth technical object of the present invention is to provide a large Bi-based magnetic garnet film of the Faraday rotation angle.

【0024】また,本発明の第5の技術的課題は,スパッタ法よりも容易に前記Bi系磁性ガーネット膜が得られるBi系磁性ガーネット膜の製造方法を提供することにある。 Further, the fifth technical object of the present invention is to provide a method for producing a Bi-based magnetic garnet film easily the Bi-based magnetic garnet film is obtained than sputtering.

【0025】また,本発明の第6の技術的課題は,前記Bi系磁性ガーネット膜を磁気光学素子として用いた光スイッチを提供することにある。 Further, the sixth technical problem of the present invention is to provide an optical switch using the Bi-based magnetic garnet film as a magneto-optical device.

【0026】また,本発明の第7の技術的課題は,前記光スイッチを製造する方法を提供することにある。 [0026] The seventh technical object of the present invention is to provide a method for producing the optical switch.

【0027】 [0027]

【課題を解決するための手段】本発明によれば,一般式,(Bi x1-X3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種,2/3≦x<1)で示される化学組成を有することを特徴とするBi系磁性ガーネット酸化物粉末が得られる。 According to Means for Solving the Problems] The present invention, formula, (Bi x R 1-X ) 3 Fe 5 O 12 ( provided that at least one rare earth element R, including the Y, 2/3 ≦ x <is Bi-based magnetic garnet oxide powder characterized by having a chemical composition represented by 1) is obtained.

【0028】本発明によれば,一般式,Bi 3 Fe 5 According to the invention, the general formula, Bi 3 Fe 5 O
12 (但し,RはYを含む希土類元素の少なくとも一種) 12 (provided that at least one rare earth element R, including a Y)
で示される化学組成を有することを特徴とするBi系磁性ガーネット酸化物粉末が得られる。 In Bi-based magnetic garnet oxide powder characterized by having a chemical composition represented are obtained.

【0029】本発明によれば,Fe,Bi,R(但し, According to the present invention, Fe, Bi, R (where,
RはYを含む希土類元素の内の少なくとも一種)を含むBi−Fe系ガーネット酸化物粉末の製造方法において,予め定められたモル比のBi,Fe,Rの夫々の硝酸塩を含む溶媒を用意する準備工程と,前記硝酸塩を含む溶媒にアミノ基又はイミノ基を含むカルボン酸を混合した混合溶液を得る有機酸混合工程と,前記混合溶液を加熱してBi−Fe系ガーネット酸化物粉末を得る加熱工程とを含むことを特徴とする磁性ガーネット酸化物粉末の製造方法が得られる。 R in at least one) A method of manufacturing a Bi-Fe garnet oxide powder comprising of the rare earth elements including Y, providing a solvent containing Bi predetermined molar ratio, Fe, nitrates of each of R heating to obtain a preparation step, an organic acid mixture to obtain a mixed solution of a carboxylic acid containing an amino group or imino group in the solvent containing the nitrate, the Bi-Fe garnet oxide powder and heating the mixture method for producing a magnetic garnet oxide powder which comprises the step is obtained. ここで,本発明において,アミノ基又はイミノ基を含むカルボン酸としては,アミノ酢酸,アラニン,トレオニン,アルギニン等のα−アミノ酸であるアミノ酸及びプロリン等のα−イミノ酸であるイミノ酸が例示できるが,α−アミノ酸が最も好ましい。 In the present invention, the carboxylic acid containing an amino group or an imino group, an amino acid, alanine, threonine, imino acids can be exemplified an α- imino acids of an amino acid and proline is α- amino acids such as arginine There, α- amino acid is most preferable.

【0030】本発明によれば,前記磁性ガーネット酸化物粉末の製造方法において,前記加熱工程は,前記溶媒の沸点以上の温度に加熱された気流中に前記混合溶液を噴霧して,前記混合溶液中の溶媒を気化させることを含むことを特徴とする磁性ガーネット酸化物粉末の製造方法が得られる。 According to the invention, the method of manufacturing a magnetic garnet oxide powder, wherein the heating step, the mixed solution was sprayed into a stream which has been heated to a temperature above the boiling point of the solvent, the mixed solution method for producing a magnetic garnet oxide powder, characterized in that it comprises vaporizing the solvent in the obtained.

【0031】本発明によれば,基板上に塗布されたBi According to the present invention, Bi applied to the substrate
系磁性ガーネット酸化物粉末からなる膜であって,前記Bi系磁性ガーネット酸化物粉末は,一般式,Bi 3 A film made from the system magnetic garnet oxide powder, the Bi-based magnetic garnet oxide powder is represented by the general formula, Bi 3 F
512 (但し,RはYを含む希土類元素の少なくとも一種)で示される組成を有することを特徴とするBi系磁性ガーネット膜が得られる。 e 5 O 12 (where, R represents at least one rare earth element including Y) Bi-based magnetic garnet film characterized by having a composition represented by is obtained.

【0032】本発明によれば,基板上に塗布されたBi According to the present invention, Bi applied to the substrate
系磁性ガーネット酸化物粉末からなる膜であって,前記Bi系磁性ガーネット酸化物粉末は一般式,(Bi x A film made from the system magnetic garnet oxide powder, the Bi-based magnetic garnet oxide powder formula, (Bi x R
1-X3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種,0<x<1)で示される組成を有することを特徴とするBi系磁性ガーネット膜が得られる。 1-X) 3 Fe 5 O 12 ( where, R represents at least one rare earth element including Y, 0 <Bi-based magnetic garnet film characterized by having a composition represented by x <1) is obtained.

【0033】本発明によれば,基板上に塗布された磁性ガーネット酸化物粉末からなる膜であって,前記磁性ガーネット酸化物粉末は,一般式,R 3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種)で示される組成を有することを特徴とする磁性ガーネット膜が得られる。 According to the present invention, there is provided a film comprising a magnetic garnet oxide powder coated on the substrate, wherein the magnetic garnet oxide powder represented by the general formula, R 3 Fe 5 O 12 (where, R represents Y magnetic garnet film is obtained which is characterized by having a composition represented by at least one) of rare earth elements including.

【0034】本発明によれば,前記したいずれかのBi According to the present invention, any of the above Bi
系磁性ガーネット酸化物粉末の製造方法により得られたBi系磁性ガーネット酸化物粉末にバインダーを混合するバインダー混合工程と,基板上に塗布する塗布工程とを含むことを特徴とするBi系磁性ガーネット酸化物膜の製造方法が得られる。 Bi-based magnetic garnet oxide, characterized in that it comprises a binder mixing step of mixing the binder in Bi-based magnetic garnet oxide powder obtained by the production method of the system magnetic garnet oxide powder, and a coating step of coating on a substrate method of manufacturing an object film.

【0035】ここで,本発明のBi系磁性ガーネット酸化物膜の製造方法において,前記バインダーとして,ジオメタン等の有機溶媒を用いることができるが,Bi系ガーネットと同等の高屈折率をもつものならば,これらに限定されず,例えば,メタクリル樹脂(PMMA), [0035] Here, in the manufacturing method of the Bi-based magnetic garnet oxide film of the present invention, as the binder, it is possible to use an organic solvent such as diomethane, if those with high refractive index equivalent to that of the Bi garnet if not limited to, for example, methacrylic resin (PMMA),
フッ素系樹脂,ポリエチレン系樹脂,ポリスチレン系樹脂,ポリカーボネート系樹脂,ナイロン系樹脂,ビニル系樹脂,アクリル系樹脂の有機系樹脂や,鉛系ガラスなどの無機系溶媒を用いることができる。 Fluorine-based resins, polyethylene resins, polystyrene resins, polycarbonate resins, nylon resins, vinyl resins, or organic resin of an acrylic resin, or an inorganic solvent such as lead glass.

【0036】また,本発明のBi系磁性ガーネット酸化物膜の製造方法において,前記基板として,透明なガラス,及びセラミック基板のうちの少なくとも一種が使用できるが,これらに限定されるものではない。 [0036] In the method of manufacturing the Bi-based magnetic garnet oxide film of the present invention, as the substrate, a transparent glass, and at least one of a ceramic substrate can be used, but is not limited thereto.

【0037】即ち,本発明では,Bi系磁性ガーネット酸化物粉末の製造方法において,Bi,Feの硝酸塩もしくはBi,Fe及び希土類元素の硝酸塩とアミノ基又はイミノ基を含むカルボン酸の錯体との溶液を加熱処理することによりBi系磁性ガーネット粉末と,その製造する方法を提供するものである。 [0037] That is, the solution of the present invention, in the manufacturing method of the Bi-based magnetic garnet oxide powder, Bi, nitrate or Bi of Fe, and complexes of carboxylic acids containing nitrate and amino group or imino group of Fe and rare earth elements and Bi-based magnetic garnet powder by heating, and there is provided a process for their preparation. 更に,この粉末をジオメタン等の有機溶媒をバインダーとして用い該粉末と混合した後,セラミック等の基板上に塗布してBi磁性ガーネッ磁性膜と,安価に製造する方法とを提供するものである。 Further, after the organic solvent diomethane like this powder was mixed with the powder used as a binder, there is provided a Bi magnetic garnet magnetic film by applying onto a substrate a ceramic or the like, and a method of inexpensively.

【0038】また,本発明では,光スイッチにおける磁気回転光学素子に用いる磁性ガーネット膜を自己燃焼法で製造される粉末を用いて得られた磁性膜を用いて磁気光学素子を構成し,これを光スイッチに使用するものである。 [0038] In the present invention, a magnetic garnet film used for magnetic rotating optical element in the optical switch constitutes a magneto-optical element using a magnetic film obtained by using the powder produced by the self-combustion method, it it is to use the light switch.

【0039】即ち,本発明によれば,Bi,Feの硝酸塩もしくはBi,Fe及び希土類元素の硝酸塩とアミノ基又はイミノ基を含むカルボン酸の錯体との溶液を加熱することにより,Bi系磁性ガーネット粉末を製造し, [0039] That is, according to the present invention, Bi, nitrate or Bi of Fe, by heating a solution of the complex of carboxylic acids containing nitrate and amino group or imino group of Fe and rare earth elements, Bi-based magnetic garnet powder manufacture,
これにバインダーを混合するなどして基板上に塗布して得られた磁性ガーネット膜を磁気光学素子に使用した光スイッチを提供するものである。 Such as by mixing the binder is to provide an optical switch using a magnetic garnet film obtained by coating on the substrate to the magneto-optical element thereto.

【0040】尚,本発明の光スイッチにおいて磁気光学素子以外の構成要素は,従来のものと同様な構成でもよい。 [0040] Incidentally, components other than the magneto-optical element in the optical switch of the present invention may be a conventional same as the structure.

【0041】 [0041]

【作用】本発明において,Bi系磁性ガーネット酸化物粉末の構成元素の硝酸塩をアミノ酸の錯体との溶液を加熱,溶媒を蒸発させると,自己燃焼反応が起こり,組成の均一なBi系磁性ガーネット酸化物粉末が製造される。 [Action] In the present invention, the solution heated with complexes of the nitrates of the constituent elements of Bi-based magnetic garnet oxide powder acids, and evaporation of the solvent, occurs spontaneous combustion reaction, uniform Bi based magnetic garnet oxide composition objects powder is produced. この反応は非常に速やかに起こるため,(R 1-X Since this reaction is very rapidly occurring, (R 1-X B
x3 Fe 512 (但し0≦x≦1)の磁性ガーネット酸化物粉末においてx≧2/3であるような磁性ガーネット酸化物粉末の製造が可能となる。 i x) 3 Fe 5 O 12 ( where the production of magnetic garnet oxide powder such that x ≧ 2/3 in the magnetic garnet oxide powder 0 ≦ x ≦ 1) becomes possible.

【0042】さらに,この方法によれば,反応が瞬時に進むことから粒成長が起こらないため,粒径が0.5μ [0042] Further, according to this method, since the reaction does not take place grain growth because it proceeds instantaneously, the particle size 0.5μ
m以下の粒度分布幅の狭いBi系磁性ガーネット酸化物粉末を製造することができる。 Narrow Bi-based magnetic garnet oxide powder having the following particle size distribution width m can be produced.

【0043】また,本発明によれば異方的な形状のBi [0043] Further, Bi anisotropic shape according to the present invention
系磁性ガーネット酸化物粉末の製造が可能である。 It is possible to manufacture a system magnetic garnet oxide powder. さらに,本発明により製造されたBi系磁性ガーネット酸化物粉末を基板に塗布した後,熱処理することによりBi Further, after the Bi-based magnetic garnet oxide powder prepared by the present invention was applied to the substrate, Bi by heat treatment
系磁性ガーネット膜の製造が可能である。 It is possible to produce a system the magnetic garnet film.

【0044】また,本発明において,上述の自己燃焼法で製造された粉末を基板に塗布して得られた磁性ガーネット膜は,従来の液相エピタキシャル法やスパッタ法のものよりも大きな面積のものが容易に得られるため磁気光学素子のコストダウンが可能となる。 [0044] Further, in the present invention, a magnetic garnet film obtained by applying the powder produced by the self-combustion method described above to the substrate is of a greater area than that of the conventional liquid phase epitaxial method or a sputtering method cost of the magneto-optical element for can easily be obtained becomes possible. この自己燃焼反応は非常に速やかに起こるため,(R 1-x Bi x3 Since the self-combustion reaction is very rapidly occurring, (R 1-x Bi x ) 3 F
512 (但し0≦x≦1)の磁性ガーネット粉末においてx≧2/3であるような磁性ガーネット粉末が得られこれを用いて磁性ガーネット膜を製造するので,従来よりも薄い磁性ガーネット膜でファラデー回転角の大きな磁気光学素子即ち光透過率の大きい素子の製造が可能になる。 Since the production of magnetic garnet film magnetic garnet powder such that x ≧ 2/3 in the magnetic garnet powder using this obtained in e 5 O 12 (where 0 ≦ x ≦ 1), thin magnetic garnet than conventional production of large elements of large magneto-optical element or light transmittance of the Faraday rotation angle is made possible by the film.

【0045】 [0045]

【実施例】以下,本発明の実施例について図面を参照して説明する。 EXAMPLES The following will be described with reference to the accompanying drawings embodiments of the present invention.

【0046】(実施例1)光スイッチにおいて自己燃焼法により作製した粉末を用いて磁性ガーネット膜を作製し,それを用いて磁気光学素子を作製し光スイッチを作製した。 [0046] (Example 1) to prepare a magnetic garnet film by using a powder prepared by self-combustion method in the optical switch, to produce an optical switch to produce a magneto-optical element using the same.

【0047】粉末の製法は以下の通りである。 The preparation of the powder is as follows. まず, First of all,
Y,Bi,及びFeの硝酸塩を(Y 1- x Bi x3 Fe Y, Bi, and Fe of the nitrate (Y 1- x Bi x) 3 Fe
512 (但しx=0.5)となるように秤量し,純水に溶解し,その溶液中にアミノ酢酸を15wt%となるように添加しよく混合した。 5 O 12 (where x = 0.5) were weighed so as to, and dissolved in pure water, and mixed well were added to a 15 wt% aminoacetic acid to the solution. 次にこの溶液を300℃に加熱し水分を蒸発させた。 Then the water was evaporated by heating the solution to 300 ° C.. 水分蒸発後,溶液の残留物は自己燃焼反応を起こし,磁性ガーネット粉末が得られた。 After water evaporation, the residue of the solution undergoes a spontaneous combustion reaction, the magnetic garnet powder was obtained.

【0048】これをジオメタンと混合し,ガラス基板上に塗布してスピンナー上で毎分100回転と高速回転させて膜厚を±10%以下に均一化して磁性ガーネット膜を作製した。 [0048] This was mixed with diomethane to prepare a magnetic garnet film is uniform below ± 10% of the film thickness 100 rpm and rotated at high speed on a spinner and was coated on a glass substrate. この方法で作製した磁性ガーネット膜の面積は100cm 2であった。 Area of the magnetic garnet film produced by this method was 100 cm 2. 従来の液相エピタキシャル法により製造した磁性ガーネット膜の面積は最大25c Area of ​​the magnetic garnet film produced by conventional liquid phase epitaxial method is the maximum 25c
2程度であるので,上述の方法によれば従来の磁性ガーネット膜よりも大きな面積のものを得ることができることが判明した。 Since a m 2 approximately, according to the above-described method can than conventional magnetic garnet film can be obtained in higher areas were found.

【0049】図1及び図2は本発明の実施例1に係る光スイッチの構成例を概略的に示しており,磁気光学素子を上記製法で作製したものを用いたことを除いて,従来のものと同様な構成を有する。 [0049] FIGS. 1 and 2 embodiment has a configuration example of an optical switch according to 1 schematically illustrates the present invention, except that the magneto-optical element used was prepared in the above method, the conventional It has the same configuration as ones. そして,図1に示される光スイッチは,磁気光学素子に印加する磁場の反転によりスイッチング動作させるものであり,図2に示される光スイッチは,磁場の印加と解除によりスイッチング動作させるものである。 Then, the optical switch shown in FIG. 1, which causes a switching operation by reversal of the magnetic field applied to the magneto-optical element, the optical switch shown in Figure 2 is one which switching operation by releasing the application of a magnetic field. さらに具体的に説明すると,図1 More specifically, FIG. 1
の光スイッチは,第1の複屈折結晶板2と,磁気光学素子12と,1/2波長板3と,第1の複屈折結晶板2と同じ結晶方位を有し同じ厚さの第2の複屈折結晶板4 The optical switch, a first birefringent crystal plate 2, a magneto-optical element 12, 1/2-wavelength plate 3, the same thickness having a first same crystal orientation as the birefringent crystal plate 2 second the birefringent crystal plate 4
と,光検出器5とを光路中で,入射側からこの順序に並べた構成である。 When, a photodetector 5 in the optical path, a structure in which arranged from the incident side in this order. 磁気光学素子1の周囲には磁場を印加するためのコイル6が設けられており,このコイル6に印加する電流の方向を反転できるように構成される。 Around the magneto-optical element 1 and coil 6 is provided for applying a magnetic field configured to allow reversing the direction of current applied to the coil 6. 図1(A)は光スイッチがオンの状態を示している。 1 (A) is an optical switch indicates an ON state. コイル6に流す電流により磁気光学素子1には,白抜きの矢印で示される向きの外部磁界(Ha)が印加される。 The magneto-optical element 1 by current flowing through the coil 6, the external magnetic field direction indicated by the outline arrow (Ha) is applied. まず,入射した光10aは第1の複屈折結晶板2で第1の成分(P成分)と第2の成分(S成分)に分離され,磁気光学素子1でその偏波面が45度回転される。 First, the light 10a incident is separated into a first component (P component) and a second component (S component) in the first birefringent crystal plate 2, the polarization plane in the magneto-optical element 1 is rotated 45 degrees that. そして1/2波長板3で同方向にさらに45度回転される。 And it is further rotated 45 degrees in the same direction at a half-wave plate 3. この結果,S成分はP成分に,またP成分はS成分に夫々変換されて第2の複屈折結晶板4に入射する。 As a result, the S component in the P component and the P component enters into the second birefringent crystal plate 4 are respectively converted into the S component. このため分離されていた光は再び一致し,第2の複屈折結晶板4 Therefore light which has been separated coincide again, the second birefringent crystal plate 4
から出る光10bは1本に集められた光検出器5で受光される。 Light 10b exiting is received by the photodetector 5 collected into one.

【0050】それに対して,コイル6に逆向きの電流を流し,図1(B)に示すように磁気光学素子1に印加する磁場の方向を白抜きの矢印Hbで示す方向に反転させると,第1の複屈折結晶板2で分離されたP成分とS成分は磁気光学素子1では前記オンの時とは逆方向に45 [0050] In contrast, flowing reverse current to the coil 6, when reversing the direction of the magnetic field applied to the magneto-optical element 1, as shown in FIG. 1 (B) in the direction indicated by arrow Hb of white, the first P component and S component separated by the birefringent crystal plate 2 is the time of the on-the magneto-optical element 1 45 in the reverse direction
度偏波面が回転する。 Degree plane of polarization is rotated. 次いで1/2波長板4では前記オンの時と同じように45度回転するので,磁気光学素子1による偏波面の回転波長板1/2波長板3による偏波面の回転とはちょうど相殺されS成分はS成分のまま, Then so rotated 45 degrees as if the on-the half-wave plate 4, just offset from the rotation of the polarization plane by the rotating waveplate half-wave plate 3 of the plane of polarization by magneto-optical element 1 S remains of the S component is component,
またP成分はP成分のまま第2の複屈折結晶板4に達する。 The P component reaches the second birefringent crystal plate 4 as the P component. したがってそれを通過した光は更に分離した光10 Thus light 10 light is further separated passing through it
c及び10dに夫々なり,光検出器5には達しない。 Become respectively the c and 10d, it does not reach the light detector 5.

【0051】図2は外部磁界のオンオフによりスイッチング制御する光スイッチの構成を示している。 [0051] Figure 2 shows a structure of an optical switch for switching control by the on-off of the external magnetic field. 図2の光スイッチにおいては,外部磁界のオンオフは,コイル6 In the optical switch of FIG. 2, on-off of the external magnetic field, the coil 6
に通電する電流のオンオフで制御されている。 It is controlled by on-off of the current supplied to. 図2に示すように,光スイッチは,ファラデー回転角が90度の磁気光学素子1を挾んでその前後に第1及び第2の偏光子2´,4´を配設している。 As shown in FIG. 2, the optical switch, the Faraday rotation angle is first and second polarizer before and after sandwiching the magneto-optical element 1 90 ° 2 ', are arranged 4'. なお2個の偏光子2´, It should be noted that two of the polarizer 2 ',
4´の偏波面の方向は動作モードに応じて同一であっても,90度異なるように受けてもよい。 Direction of the plane of polarization of the 4 'may be the same depending on the operation mode, it may receive differently 90 degrees. また,磁場はコイル6に電流を印加することにより誘起され,スイッチ9によりオンオフすることにより制御される。 Further, the magnetic field is induced by applying a current to the coil 6 is controlled by on-off by the switch 9. 磁気光学素子1の内部には磁性ガーネット膜3´が入っている。 Containing the magnetic garnet film 3 'on the inside of the magneto-optical element 1.
尚,図中符号7はコイルに電流を印加するための直流電源で,符号8は抵抗である。 Incidentally, reference numeral 7 is a DC power source for applying a current to the coil, reference numeral 8 denotes a resistance.

【0052】以上,説明したように,本発明の実施例1 [0052] As described above, the first embodiment of the present invention
によれば従来よりも大きな面積の磁性ガーネット膜が容易に得られるので,磁気光学素子の低コスト化を図ることができ,さらには光スイッチの低コスト化が可能となった。 Since the magnetic garnet film having a large area than a conventional According to is easily obtained, it is possible to reduce the cost of the magneto-optical element, and further it became possible to reduce the cost of the optical switch.

【0053】(実施例2)図3は本発明に関するものであって,実施例1で得られたBi系磁性ガーネット粉をジオメタンと混合し,ガラス基板上に塗布して得られた磁性膜のファラデー回転角のBi組成依存性を示すものである。 [0053] (Embodiment 2) FIG. 3 A relates present invention, the Bi-based magnetic garnet powder obtained in Example 1 was mixed with diomethane, magnetic film obtained was coated on a glass substrate It shows the Bi composition dependency of Faraday rotation angle. 図3中において,実線(○)(ロ)は,本発明によるBi系磁性ガーネット膜のファラデー回転角を示し,点線(●)(イ)は,比較例としてスパッタ法により製造されたもののファラデー回転角度を示した。 In FIG. 3, solid line (○) (b) shows a Faraday rotation angle of the Bi-based magnetic garnet film according to the present invention, the dotted line (●) (b), the Faraday rotation those produced by sputtering as a comparative example It showed the angle. 本比較例においては,ファラデー回転角が45°以上を得るのに充分な膜厚のものを製造することはできなかった。 In this comparative example, it was not possible to produce of sufficient thickness to Faraday rotation angle to obtain a 45 ° or more.

【0054】本発明の実施例2に関する粉末作製法は次の通りである。 [0054] Powder production method concerning the second embodiment of the present invention is as follows.

【0055】まずY,Bi,Feの硝酸塩を(Y 1-x Firstly Y, Bi, nitrates of Fe (Y 1-x B
x3 Fe 512 (x=0.2,0.4,0.6, i x) 3 Fe 5 O 12 (x = 0.2,0.4,0.6,
0.8)になるように秤量し,純水に溶解し,その溶液中にアミノ酢酸を15wt%となるように添加して良く混合した。 Were weighed so as to 0.8), was dissolved in pure water, and mixed well by adding an amino acid into the solution so that 15 wt%. 次にこの溶液を300℃に加熱し水分を蒸発させた。 Then the water was evaporated by heating the solution to 300 ° C.. 水分蒸発後,溶液の残留物は自己燃焼反応を起こし,磁性ガーネット粉末が得られた。 After water evaporation, the residue of the solution undergoes a spontaneous combustion reaction, the magnetic garnet powder was obtained. さらにこの粉末をジオメタンと混合し,ガラス基板上に塗布することにより磁性ガーネット膜複合板を得た。 Further, this powder was mixed with diomethane to obtain a magnetic garnet film composite plate by coating on a glass substrate.

【0056】この実施例2からわかるように本発明によれば,従来のスパッタ法よりもファラデー回転角の大きいBi系磁性ガーネット膜が容易に得られる。 [0056] According to the present invention As can be seen from Example 2, a large Bi-based magnetic garnet film of the Faraday rotation angle than the conventional sputtering method can be easily obtained.

【0057】さらに,実施例2に係る方法により作製した磁性ガーネット膜(Bi 3 Fe 512 )を用いて磁気光学素子を作製し,光スイッチとしての性能を評価した。 [0057] Further, to produce a magneto-optical device using the magnetic garnet film produced by the method according to Example 2 (Bi 3 Fe 5 O 12 ), and evaluate the performance as an optical switch. スイッチの構成は図2に示した構成と同様のものを用いた。 Switch configuration used was the same as that shown in FIG. 使用した光源の波長はλ=0.8μm,磁性ガーネット膜の厚さは20μmとし,ガラス−ガーネット膜複合板の両面に波長0.8μmに対する無反射コート膜を施した。 The wavelength of the light source used was lambda = 0.8 [mu] m, the thickness of the magnetic garnet film is a 20 [mu] m, the glass - were subjected to non-reflection coating film with respect to the wavelength 0.8 [mu] m on both surfaces of the garnet film composite plate. 性能評価の結果,オン状態で透過率70 Results of the performance evaluation, the transmittance 70 in the ON state
%,オフ状態で同じく0.5%が得られ,このガラスガーネット膜複合板か光スイッチとして動作することを確認できた。 %, Also 0.5% was obtained in the off state, it was confirmed to operate as an optical switch or the glass garnet film composite plate.

【0058】(実施例3)図4は本発明の実施例3によるBi系磁性ガーネット酸化物粉末の粒度分布と比較例として従来の製造方法により製造されたBi系磁性ガーネット酸化物粉末の粒度分布を示す図である。 [0058] (Embodiment 3) FIG. 4 is a particle size distribution of a conventional Bi-based magnetic garnet oxide powder produced by the production process as a comparative example the particle size distribution of the Bi-based magnetic garnet oxide powder according to Example 3 of the present invention is a diagram illustrating a. 図4において,曲線(11)は実施例3のBi系磁性ガーネット酸化物粉末の粒度分布であり,曲線(12)は比較例として共沈法により製造されたBi系磁性ガーネット酸化物粉末の粒度分布,曲線(13)は従来の粉末冶金法により製造されたBi系磁性ガーネット酸化物粉末の粒度分布を示している。 4, curve (11) is a particle size distribution of Bi-based magnetic garnet oxide powder of Example 3, curve (12) is the particle size of the Bi-based magnetic garnet oxide powder prepared by the coprecipitation method as a comparative example distribution, curve (13) shows the particle size distribution of Bi-based magnetic garnet oxide powder produced by conventional powder metallurgy.

【0059】図4の曲線(14)に示す本発明の実施例3に係るBi系磁性ガーネット酸化物粉末の製造方法は次の通りである。 The method of manufacturing a Bi-based magnetic garnet oxide powder according to Example 3 of the present invention shown by the curve in FIG. 4 (14) are as follows. Bi,Y,Fe,の硝酸塩をBi 1.4 Bi, Y, Fe, of nitrate Bi 1.4
1. 6 Fe 512で示す化学組成となるように秤量し, Y 1. and weighed so that the chemical composition shown in 6 Fe 5 O 12,
純水中に溶解させ,その水溶液中に,アミノ酢酸が15 Was dissolved in pure water, into the aqueous solution, the amino acid 15
wt%となるように添加しよく混合した。 And mixed well were added such that the wt%. 次に,このアミノ酸混合溶液を300℃に加熱し,アミノ酸混合液中の水分を蒸発させた。 Then, heating the amino acid mixed solution in 300 ° C., to evaporate water in the amino acid mixture. 水分蒸発後,溶液の残留物は自己燃焼反応を起こし,Bi系磁性ガーネット酸化物粉末が得られた。 After water evaporation, the residue of the solution undergoes a spontaneous combustion reaction, Bi-based magnetic garnet oxide powder was obtained.

【0060】また,比較例に係る共沈法によるBi系磁性ガーネット酸化物粉末の製造を次のように行った。 [0060] In addition, it was produced Bi-based magnetic garnet oxide powder by co-precipitation method according to the comparative example as follows. 組成がBi 1.41.6 Fe 512となるように調整したB B the composition was adjusted to Bi 1.4 Y 1.6 Fe 5 O 12
i,Y,Feの硝酸塩を純水に溶解し,これにアンモニア水を混入し,共沈澱物を得た。 i, Y, dissolving nitrates of Fe in pure water, this was mixed with ammonia water to obtain a coprecipitate. 最終的な溶液のpHは10.7であった。 The pH of the final solution was 10.7. この沈澱物を500〜700℃の温度で1時間熱処理することにより粉末を得た。 The precipitate to obtain a powder by 1 hour heat treatment at a temperature of 500 to 700 ° C.. また,図4の曲線(13)に示したBi系磁性ガーネット酸化物粉末の製造方法は次の通りである。 A method of manufacturing a Bi-based magnetic garnet oxide powder shown in curve in FIG. 4 (13) are as follows. 原料としては,Bi As a raw material, Bi
23 ,Y 23 ,Fe 23の粉末を純水中で40時間エンプラ製のボールミルで混合し,脱水,乾燥させた後,700℃で熱処理して,粉末を得た。 2 O 3, Y 2 O 3 , Fe 2 O 3 in the powder were mixed with 40 hour engineering plastic-made ball mill with pure water, dehydrated, dried, and heat-treated at 700 ° C., to obtain a powder. 得られた粒度分布を調べたその結果を図14に示す。 The results of examining the obtained particle size distribution shown in FIG. 14.

【0061】図4からわかるように,本発明の実施例3 [0061] As can be seen from FIG. 4, Example 3 of the present invention
によれば,従来の方法に比べて粒度分布が狭く,平均粒径の小さな粉末が得られる。 According to a narrow particle size distribution as compared with the conventional method, a small powder having an average particle size is obtained. なお,本発明の実施例3において,希土類としてYの代わりに他の希土類元素の硝酸塩を用いても同様の結果が得られた。 Note that in the third embodiment of the present invention, Y Similar results using nitrate other rare earth elements instead of as a rare earth has been obtained.

【0062】(実施例4)図5は本発明の実施例4によるBi系磁性ガーネット酸化物{(Bi x1-X3 [0062] (Embodiment 4) FIG. 5 is Bi-based magnetic garnet oxide according to Example 4 of the present invention {(Bi x Y 1-X ) 3 F
512 (但し0≦x≦1)}粉末のBi組成(x)を変化させたときの磁性ガーネットのX線回折強度のピーク比の変化を示し,併せて従来法である共沈法により製造されたBi系磁性ガーネット酸化物粉末の磁性ガーネットのX線回折強度のピーク比の変化を示した。 e 5 O 12 (where 0 ≦ x ≦ 1) shows changes in} peak ratio of X-ray diffraction intensity of the magnetic garnet when Bi composition powder (x) is changed, together coprecipitation a conventional method It shows changes in peak ratio of X-ray diffraction intensity of the magnetic garnet Bi-based magnetic garnet oxide powder produced by. 図5において,黒丸を結んだ実線(14)は本発明の実施例4 5, a solid line connecting black circles (14) of Example 4 of the present invention
に係るBi系磁性ガーネット酸化物粉末,白丸を結んだ破線(15)は従来例に係るBi系磁性ガーネット酸化物粉末を夫々示している。 Bi-based magnetic garnet oxide according to powder, broken line connecting the white circles (15) shows a Bi-based magnetic garnet oxide powder according to a conventional example, respectively.

【0063】図5に示す本発明の実施例4に係るBi系磁性ガーネット酸化物粉末の製造方法は次の通りである。 [0063] The method of producing a Bi-based magnetic garnet oxide powder according to Example 4 of the present invention shown in FIG. 5 is as follows. まず,Y,Bi,Feの夫々の硝酸塩を{(Bi x First, Y, Bi, Fe of each of the nitrate {(Bi x
1-X3 Fe 512 (但しx=0,0.1,0.3, Y 1-X) 3 Fe 5 O 12 ( where x = 0,0.1,0.3,
0.5,0.7,1)}のモル比となるように秤量し, 0.5,0.7,1) were weighed so as to molar ratios},
純水に溶解し,その水溶液中にアミノ酢酸を15wt% Was dissolved in pure water, 15 wt% aminoacetic acid in aqueous solution
となるように添加しよく混合した。 It was added to a well mixed. 次に,このアミノ酸水溶液を300℃に加熱し水分を蒸発させた。 Then, water was evaporated by heating the aqueous amino acid solution to 300 ° C.. 水分蒸発後,溶液の残留物は自己燃焼反応を起こし,磁性ガーネット粉末が得られた。 After water evaporation, the residue of the solution undergoes a spontaneous combustion reaction, the magnetic garnet powder was obtained.

【0064】また,比較例として共沈法による粉末の製造は次のように行った。 [0064] The production of powder by co-precipitation method as a comparative example was carried out as follows.

【0065】Y,Bi,Feの硝酸塩を{(Bi x [0065] Y, Bi, nitrates of Fe {(Bi x Y
1-X3 Fe 512 (但しx=0,0.1,0.3, 1-X) 3 Fe 5 O 12 ( where x = 0,0.1,0.3,
0.5,0.7,1)}となるように秤量し,純水に溶解し,これにアンモニア水を混入し,共沈澱物を得た。 0.5,0.7,1) were weighed so that}, was dissolved in pure water, this was mixed with ammonia water to obtain a coprecipitate.
最終的な溶液のpHは10.7であった。 The pH of the final solution was 10.7. この沈澱物を500〜700℃の温度で1時間熱処理することにより粉末を得た。 The precipitate to obtain a powder by 1 hour heat treatment at a temperature of 500 to 700 ° C..

【0066】図5からわかるように,実線(14)で示される実施例4に係るBi系磁性ガーネット酸化物粉末では,Biの組成に依存することなく磁性ガーネット酸化物粉末が得られ,他方,破線(15)で示される従来法である共沈法により得られたBi系磁性ガーネット粉末においては,x≧0.5ではBi系磁性ガーネット酸化物粉末が得られない。 [0066] As can be seen from FIG. 5, the Bi-based magnetic garnet oxide powder according to Example 4 shown by a solid line (14), the magnetic garnet oxide powder without depending on the composition of Bi is obtained, while, in Bi-based magnetic garnet powder obtained by the coprecipitation method is a conventional method shown by the broken line (15), x ≧ 0.5 in Bi-based magnetic garnet oxide powder can not be obtained.

【0067】なお,本発明の実施例4において,希土類としてYの代わりに他の希土類元素の硝酸塩を用いても同様の結果が得られた。 [0067] Incidentally, in the fourth embodiment of the present invention, Y Similar results using nitrate other rare earth elements instead of as a rare earth has been obtained.

【0068】(実施例5)図6は本発明の実施例5に係るBi系磁性ガーネット酸化物粉末の形状を示す図であり,比較の為に従来例によるBi系磁性ガーネット酸化物粉末の形状を示した。 [0068] (Embodiment 5) FIG. 6 is a view showing the shape of a Bi-based magnetic garnet oxide powder according to Example 5 of the present invention, the shape of the Bi-based magnetic garnet oxide powder according to the conventional example for comparison showed that. 図6の縦軸は相対頻度を,横軸は粉体のSEM像より2次元的な解析により粉体の慣性モーメントを求め,それに相当する楕円の短軸/長軸の比を示している。 The vertical axis relative frequency of FIG. 6, the horizontal axis obtains a powder of inertia by two-dimensional analysis from SEM image of the powder, which represents the ratio of the short axis / long axis of the ellipse corresponding thereto. 粉末の製造方法は,実施例4と同様の方法によるもので,実線の曲線(16)は実施例3に係る粉末,破線の曲線(17)は従来の共沈法によるものである。 Method of producing a powder is due to the same method as in Example 4, the solid line curve (16) is a powder according to Example 3, dashed curve (17) is due to the conventional co-precipitation method.

【0069】この図からわかるように,本発明の実施例3によれば,従来の共沈法に比べて(短軸/長軸)比の大きい形状の分布を有する粉末が得られる。 [0069] As can be seen from this figure, according to the third embodiment of the present invention, a powder having a distribution of large shapes of conventional coprecipitation compared to (minor axis / major axis) ratio.

【0070】また本発明において,粉末の形状に及ぼす効果は,希土類元素の量及び種類にはよらない。 [0070] In the present invention, the effect on the shape of the powder is not dependent on the amount and type of rare earth element.

【0071】(実施例6)図7は本発明の実施例6によるBi系磁性ガーネット酸化物粉末から形成した磁性薄膜のファラデー回転角のBi組成依存性を示す図であり,比較の為に,スパッタ法により製造されたものを示した。 [0071] (Embodiment 6) FIG. 7 is a diagram showing a Bi composition dependency of Faraday rotation angle of the magnetic thin film formed from the Bi-based magnetic garnet oxide powder according to Example 6 of the present invention, for comparison, It showed those produced by sputtering. 図7において,「○」で示す実線(ニ)は,本発明の実施例6によるBi系磁性ガーネット膜のファラデー回転角を示し,「●」に示す破線(ハ)は比較例のスパッタ法により製造された磁性薄膜のファラデー回転角を示している。 7, a solid line indicated by "○" (d) shows a Faraday rotation angle of the Bi-based magnetic garnet film according to Example 6 of the present invention, the broken line indicated by "●" (c) by sputtering in Comparative Example It shows a Faraday rotation angle of the magnetic thin film manufactured.

【0072】本発明の実施例6に係る磁性薄膜の製造方法は次の通りである。 [0072] method of manufacturing a magnetic thin film according to a sixth embodiment of the present invention is as follows. まずY,Bi,Feの硝酸塩を{(Bi x1-X3 Fe 512 (但しx=0,0. First Y, Bi, nitrates of Fe {(Bi x Y 1- X) 3 Fe 5 O 12 ( where x = 0,0.
2,0.4,0.6,0.8)}となるように秤量し, Was weighed so as to 2,0.4,0.6,0.8)},
純水に溶解し,その溶液中にアミノ酢酸を15wt%となるように添加しよく混合した。 Was dissolved in pure water, an amino acid and mixed well were added so that 15 wt% in the solution. 次にこの溶液を300 Then, this solution 300
℃に加熱し水分を蒸発させた。 ℃ heated water evaporated. 水分蒸発後,溶液の残留物は自己燃焼反応を起し,磁性ガーネット粉末が得られた。 After water evaporation, the residue of the solution undergoes a spontaneous combustion reaction, the magnetic garnet powder was obtained. さらにこの粉末をジオメタンと混合し,セラミック基板上に塗布して,100〜300℃の温度で熱処理することにより磁性膜を得た。 Further, this powder was mixed with diomethane was applied on a ceramic substrate to obtain a magnetic film by annealing at a temperature of 100 to 300 ° C..

【0073】また,比較例においては,ファラデー回転角が45°以上を得るのに充分な膜厚のものを製造することはできなかったが,本発明の実施例4においては, [0073] In the comparative example, the Faraday rotation angle is not possible to produce of sufficient thickness to obtain a 45 ° or more, in the fourth embodiment of the present invention,
ファラデー回転角が45°以上のものが得られた。 Faraday rotation angle was obtained more than 45 °.

【0074】この実施例からわかるように本発明の実施例4によれば,従来のスパッタ法よりもファラデー回転角の大きいBi系磁性ガーネット膜が容易に得られる。 [0074] According to the fourth embodiment of the present invention As can be seen from this example, a large Bi-based magnetic garnet film of the Faraday rotation angle than the conventional sputtering method can be easily obtained.

【0075】 [0075]

【発明の効果】以上,説明したように,本発明によれば,Bi系磁性ガーネット酸化物粉末の製造が可能である。 Effect of the Invention] As described above, according to the present invention, it is possible to produce a Bi-based magnetic garnet oxide powder.

【0076】また,本発明によれば,共沈法等の製造方法に比べて,その組成を(R 1-x Bi x3 Fe 512 [0076] Further, according to the present invention, as compared to the manufacturing method such as a coprecipitation method, the composition (R 1-x Bi x) 3 Fe 5 O 12
(但し0≦x≦1)と表したとき,xの大きいBi系磁性ガーネット酸化物粉末及びその製造方法とを提供することができる。 (Where 0 ≦ x ≦ 1) when expressed and can provide the large Bi-based magnetic garnet oxide powder and a manufacturing method thereof of x.

【0077】また,本発明によれば,より微細であり, Further, according to the present invention, a finer,
異方的な形状を有するBi系磁性ガーネット酸化物粉末とその製造方法を提供することができる。 It can provide Bi-based magnetic garnet oxide powder having an anisotropic shape and a manufacturing method thereof. さらに,本発明によれば,スパッタ法よりも容易にファラデー回転角の大きなBi系磁性ガーネット膜とその製造方法とを提供することができる。 Furthermore, according to the present invention, it is possible to provide a large Bi-based magnetic garnet film easily Faraday rotation angle than sputtering and its manufacturing method.

【0078】また,本発明では,液相エピタキシャル法やスパッタ法により得られる磁性ガーネット膜よりも大面積の磁性膜を用いるので,磁気光学素子の低コスト化が図られ,従来の光スイッチと同等以上の特性のものがより低価格で提供可能となる。 [0078] In the present invention, since using a magnetic film having a large area than the magnetic garnet film obtained by liquid phase epitaxial method or a sputtering method, a reduced cost of the magneto-optical element is substantially the same as that in the conventional optical switch more than the properties it is possible to provide at a lower cost.

【0079】また,本発明によれば,自己燃焼反応は非常に速やかに起こるため,(R 1-x Bi x3 Fe 5 Further, according to the present invention, since the self-combustion reaction is very rapidly occurring, (R 1-x Bi x ) 3 Fe 5 O
12 (但し0≦x≦1)においてx≧2/3であるような磁性ガーネット粉末の製造が可能であるので,薄い磁性ガーネット膜で磁気光学素子を構成することが可能となり,光の透過率の大きい光スイッチの提供が可能となる。 12 (where 0 ≦ x ≦ 1) Since it is possible to produce magnetic garnet powder such that x ≧ 2/3 in a thin magnetic garnet film it is possible to configure the magneto-optical element, the light transmittance of the provide an optical switch it is possible large.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例1に係る光スイッチの構成を示すものであって,磁気光学素子に印加する磁場の反転によりスイッチング動作させるものであり,(A)は光スイッチがオンの状態を,(B)は光スイッチがオフの状態をそれぞれ示している。 [1] there is shown a structure of an optical switch according to the first embodiment of the present invention is intended to switching operation by the reversal of the magnetic field applied to the magneto-optical element, (A) the light switch is turned on the, (B) an optical switch indicates the oFF state, respectively.

【図2】本発明の実施例1に係る光スイッチであって外部磁場のオンオフによりスイッチング動作させるものである。 [2] An optical switch according to the first embodiment of the present invention by on-off of the external magnetic field is intended for switching operation.

【図3】本発明の実施例3によりBi系磁性ガーネット粉末を製造し,該粉末をジオメタンと混合し,セラミック基板上に塗布し,さらに100〜300℃の温度で熱処理として得られた磁性薄膜のファラデー回転角のBi [Figure 3] to produce a Bi-based magnetic garnet powder according to Example 3 of the present invention, the powder is mixed with diomethane, applied on a ceramic substrate, a magnetic thin film was obtained as further heat treatment at a temperature of 100 to 300 ° C. Bi of the Faraday rotation angle of the
組成依存性を示すものである。 It shows the composition dependency.

【図4】本発明の実施例3によるBi系磁性ガーネット酸化物粉末の粒度分布を示す図であり,比較例も併せて示している。 [Figure 4] is a diagram showing a particle size distribution of the Bi-based magnetic garnet oxide powder according to Example 3 of the present invention, also shows comparative examples.

【図5】本発明の実施例4によるBi系磁性ガーネット酸化物{(Bi x1-X3 Fe 512 (但し0≦x≦ [5] Bi-based magnetic garnet oxide according to Example 4 of the present invention {(Bi x Y 1-X ) 3 Fe 5 O 12 ( where 0 ≦ x ≦
1)}粉末のBi組成(x)を変化させた時のX線回折強度のピーク比の変化を示す図で,比較例として共沈法により作製したBi系磁性ガーネット酸化物粉末のX線回折強度のピーク比の変化を示した。 1)} a diagram showing a change in the peak ratio of the X-ray diffraction intensity when changing the Bi composition of the powder (x), X-ray diffraction of the Bi-based magnetic garnet oxide powder prepared by the coprecipitation method as a comparative example It shows changes in peak ratios of intensities.

【図6】本発明の実施例5によるBi系磁性ガーネット酸化物粉末の形状の解析結果を示す図であり,比較例として共沈法により作製されたBi系磁性ガーネット酸化物粉末の形状を解析結果も示している。 [Figure 6] is a diagram showing an analysis result of the shape of the Bi-based magnetic garnet oxide powder according to Example 5 of the present invention, analyzing the shape of the Bi-based magnetic garnet oxide powder produced by coprecipitation method as a comparative example The results are also shown.

【図7】本発明の実施例6によりBi系磁性ガーネット酸化物粉末を製造し,該粉末をジオメタンと混合し,セラミック基板上に塗布して得られた磁性薄膜のファラデー回転角のBi組成依存性を示す図で,比較例としてスパッタ法により製造されたものも示している。 [7] to prepare a Bi-based magnetic garnet oxide powder according to Example 6 of the present invention, mixed with diomethane the powder, Bi composition dependency of the Faraday rotation angle of the magnetic thin film obtained by coating on a ceramic substrate in view showing sex also shows those produced by sputtering as a comparative example.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 磁気光学素子 2,4 複屈折結晶板 2´,4´ 偏光板 3 1/2波長板 3´ 磁性ガーネット膜 5 光検出器 6 コイル 7 直流電源 8 抵抗 1 magneto-optical elements 2 double refraction crystal plate 2 ', 4'polarizer 3 1/2 wave plate 3'magnetic garnet film 5 photodetector 6 coils 7 DC power source 8 resistance

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 // H01F 10/24 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 Docket No. FI technique in identification symbol Agency display portion // H01F 10/24

Claims (10)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 一般式,(Bi x1-X3 Fe 512 1. A general formula, (Bi x R 1-X ) 3 Fe 5 O 12
    (但し,RはYを含む希土類元素の少なくとも一種,2 (Provided that at least one rare earth element R, including the Y, 2
    /3≦x<1)で示される化学組成を有することを特徴とするBi系磁性ガーネット酸化物粉末。 / 3 ≦ x <Bi-based magnetic garnet oxide powder characterized by having a chemical composition represented by 1).
  2. 【請求項2】 一般式,Bi 3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種)で示される化学組成を有することを特徴とするBi系磁性ガーネット酸化物粉末。 2. A general formula, Bi 3 Fe 5 O 12 (where, R represents at least one rare earth element including Y) Bi-based magnetic garnet oxide powder characterized by having a chemical composition represented by.
  3. 【請求項3】 Fe,Bi,R(但し,RはYを含む希土類元素の内の少なくとも一種)を含むBi−Fe系ガーネット酸化物粉末の製造方法において,予め定められたモル比のBi,Fe,Rの夫々の硝酸塩を含む溶媒を用意する準備工程と,前記硝酸塩を含む溶媒にアミノ基又はイミノ基を含むカルボン酸を混合した混合溶液を得る有機酸混合工程と,前記混合溶液を加熱してBi−F Wherein Fe, Bi, R (where, R represents at least one of rare earth elements including Y) The method of manufacturing a Bi-Fe garnet oxide powder containing, in predetermined molar ratio Bi, Fe, heating a preparation step of preparing a solvent containing a nitrate of each of R, and organic acid mixture to obtain a mixed solution of a carboxylic acid containing an amino group or imino group in the solvent containing the nitrate, the mixed solution to Bi-F
    e系ガーネット酸化物粉末を得る加熱工程とを含むことを特徴とする磁性ガーネット酸化物粉末の製造方法。 Method for producing a magnetic garnet oxide powder, characterized in that it comprises a heating step to obtain the e-based garnet oxide powder.
  4. 【請求項4】 請求項3記載の磁性ガーネット酸化物粉末の製造方法において,前記加熱工程は,前記溶媒の沸点以上の温度に加熱された気流中に前記混合溶液を噴霧して,前記混合溶液中の溶媒を気化させることを含むことを特徴とする磁性ガーネット酸化物粉末の製造方法。 4. A method for producing a magnetic garnet oxide powder according to claim 3, wherein said heating step, the mixed solution was sprayed into a stream which has been heated to a temperature above the boiling point of the solvent, the mixed solution method for producing a magnetic garnet oxide powder, characterized in that it comprises vaporizing the solvent in the.
  5. 【請求項5】 基板上に塗布されたBi系磁性ガーネット酸化物粉末からなる膜であって,前記Bi系磁性ガーネット酸化物粉末は,一般式,Bi 3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種)で示される組成を有することを特徴とするBi系磁性ガーネット膜。 5. A film made of Bi-based magnetic garnet oxide powder coated on the substrate, wherein the Bi-based magnetic garnet oxide powder is represented by the general formula, Bi 3 Fe 5 O 12 (where, R represents Y Bi-based magnetic garnet film characterized by having a composition represented by at least one) of rare earth elements including.
  6. 【請求項6】 基板上に塗布されたBi系磁性ガーネット酸化物粉末からなる膜であって,前記Bi系磁性ガーネット酸化物粉末は一般式,(Bi x1-X3 Fe 5 6. A film made of Bi-based magnetic garnet oxide powder coated on the substrate, wherein the Bi-based magnetic garnet oxide powder formula, (Bi x R 1-X ) 3 Fe 5
    12 (但し,RはYを含む希土類元素の少なくとも一種,0<x<1)で示される組成を有することを特徴とするBi系磁性ガーネット膜。 O 12 (provided that at least one rare earth element R, including the Y, 0 <x <1) Bi -based magnetic garnet film characterized by having a composition represented by.
  7. 【請求項7】 基板上に塗布された磁性ガーネット酸化物粉末からなる膜であって,前記磁性ガーネット酸化物粉末は一般式,R 3 Fe 512 (但し,RはYを含む希土類元素の少なくとも一種)で示される組成を有することを特徴とする磁性ガーネット膜。 7. A film comprising a magnetic garnet oxide powder coated on the substrate, wherein the magnetic garnet oxide powder formula, R 3 Fe 5 O 12 (where, R represents a rare earth element including Y magnetic garnet film characterized by having a composition represented by at least one).
  8. 【請求項8】 ファラデー回転効果による偏波面回転性を有する磁気光学素子と偏光素子とを含む光スイッチにおいて,前記磁気光学素子に請求項5乃至7の内のいずれか記載の磁性ガーネット膜を用いたことを特徴とする光スイッチ。 Use the optical switch comprising a magneto-optical element and the polarizing element, a magnetic garnet film according to any one of said magneto-optical element to claim 5 or 7 having the polarization plane rotation due 8. Faraday rotation effect optical switch and said be had.
  9. 【請求項9】 請求項3又は4記載のBi系磁性ガーネット酸化物粉末の製造方法により得られたBi系磁性ガーネット酸化物粉末にバインダーを混合するバインダー混合工程と,基板上に塗布する塗布工程とを含むことを特徴とするBi系磁性ガーネット酸化物膜の製造方法。 9. The method of claim 3 or 4 and a binder mixing step of mixing the binder in Bi-based magnetic garnet oxide powder obtained by the production method of the Bi-based magnetic garnet oxide powder according, coating step of coating on a substrate method for producing a Bi-based magnetic garnet oxide film which comprises and.
  10. 【請求項10】 ファラデー回転効果による偏波面回転性を有する磁気光学素子と偏光素子より成る光スイッチを製造する方法において,前記磁気光学素子に,Bi及びFeの硝酸塩を必須としたアミノ基又はイミノ基を含むカルボン酸との錯体の溶液を加熱して粉末を得,この粉末にバインダーを混合した後,透明基板上に塗布することにより製造した磁性ガーネット膜を用いること特徴とする光スイッチの製造方法。 10. A method of manufacturing an optical switch consisting of polarizing element and magneto-optical element having a polarization plane rotation due Faraday rotation effect, the magneto-optical element, an amino group or imino were essential nitrate of Bi and Fe to obtain a powder by heating a solution of complex of a carboxylic acid containing a group, after mixing the binder to the powder, the manufacture of the optical switch, characterized by using a magnetic garnet film produced by coating on a transparent substrate Method.
JP09333494A 1994-05-02 1994-05-02 Manufacturing method of preparation and the magnetic garnet oxide film of magnetic garnet oxide powder Expired - Fee Related JP3463180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09333494A JP3463180B2 (en) 1994-05-02 1994-05-02 Manufacturing method of preparation and the magnetic garnet oxide film of magnetic garnet oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09333494A JP3463180B2 (en) 1994-05-02 1994-05-02 Manufacturing method of preparation and the magnetic garnet oxide film of magnetic garnet oxide powder

Publications (2)

Publication Number Publication Date
JPH07302706A true JPH07302706A (en) 1995-11-14
JP3463180B2 JP3463180B2 (en) 2003-11-05

Family

ID=14079377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09333494A Expired - Fee Related JP3463180B2 (en) 1994-05-02 1994-05-02 Manufacturing method of preparation and the magnetic garnet oxide film of magnetic garnet oxide powder

Country Status (1)

Country Link
JP (1) JP3463180B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785455A1 (en) * 1996-01-18 1997-07-23 AT&amp;T Corp. Non-mechanical optical fiber switch
US8836045B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US8921897B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit with gate electrode conductive structures having offset ends
US8951916B2 (en) 2007-12-13 2015-02-10 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8966424B2 (en) 2007-03-07 2015-02-24 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9202779B2 (en) 2008-01-31 2015-12-01 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9240413B2 (en) 2006-03-09 2016-01-19 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9269702B2 (en) 2009-10-13 2016-02-23 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the same
US9336344B2 (en) 2006-03-09 2016-05-10 Tela Innovations, Inc. Coarse grid design methods and structures
US9390215B2 (en) 2008-03-27 2016-07-12 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
EP2930159A4 (en) * 2012-12-06 2016-07-20 Shinetsu Chemical Co Light-transmitting bismuth-substituted rare-earth iron garnet-type sintered material, and magnetooptical device
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9595515B2 (en) 2007-03-07 2017-03-14 Tela Innovations, Inc. Semiconductor chip including integrated circuit defined within dynamic array section
US9633987B2 (en) 2007-03-05 2017-04-25 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US9673825B2 (en) 2006-03-09 2017-06-06 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785455A1 (en) * 1996-01-18 1997-07-23 AT&amp;T Corp. Non-mechanical optical fiber switch
US9711495B2 (en) 2006-03-09 2017-07-18 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US10186523B2 (en) 2006-03-09 2019-01-22 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features formed in part from rectangular layout shapes on gate horizontal grid and first-metal structures formed in part from rectangular layout shapes on at least eight first-metal gridlines of first-metal vertical grid
US8839175B2 (en) 2006-03-09 2014-09-16 Tela Innovations, Inc. Scalable meta-data objects
US10141334B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first-metal structures
US10141335B2 (en) 2006-03-09 2018-11-27 Tela Innovations, Inc. Semiconductor CIP including region having rectangular-shaped gate structures and first metal structures
US9336344B2 (en) 2006-03-09 2016-05-10 Tela Innovations, Inc. Coarse grid design methods and structures
US9917056B2 (en) 2006-03-09 2018-03-13 Tela Innovations, Inc. Coarse grid design methods and structures
US10217763B2 (en) 2006-03-09 2019-02-26 Tela Innovations, Inc. Semiconductor chip having region including gate electrode features of rectangular shape on gate horizontal grid and first-metal structures of rectangular shape on at least eight first-metal gridlines of first-metal vertical grid
US10230377B2 (en) 2006-03-09 2019-03-12 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9905576B2 (en) 2006-03-09 2018-02-27 Tela Innovations, Inc. Semiconductor chip including region having rectangular-shaped gate structures and first metal structures
US8921897B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit with gate electrode conductive structures having offset ends
US8921896B2 (en) 2006-03-09 2014-12-30 Tela Innovations, Inc. Integrated circuit including linear gate electrode structures having different extension distances beyond contact
US8946781B2 (en) 2006-03-09 2015-02-03 Tela Innovations, Inc. Integrated circuit including gate electrode conductive structures with different extension distances beyond contact
US8952425B2 (en) 2006-03-09 2015-02-10 Tela Innovations, Inc. Integrated circuit including at least four linear-shaped conductive structures having extending portions of different length
US9859277B2 (en) 2006-03-09 2018-01-02 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9230910B2 (en) 2006-03-09 2016-01-05 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9009641B2 (en) 2006-03-09 2015-04-14 Tela Innovations, Inc. Circuits with linear finfet structures
US9035359B2 (en) 2006-03-09 2015-05-19 Tela Innovations, Inc. Semiconductor chip including region including linear-shaped conductive structures forming gate electrodes and having electrical connection areas arranged relative to inner region between transistors of different types and associated methods
US9741719B2 (en) 2006-03-09 2017-08-22 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9425145B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Oversized contacts and vias in layout defined by linearly constrained topology
US9673825B2 (en) 2006-03-09 2017-06-06 Tela Innovations, Inc. Circuitry and layouts for XOR and XNOR logic
US9425272B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including four transistors of first transistor type and four transistors of second transistor type with electrical connections between various transistors and methods for manufacturing the same
US9425273B2 (en) 2006-03-09 2016-08-23 Tela Innovations, Inc. Semiconductor chip including integrated circuit including at least five gate level conductive structures having particular spatial and electrical relationship and method for manufacturing the same
US9589091B2 (en) 2006-03-09 2017-03-07 Tela Innovations, Inc. Scalable meta-data objects
US9443947B2 (en) 2006-03-09 2016-09-13 Tela Innovations, Inc. Semiconductor chip including region having integrated circuit transistor gate electrodes formed by various conductive structures of specified shape and position and method for manufacturing the same
US9754878B2 (en) 2006-03-09 2017-09-05 Tela Innovations, Inc. Semiconductor chip including a chip level based on a layout that includes both regular and irregular wires
US9240413B2 (en) 2006-03-09 2016-01-19 Tela Innovations, Inc. Methods, structures, and designs for self-aligning local interconnects used in integrated circuits
US9633987B2 (en) 2007-03-05 2017-04-25 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US10074640B2 (en) 2007-03-05 2018-09-11 Tela Innovations, Inc. Integrated circuit cell library for multiple patterning
US9595515B2 (en) 2007-03-07 2017-03-14 Tela Innovations, Inc. Semiconductor chip including integrated circuit defined within dynamic array section
US9910950B2 (en) 2007-03-07 2018-03-06 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9424387B2 (en) 2007-03-07 2016-08-23 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US8966424B2 (en) 2007-03-07 2015-02-24 Tela Innovations, Inc. Methods for cell phasing and placement in dynamic array architecture and implementation of the same
US9281371B2 (en) 2007-12-13 2016-03-08 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US8951916B2 (en) 2007-12-13 2015-02-10 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9818747B2 (en) 2007-12-13 2017-11-14 Tela Innovations, Inc. Super-self-aligned contacts and method for making the same
US9530734B2 (en) 2008-01-31 2016-12-27 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US9202779B2 (en) 2008-01-31 2015-12-01 Tela Innovations, Inc. Enforcement of semiconductor structure regularity for localized transistors and interconnect
US8866197B2 (en) 2008-03-13 2014-10-21 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two gate electrodes electrically connected to each other through another transistor forming gate level feature
US8835989B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate electrode placement specifications
US9536899B2 (en) 2008-03-13 2017-01-03 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US8847331B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Semiconductor chip including region having cross-coupled transistor configuration with offset electrical connection areas on gate electrode forming conductive structures and at least two different inner extension distances of gate electrode forming conductive structures
US9208279B2 (en) 2008-03-13 2015-12-08 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including linear-shaped conductive structures having electrical connection areas located within inner region between transistors of different type and associated methods
US9213792B2 (en) 2008-03-13 2015-12-15 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US8847329B2 (en) 2008-03-13 2014-09-30 Tela Innovations, Inc. Cross-coupled transistor circuit defined having diffusion regions of common node on opposing sides of same gate electrode track with at least two non-inner positioned gate contacts
US8853793B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit including gate electrode level region including cross-coupled transistors having gate contacts located over inner portion of gate electrode level region and offset gate level feature line ends
US10020321B2 (en) 2008-03-13 2018-07-10 Tela Innovations, Inc. Cross-coupled transistor circuit defined on two gate electrode tracks
US9117050B2 (en) 2008-03-13 2015-08-25 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with gate contact position and offset specifications
US9081931B2 (en) 2008-03-13 2015-07-14 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track and gate node connection through single interconnect layer
US8853794B2 (en) 2008-03-13 2014-10-07 Tela Innovations, Inc. Integrated circuit within semiconductor chip including cross-coupled transistor configuration
US9871056B2 (en) 2008-03-13 2018-01-16 Tela Innovations, Inc. Semiconductor chip including integrated circuit having cross-coupled transistor configuration and method for manufacturing the same
US9245081B2 (en) 2008-03-13 2016-01-26 Tela Innovations, Inc. Semiconductor chip including digital logic circuit including at least nine linear-shaped conductive structures collectively forming gate electrodes of at least six transistors with some transistors forming cross-coupled transistor configuration and associated methods
US8836045B2 (en) 2008-03-13 2014-09-16 Tela Innovations, Inc. Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track
US8872283B2 (en) 2008-03-13 2014-10-28 Tela Innovations, Inc. Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature
US9779200B2 (en) 2008-03-27 2017-10-03 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9390215B2 (en) 2008-03-27 2016-07-12 Tela Innovations, Inc. Methods for multi-wire routing and apparatus implementing same
US9122832B2 (en) 2008-08-01 2015-09-01 Tela Innovations, Inc. Methods for controlling microloading variation in semiconductor wafer layout and fabrication
US8863063B2 (en) 2009-05-06 2014-10-14 Tela Innovations, Inc. Finfet transistor circuit
US9563733B2 (en) 2009-05-06 2017-02-07 Tela Innovations, Inc. Cell circuit and layout with linear finfet structures
US9530795B2 (en) 2009-10-13 2016-12-27 Tela Innovations, Inc. Methods for cell boundary encroachment and semiconductor devices implementing the same
US9269702B2 (en) 2009-10-13 2016-02-23 Tela Innovations, Inc. Methods for cell boundary encroachment and layouts implementing the same
US9704845B2 (en) 2010-11-12 2017-07-11 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
US9159627B2 (en) 2010-11-12 2015-10-13 Tela Innovations, Inc. Methods for linewidth modification and apparatus implementing the same
EP2930159A4 (en) * 2012-12-06 2016-07-20 Shinetsu Chemical Co Light-transmitting bismuth-substituted rare-earth iron garnet-type sintered material, and magnetooptical device

Also Published As

Publication number Publication date
JP3463180B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
US3666666A (en) Ferroelectric ceramic materials
Battle et al. The crystal and magnetic structures of Sr2YRuO6
Long et al. Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties
US20040265510A1 (en) Polarizer and liquid crystal display element
CN1083579C (en) Method for preparing crosslinking liquid crystal monomer anisostropy layer, optical parts and use thereof
Vaqueiro et al. Influence of complexing agents and pH on yttrium− Iron garnet synthesized by the sol− gel method
Erickson et al. Ferromagnetism in the mott insulator Ba 2 NaOsO 6
US5114702A (en) Method of making metal oxide ceramic powders by using a combustible amino acid compound
Livage Optical and electrical properties of vanadium oxides synthesized from alkoxides
Brown et al. Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3
Nguyen et al. Magnetic studies of some orthovanadates
Chen et al. Observation of macroscopic collective behavior and new texture in magnetically doped liquid crystals
Ohkoshi et al. Observation of spin transition in an octahedrally coordinated manganese (II) compound
Venkataiah et al. Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites
Suits et al. Magneto‐Optical Properties of Materials Containing Divalent Europium
JP2548749B2 (en) Matrix addressed display device
US3512864A (en) Ferroelectric ceramic optical retardation devices
US4032218A (en) Device for the production and modulation of monochromatic light
CN1109902C (en) Circularly polarized light dichroism optical element, device thereof and liquid crystal polymer
Van Den Brink et al. Multiferroicity due to charge ordering
Ogimoto et al. Strain-induced crossover of the metal-insulator transition in perovskite manganites
Chandani et al. Responsible for the Tristable Switching in MHPOBC
JPH10508048A (en) Negative birefringence rigid rod polymer films
Mandal et al. Temperature-induced magnetization reversal in BiFe 0.5 Mn 0.5 O 3 synthesized at high pressure
KR100857952B1 (en) Compensator for liquid crystal display

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030723

LAPS Cancellation because of no payment of annual fees