JPH07286815A - Position detector - Google Patents

Position detector

Info

Publication number
JPH07286815A
JPH07286815A JP7113134A JP11313495A JPH07286815A JP H07286815 A JPH07286815 A JP H07286815A JP 7113134 A JP7113134 A JP 7113134A JP 11313495 A JP11313495 A JP 11313495A JP H07286815 A JPH07286815 A JP H07286815A
Authority
JP
Japan
Prior art keywords
light
light receiving
incident surface
groups
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7113134A
Other languages
Japanese (ja)
Inventor
Eiichi Kitajima
栄一 北島
Akihiko Morishita
昭彦 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7113134A priority Critical patent/JPH07286815A/en
Publication of JPH07286815A publication Critical patent/JPH07286815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a position detector which can be manufactured with high workability and has high resolution. CONSTITUTION:The position detector is provided with a light emitting device which emits a light beam, light receiving means which receives the light beam and on which light incident surfaces (1-18) arranged in one direction are divided into a plurality of groups (1-6, 7-12, and 13-18), group discriminating means (13A-13C) which discriminate the group on which the light beam is made incident by detecting received light signals from each light incident surface of the groups, and incident surface discriminating means (14A-14F) which discriminate the light incident surface on which the light beam is made incident by detecting received light signals from each light incident surface of the groups. The light incident surface discriminating means (14A-14F) are provided with an arithmetic means 16 which finds the cross-sectional center position of the light beam based on the light intensity distribution on the cross section of the light beam including the optical axis of the beam and the output levels of received light signals from at least three light incident surfaces of the groups.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガウス分布を持つビーム
を回転照射して水準位置を測定する装置に使用して好適
な位置検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device suitable for use in a device for rotating and irradiating a beam having a Gaussian distribution to measure a level position.

【0002】[0002]

【従来の技術】従来、この種の装置の一例として第4図
に示す様な構成のものが提案されている。第4図に於い
て、16本の光ファイバー51から66の一方端面を、
直線状に配列して受光面を形成し、光ファイバー51か
ら66の他方端面を16個の光分岐デバイス51A〜6
6Aにそれぞれ接続し、各光分岐デバイス51A〜66
Aより2本の光ファイバーによる光路に分岐し、受光素
子Aに光分岐デバイス51A、52A、53A、54A
で分岐された一方の光ファイバー51bから54bを接
続し、受光素子Bには光分岐デバイス55A、56A、
57A、58Aで分岐された一方の光ファイバー55b
から58bを接続し、受光素子C、Dには同じように光
分岐デバイス59Aから62Aで分岐された一方の光フ
ァイバー59bから62b、光分岐デバイス63Aから
66Aで分岐した一方の光ファイバー63bから66b
を接続し、更に受光素子Eには光分岐デバイス51A、
55A、59A、63Aで分岐された他方の光ファイバ
ー51a、55a、59a、63aを接続し、受光素子
Fには光分岐デバイス52A、56A、60A、64A
で分岐された他方の光ファイバー52a、56a、60
a、64aを接続し、受光素子Gには光分岐デバイス5
3A、57A、61A、65Aで分岐された他方の光フ
ァイバー53a、57a、61a、65aを接続し、受
光素子Hには光分岐デバイス54A、58A、62A、
66Aで分岐された他方の光ファイバー54a、58
a、62a、66aを接続し、それぞれの受光素子Aか
らHを検出回路70に接続し、更にCPU71、表示器
72に接続することより、光ファイバー51か66の一
方端面の配列方向へ移動するビーム光が光ファイバー5
1から61の任意の位置にあるとき、受光素子Aから
D、EからHの2系列のデジタル情報により、ビーム光
が光ファイバー51から66のどこの位置にあるかを少
ない数の受光素子で検出し、表示器72に表示すること
ができる。
2. Description of the Related Art Conventionally, as an example of this type of device, a device having a structure as shown in FIG. 4 has been proposed. In FIG. 4, one end surface of the 16 optical fibers 51 to 66 is
The light receiving surface is formed by linearly arranging, and the other end surfaces of the optical fibers 51 to 66 are provided with 16 optical branching devices 51A to 6A.
6A, and each of the optical branching devices 51A to 66
Optical branching devices 51A, 52A, 53A and 54A are branched from A to the optical path of two optical fibers and are received by the light receiving element A.
One of the optical fibers 51b to 54b branched by the optical path is connected to the light receiving element B by the optical branching devices 55A, 56A,
One optical fiber 55b branched by 57A and 58A
No. 58b are connected to the light receiving elements C and D, optical fibers 59b to 62b are branched by the optical branching devices 59A to 62A, and optical fibers 63b to 66b are branched from the optical branching devices 63A to 66A.
Is connected to the light receiving element E, and an optical branching device 51A,
The other optical fibers 51a, 55a, 59a, 63a branched by 55A, 59A, 63A are connected, and the light receiving element F is provided with optical branching devices 52A, 56A, 60A, 64A.
The other optical fiber 52a, 56a, 60 branched by
a and 64a are connected, and the light branching device 5 is connected to the light receiving element G.
The other optical fibers 53a, 57a, 61a, 65a branched by 3A, 57A, 61A, 65A are connected to the light receiving element H, and optical branching devices 54A, 58A, 62A,
The other optical fibers 54a, 58 branched at 66A
a, 62a, 66a are connected, each of the light receiving elements A to H is connected to the detection circuit 70, and further connected to the CPU 71 and the display 72, so that a beam moving in the arrangement direction of one end face of the optical fiber 51 or 66. Light is an optical fiber 5
When located at an arbitrary position from 1 to 61, the position of the light beam from the optical fibers 51 to 66 can be detected by a small number of light receiving elements by the digital information of two series of light receiving elements A to D and E to H. However, it can be displayed on the display 72.

【0003】すなわち、例えばビーム光が光ファイバー
53の一方端面の位置にあるとすれば、受光素子Aから
ビーム光を受光した信号が出力されるが、受光素子Aに
は光ファイバー51から54が接続されているため、受
光素子Aの出力信号のみでは光ファイバー51から54
のどの一方端面にビーム光があるのか判別できない。そ
こで、この判別を受光素子EからHの出力信号により行
なっている。つまり、光ファイバー53の一端面の位置
にビーム光があることは、受光素子Aと受光素子Gとか
ら出力信号が生じていることにより知ることができる。
That is, if the light beam is located at one end face of the optical fiber 53, for example, a signal of receiving the light beam from the light receiving element A is output, but the optical fibers 51 to 54 are connected to the light receiving element A. Therefore, only the output signal of the light receiving element A is used from the optical fibers 51 to 54.
It is impossible to determine which one of the end faces of the beam has the light beam. Therefore, this determination is performed by the output signals of the light receiving elements E to H. That is, the presence of the light beam at the position of the one end face of the optical fiber 53 can be known from the output signals generated from the light receiving element A and the light receiving element G.

【0004】[0004]

【発明が解決しようとする課題】上記の如き従来の技術
に於いては、光ファイバーの配列ピッチ以下の読み取り
が出来ないという問題点があった。また、光ファイバー
によってビームを受光する如く構成しているので、光フ
ァイバーの配列、接続が複雑になり、装置製作時の作業
性が悪いという問題点もあった。
However, in the above-mentioned conventional techniques, there is a problem in that reading cannot be performed within the array pitch of the optical fibers. Further, since the beam is received by the optical fiber, there is a problem that the arrangement and connection of the optical fibers are complicated and the workability at the time of manufacturing the device is poor.

【0005】本発明の目的とするところは、装置製作時
の作業性が良好な高分解能である位置検出装置を提供す
ることにある。
It is an object of the present invention to provide a high-resolution position detecting device which has good workability in manufacturing the device.

【0006】[0006]

【課題を解決するための手段】上記目的のために本発明
では、ビーム光を出射する投光装置と、前記ビーム光を
受光し、一方向に配列された複数の光入射面(1〜1
8)を複数のグループ(1〜6,7〜12,13〜1
8)に分割した受光手段と、前記複数のグループ(1〜
6,7〜12,13〜18)の各光入射面からの受光信
号を検出して、前記ビーム光が前記複数のグループのい
ずれのグループに入射したかを判断するグループ判断手
段(13A〜13C)と、前記各グループ内の各光入射
面からの前記受光信号を検出して、前記ビーム光が前記
各グループ内のいずれの光入射面に入射したかを判断す
る入射面判断手段(14A〜14F)とを有する検出装
置と、を備える位置検出装置において、前記入射面判断
手段(14A〜14F)は、前記ビーム光の光軸を含む
断面の光強度分布と前記各グループ内の光入射面の少な
くとも3個の前記受光信号(Y1,Y2,Y3)の出力
レベルとに基づき前記ビーム光の断面の中心位置を求め
る演算手段(16)を有することを課題解決の手段とす
るものである。
To achieve the above object, in the present invention, a light projecting device for emitting a light beam and a plurality of light incident surfaces (1-1) for receiving the light beam and arranged in one direction.
8) to multiple groups (1-6, 7-12, 13-1)
8) divided into light receiving means and the plurality of groups (1 to 1)
6, 7 to 12, 13 to 18) group receiving means (13A to 13C) for detecting a light receiving signal from each light incident surface to determine to which of the plurality of groups the light beam is incident. ) And the light receiving signal from each light incident surface in each group to determine which light incident surface in each group the light beam has entered. 14F), and the incident surface determination means (14A to 14F) includes a light intensity distribution of a cross section including the optical axis of the light beam and a light incident surface in each group. It is a means for solving the problem to have an arithmetic means (16) for obtaining the center position of the cross section of the light beam based on the output levels of at least three light receiving signals (Y1, Y2, Y3).

【0007】[0007]

【作用】本発明では、投光装置から出射されたビーム光
は検出装置の受光手段の一方向に配列された複数の光入
射面に入射する。この複数の光入射面は複数のグループ
に分割されている。そして、グループ判断手段は複数の
グループの各光入射面からの受光信号を検出して、いず
れかのグループにビーム光が入射したかを判断し、入射
面判断手段は各グループ内の各光入射面からの受光信号
を検出して、各グループ内のいずれの光入射面にビーム
光が入射したかを判断する。さらに、入射面判断手段の
演算手段はビーム光の光軸を含む断面の光強度分布と各
グループ内の光入射面の少なくとも3個の受光信号の出
力レベルとに基づきビーム光の断面の中心位置を求める
のでビーム光の断面の中心位置を高分解能に検出するこ
とができる。
In the present invention, the light beam emitted from the light projecting device is incident on a plurality of light incident surfaces arranged in one direction of the light receiving means of the detecting device. The plurality of light incident surfaces are divided into a plurality of groups. Then, the group determining means detects the light receiving signals from the light incident surfaces of the plurality of groups to determine which of the groups the beam light is incident on, and the incident surface determining means determines the incident light of each light within each group. The light receiving signal from the surface is detected to determine which light incident surface in each group the beam light is incident on. Further, the calculating means of the incident surface determination means is based on the light intensity distribution of the cross section including the optical axis of the beam light and the output level of at least three received light signals of the light incident surface in each group, and the center position of the cross section of the light beam. Therefore, the center position of the cross section of the light beam can be detected with high resolution.

【0008】また、光入射面の構成を受光素子の単純な
配列にしたので従来の如き製作上の苦労は解消される。
Further, since the light-incident surface has a simple arrangement of the light-receiving elements, the conventional manufacturing difficulties can be eliminated.

【0009】[0009]

【実施例】第1図は本発明の実施例であって原理構成を
示すブロック図である。第1図において、受光面が長方
形の同一形状である平面受光素子1〜18はちどり状に
2列にビームの移動方向と直交する方向に並らべられて
受光部を形成している。受光素子1から6の出力はデジ
タル回路13Aに接続されており、同じく受光素子7か
ら12の出力はデジタル回路13B、受光素子13から
18の出力はデジタル回路13Cとにそれぞれ接続され
ている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing the principle configuration of an embodiment of the present invention. In FIG. 1, planar light-receiving elements 1 to 18 whose light-receiving surfaces are rectangular and have the same shape are arranged in two rows in a line in a direction orthogonal to the beam moving direction to form a light-receiving portion. The outputs of the light receiving elements 1 to 6 are connected to the digital circuit 13A, the outputs of the light receiving elements 7 to 12 are connected to the digital circuit 13B, and the outputs of the light receiving elements 13 to 18 are connected to the digital circuit 13C.

【0010】又、受光素子1、7、13はアナログ回路
14Aにも接続されており、同じく受光素子2、8、1
4はアナログ回路14Bに、受光素子2、8、14はア
ナログ回路14Bに、受光素子3、9、15はアナログ
回路14Cに、受光素子4、10、16はアナログ回路
14Dに、受光素子5、11、17はアナログ回路14
Eに、受光素子6、12、18はアナログ回路14Fに
それぞれ接続されている。受光部の両端にそれぞれ配設
された受光素子1A、18Aはデジタル回路15に接続
されている。
The light receiving elements 1, 7 and 13 are also connected to the analog circuit 14A, and the light receiving elements 2, 8 and 1 are also connected.
Reference numeral 4 denotes the analog circuit 14B, light receiving elements 2, 8, 14 for the analog circuit 14B, light receiving elements 3, 9, 15 for the analog circuit 14C, light receiving elements 4, 10, 16 for the analog circuit 14D, light receiving element 5, 11 and 17 are analog circuits 14
E, the light receiving elements 6, 12, and 18 are connected to the analog circuit 14F, respectively. The light receiving elements 1A and 18A respectively arranged at both ends of the light receiving portion are connected to the digital circuit 15.

【0011】前記デジタル回路13A、13B、13C
と15は加算器とコンパレータなどを有し、入力信号の
加算レベルが所定値を越えるとデジタル出力をするよう
に構成されており、デジタル回路13A、13B、13
C、15のそれぞれの出力はCPU(中央演算処理装
置)16に入力されている。又、前記アナログ回路14
A〜14Fは加算器とピークホールド回路などを有し、
入力信号の加算レベルを回転照射のために生じる時間差
の補正のため測定時点のピークでホールドするように構
成され、アナログ回路14A〜14Fのそれぞれの出力
もCPU16に入力されている。CPU16で処理され
たデータはインターフェース17を介して外部のパソコ
ンやプリンタなどにデータが送れるように構成されてい
る。又、CPU16で処理された処理データは表示器1
8に入力されている。
The digital circuits 13A, 13B, 13C
And 15 have adders and comparators, etc., and are configured to perform digital output when the addition level of the input signal exceeds a predetermined value. The digital circuits 13A, 13B, 13
The respective outputs of C and 15 are input to a CPU (central processing unit) 16. In addition, the analog circuit 14
A to 14F have an adder and a peak hold circuit,
The addition level of the input signal is configured to be held at the peak at the measurement time point in order to correct the time difference caused by the rotary irradiation, and the respective outputs of the analog circuits 14A to 14F are also input to the CPU 16. The data processed by the CPU 16 can be sent to an external personal computer or printer via the interface 17. In addition, the processing data processed by the CPU 16 is displayed on the display unit 1.
It is entered in 8.

【0012】次に第1図の動作について説明する。受光
部に入射するガウス分布を持つビーム光の直径Rと各受
光素子との関係は、第2図(A)の動作詳細図のよう
に、受光素子が2列並列されている各受光素子の長さL
はガウス分布を持つビーム光の直径Rのほぼ1/2に設
定されており、並列された2列の素子の配列方向の所定
ずらし量Pはビームの直径Rのほぼ1/4に設定されて
いる。
Next, the operation of FIG. 1 will be described. The relationship between the diameter R of the beam light having a Gaussian distribution incident on the light receiving portion and each light receiving element is as shown in the detailed operation diagram of FIG. 2 (A). Length L
Is set to about 1/2 of the diameter R of the beam light having a Gaussian distribution, and the predetermined shift amount P in the arrangement direction of the two rows of elements arranged in parallel is set to about 1/4 of the diameter R of the beam. There is.

【0013】第2図(A)(B)のようなビーム照射を
考えると、受光素子1〜5の出力は第1図におけるデジ
タル回路13Aに入力される。デジタル回路13Aは、
受光素子1〜5の出力信号の加算レベルが所定値(スレ
ッシュホールドレベル)を越えていると判断し、その出
力を例えばHレベルと成す。この所定値はビームが受光
素子1〜6、受光素子7〜12、受光素子13〜18の
いずれのグループに入射しているかを判断するために設
定されたもので、ビームが各グループの境界位置に入射
していることを識別することも考慮して、全くビームを
受けていない場合との識別ができ、かつ、ノイズの影響
のない程度の低レベルに設定される。CPU16はビー
ムの位置が大まかにどのグループにあるか判断すること
が可能であるので、第2図(A)(B)の場合、受光素
子1〜6の範囲にビームがあると判断する。
Considering the beam irradiation as shown in FIGS. 2A and 2B, the outputs of the light receiving elements 1 to 5 are input to the digital circuit 13A shown in FIG. The digital circuit 13A is
It is determined that the added level of the output signals of the light receiving elements 1 to 5 exceeds a predetermined value (threshold level), and the output is set to the H level, for example. This predetermined value is set in order to determine which group of the light receiving elements 1 to 6, the light receiving elements 7 to 12 and the light receiving elements 13 to 18 the beam is incident on. In consideration of the fact that the beam is incident on the beam, it can be distinguished from the case where the beam is not received at all, and the level is set to a low level that is not affected by noise. Since the CPU 16 can roughly determine which group the beam position is in, in the case of FIGS. 2A and 2B, it is determined that the beam exists within the range of the light receiving elements 1 to 6.

【0014】又、受光素子1〜5の出力はアナログ回路
14A〜14Eにそれぞれ入力されている。再び第2図
(B)に示す如く、ビーム断面光量分布に対応したビー
ムの光量が受光素子1〜5に当たり、それぞれアナログ
電気量に変換される。この場合、最大値は受光素子3で
あり、次に受光素子4、受光素子2、受光素子5、受光
素子1の順になっている。つまり、アナログ回路でいう
と、アナログ回路14C、14D、14B、14E、1
4Aの順にアナログ量が位置づけられ、CPU16に入
力される。
The outputs of the light receiving elements 1 to 5 are input to the analog circuits 14A to 14E, respectively. As shown in FIG. 2B again, the light quantity of the beam corresponding to the beam cross-section light quantity distribution strikes the light receiving elements 1 to 5, and is converted into analog electric quantities, respectively. In this case, the maximum value is the light receiving element 3, then the light receiving element 4, the light receiving element 2, the light receiving element 5, and the light receiving element 1 in this order. That is, in terms of analog circuits, analog circuits 14C, 14D, 14B, 14E, 1
The analog quantities are positioned in the order of 4A and input to the CPU 16.

【0015】従って、CPU16ではアナログ回路14
Aから14Fの出力の最大値を検出することにより、ビ
ーム光の中心位置が受光素子1〜6のどらにあるかを判
断する。第2図(A)の場合は、受光素子3の位置にあ
ることがわかる。更に受光素子3のどこにビーム光の中
心位置があるか精密に読み取るため、CPU16は出力
が最大となるアナログ回路と2番目に大きい出力となる
アナログ回路と3番目に大きい出力となるアナログ回路
のそれぞれのアナログ値を比較演算する。
Therefore, in the CPU 16, the analog circuit 14
By detecting the maximum value of the outputs from A to 14F, it is determined which of the light receiving elements 1 to 6 the center position of the light beam is. In the case of FIG. 2A, it can be seen that the light receiving element 3 is located. Further, in order to accurately read where the center position of the light beam is located on the light receiving element 3, the CPU 16 has an analog circuit with the maximum output, an analog circuit with the second largest output, and an analog circuit with the third largest output. Comparing the analog value of.

【0016】第3図において、受光素子3の出力を
1 、受光素子4の出力をY2 、受光素子2の出力をY
3 とすると、Y1 、Y2 、Y3 はガウス分布上の値、つ
まりは基本式
In FIG. 3, the output of the light receiving element 3 is Y 1 , the output of the light receiving element 4 is Y 2 , and the output of the light receiving element 2 is Y.
3 , Y 1 , Y 2 and Y 3 are values on the Gaussian distribution, that is, the basic formula

【0017】[0017]

【数1】 [Equation 1]

【0018】の指数関数で表わされるグラフ上の座標で
ある。この基本式のX軸中心座標がビームの中心と対応
するので受光素子3(出力最大値)からのずれ量δを求
めればよいことになる。CPU16はずれ量δを演算
し、これをデジタル回路13Aで求めたグループ情報に
加味することでビームの中心位置の絶対値H(第2図に
示すH)を求める。絶対値Hは表示器18によりデジタ
ル表示される。
The coordinates on the graph represented by the exponential function of. Since the X-axis center coordinate of this basic equation corresponds to the center of the beam, it is only necessary to obtain the deviation amount δ from the light receiving element 3 (maximum output value). The CPU 16 calculates the shift amount δ and adds it to the group information obtained by the digital circuit 13A to obtain the absolute value H (H shown in FIG. 2) of the center position of the beam. The absolute value H is digitally displayed by the display device 18.

【0019】又、インターフェース17を介して外部の
パソコン等の処理機によりデータ処理される。第1図に
示すように受光素子1A、18Aはビームが受光素子1
より受光素子18の測定範囲の端に当たった場合を検出
するもので、検出結果は、デジタル回路15によりCP
U16に入力される。そして、CPU16は受光素子1
もしくは受光素子18を外れたビーム光は、誤差検出を
しないように不図示の警報装置にアラームを発生させる
指令を行なうものである。
Data is processed by an external processor such as a personal computer through the interface 17. As shown in FIG. 1, the light receiving elements 1A and 18A are
When the light sensor 18 hits the end of the measurement range, the detection result is detected by the digital circuit 15 as CP.
Input to U16. Then, the CPU 16 uses the light receiving element 1
Alternatively, the light beam that has deviated from the light receiving element 18 is used to issue an alarm to an alarm device (not shown) so as not to detect an error.

【0020】従って、測定者は、表示器18の表示を見
るのみで、ビーム光の中心位置を知ることができる。表
示器18の表示は、受光素子1から18の各ピッチを最
小分解能とするのではなく、受光素子のピッチを内挿し
た値となるので、ビームの位置を高分解能に知ることが
できる。なお、以上の実施例の受光部は、第2図(A)
のように、受光面が長方形の同一形状である平面受光素
子を回転照射されるビームの移動方向と直交する方向に
並べて構成したが、受光素子の形状は三角形や円形でも
よく、また連続して並べずに離散的に一定ピッチで並べ
てもよい。ただし、この場合でも受光素子のピッチはビ
ーム光の直径を考慮し、常にアナログ出力が3つ以上発
生するように受光素子のピッチを設定する。又、演算方
法の求める式はY1 、Y2 、Y3 だけ使用するのではな
く、第4番目に大きい出力値Y4 や第5番目に大きい出
力値Y5 などをとりいれてもかまわない。
Therefore, the measurer can know the center position of the light beam only by looking at the display on the display 18. The display on the display 18 does not have the minimum resolution for each pitch of the light receiving elements 1 to 18, but has a value obtained by interpolating the pitch of the light receiving elements, so that the position of the beam can be known with high resolution. The light receiving portion of the above embodiment is shown in FIG.
As described above, the planar light receiving elements having the same light receiving surface having a rectangular shape are arranged side by side in the direction orthogonal to the moving direction of the rotationally irradiated beam, but the shape of the light receiving element may be a triangle or a circle, or may be continuous. Instead of arranging them, they may be arranged discretely at a constant pitch. However, even in this case, the pitch of the light receiving elements is set in consideration of the diameter of the light beam so that three or more analog outputs are always generated. In addition, the equation calculated by the calculation method may use not only Y 1 , Y 2 , and Y 3 but also the fourth largest output value Y 4 , the fifth largest output value Y 5, and the like.

【0021】[0021]

【発明の効果】以上のように本発明によれば、配列され
た受光素子の少なくとも3個のアナログ出力信号を用い
てガウス分布を持つビームの中心位置を演算によって得
られるようにしたので高分解能なビーム位置検出が出来
る効果がある。また、受光部に複数の受光素子を所定間
隔で配置するようにしたので、受光部の構成が簡素化出
来るという効果もある。
As described above, according to the present invention, the center position of the beam having the Gaussian distribution can be obtained by calculation using at least three analog output signals of the arrayed light receiving elements, so that high resolution is achieved. There is an effect that various beam positions can be detected. Further, since the plurality of light receiving elements are arranged at the light receiving portion at a predetermined interval, there is an effect that the structure of the light receiving portion can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による位置検出装置の原理構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a principle configuration of a position detecting device according to the present invention.

【図2】(A)はガウス分布を持つビームと受光素子と
の関係を示す説明図、(B)は光量分布図である。
2A is an explanatory diagram showing a relationship between a beam having a Gaussian distribution and a light receiving element, and FIG. 2B is a light amount distribution diagram.

【図3】演算方法を説明する図である。FIG. 3 is a diagram illustrating a calculation method.

【図4】従来装置の原理を説明するブロック図である。FIG. 4 is a block diagram illustrating the principle of a conventional device.

【符号の説明】[Explanation of symbols]

1〜18・・・・・・受光素子 1A,18A・・・・・・受光素子 13A,13B,13C,15・・・・・・デジタル回路 14A,14B,14C,14D,14E,14F・・・・
・・アナログ回路 16・・・・・・CPU
1-18 .... Light receiving element 1A, 18A ..... Light receiving element 13A, 13B, 13C, 15 ... Digital circuit 14A, 14B, 14C, 14D, 14E, 14F ..・ ・
..Analog circuit 16 ... CPU

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビーム光を出射する投光装置と、 前記ビーム光を受光し、一方向に配列された複数の光入
射面を複数のグループに分割した受光手段と、 前記複数のグループの各光入射面からの受光信号を検出
して、前記ビーム光が前記複数のグループのいずれのグ
ループに入射したかを判断するグループ判断手段と、 前記各グループ内の各光入射面からの前記受光信号を検
出して、前記ビーム光が前記各グループ内のいずれの光
入射面に入射したかを判断する入射面判断手段とを有す
る検出装置と、 を備える位置検出装置において、 前記入射面判断手段は、前記ビーム光の光軸を含む断面
の光強度分布と前記各グループ内の光入射面の少なくと
も3個の前記受光信号の出力レベルとに基づき前記ビー
ム光の断面の中心位置を求める演算手段を有することを
特徴とする位置検出装置。
1. A light projecting device for emitting a light beam, a light receiving means for receiving the light beam and dividing a plurality of light incident surfaces arranged in one direction into a plurality of groups, and each of the plurality of groups. Group determination means for detecting a light receiving signal from the light incident surface to determine which of the plurality of groups the light beam has entered, and the light receiving signal from each light incident surface in each group. A position detecting device comprising: an incident surface determining unit that determines which light incident surface in each of the groups the incident light is detected by, and a position detecting device comprising: Calculating means for obtaining the center position of the cross section of the light beam based on the light intensity distribution of the cross section including the optical axis of the light beam and the output levels of at least three light receiving signals on the light incident surface in each group. Position detecting device characterized in that it has.
【請求項2】 前記受光手段は前記光入射面に受光素子
を有することを特徴とする請求項1記載の位置検出装
置。
2. The position detecting device according to claim 1, wherein the light receiving unit has a light receiving element on the light incident surface.
【請求項3】 前記光入射面は、前記一方向にN列の受
光素子列を有し、前記ビーム光の直径をRとするとき、
前記受光素子単体の前記一方向の長さをR/Nになすと
共に前記N列内の任意の第n列目の受光素子列と第n+
1列目の受光素子列との前記受光素子間のピッチを前記
一方向の配列方向にR/N2 ずらせて配列することを特
徴とする請求項2記載の位置検出装置。
3. The light incident surface has N rows of light receiving element rows in the one direction, and R is a diameter of the light beam,
The length of the light receiving element alone in the one direction is set to R / N, and an arbitrary nth light receiving element row in the Nth row and an n + th light receiving element row
3. The position detecting device according to claim 2, wherein the light receiving elements of the first row and the light receiving elements are arranged so that the pitch between the light receiving elements is shifted by R / N 2 in the one direction.
JP7113134A 1995-05-11 1995-05-11 Position detector Pending JPH07286815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7113134A JPH07286815A (en) 1995-05-11 1995-05-11 Position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7113134A JPH07286815A (en) 1995-05-11 1995-05-11 Position detector

Publications (1)

Publication Number Publication Date
JPH07286815A true JPH07286815A (en) 1995-10-31

Family

ID=14604418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7113134A Pending JPH07286815A (en) 1995-05-11 1995-05-11 Position detector

Country Status (1)

Country Link
JP (1) JPH07286815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361411A (en) * 2003-06-05 2004-12-24 Hilti Ag Light-receiving device
JP2013174617A (en) * 2006-04-28 2013-09-05 Global Sensor Systems Inc Method for determining one-dimensional size of object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138204A (en) * 1980-03-31 1981-10-28 Anritsu Corp Displacement measuring equipment
JPS56159400A (en) * 1980-02-04 1981-12-08 Procter & Gamble Pattern densified fibrous web having parted binder impregnated high density zone and method
JPS61196104A (en) * 1985-02-27 1986-08-30 Aoki Kensetsu:Kk Position detecting method and its photo-receiving device by means of laser beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159400A (en) * 1980-02-04 1981-12-08 Procter & Gamble Pattern densified fibrous web having parted binder impregnated high density zone and method
JPS56138204A (en) * 1980-03-31 1981-10-28 Anritsu Corp Displacement measuring equipment
JPS61196104A (en) * 1985-02-27 1986-08-30 Aoki Kensetsu:Kk Position detecting method and its photo-receiving device by means of laser beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361411A (en) * 2003-06-05 2004-12-24 Hilti Ag Light-receiving device
JP2013174617A (en) * 2006-04-28 2013-09-05 Global Sensor Systems Inc Method for determining one-dimensional size of object

Similar Documents

Publication Publication Date Title
CN1607543B (en) Tracking motion using an interference pattern
US7656541B2 (en) Optoelectronic apparatus and a method for its operation
JPH10253351A (en) Range finder
JPH06223253A (en) Coin discriminating device
JPH07286815A (en) Position detector
CN205619888U (en) Increment formula is journey displacement sensor in a small amount
JPH05322562A (en) Electronic level and level rod therefor
JP3269925B2 (en) Edge position detection method for members
CN205619889U (en) Novel micro displacement sensor is measured to increment formula in turn
JPH07243920A (en) Optical fiber temperature distribution measuring system
JP3091276B2 (en) Displacement measuring device
JPS58132896A (en) Conpound sensor
US6433857B1 (en) Optical traingulation displacement sensor using a diffraction grating
JP2568879Y2 (en) Monitor device for speckle length meter
JP3152483B2 (en) Distance measuring device
JP3208273B2 (en) Surface profile measuring device
JPS62123309A (en) Position and moving velocity measuring apparatus for light source
JP2000000047U (en) Inspection equipment for cutting tools.
EP1258701B1 (en) A process for reading fractions of an interval between contiguous photo-sensitive elements in a linear optical sensor
JP3265549B2 (en) Distance measuring device
JP2522609Y2 (en) Light receiving position detector
JP3175210B2 (en) Displacement measuring device
JPS61246605A (en) Measuring method for size of object
JPH0495859A (en) Optically inspecting apparatus for printed board
JPH0854214A (en) Gap measuring method