JPH07283339A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07283339A
JPH07283339A JP6628594A JP6628594A JPH07283339A JP H07283339 A JPH07283339 A JP H07283339A JP 6628594 A JP6628594 A JP 6628594A JP 6628594 A JP6628594 A JP 6628594A JP H07283339 A JPH07283339 A JP H07283339A
Authority
JP
Japan
Prior art keywords
plate
heat
brazing material
joined
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6628594A
Other languages
Japanese (ja)
Inventor
Takashi Fukumaki
孝 服巻
Mitsuo Nakamura
満夫 中村
Mamoru Sawahata
守 澤畠
Masao Tsuruoka
征男 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6628594A priority Critical patent/JPH07283339A/en
Publication of JPH07283339A publication Critical patent/JPH07283339A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To extremely reduce failure even for a long use by a brazing material with a higher melting temperature than that for joining a semiconductor element. CONSTITUTION:A metal support plate 1 and an insulation substrate 2, the metal support plate 1 and a heat-resistance insulation plate, the insulation substrate 2 and a metal cooling plate 3, the heat-resistance insulation plate/intermediate metal plate and the metal cooling plate 3/a heat stress relaxing material 4, and the intermediate metal plate and the heat tress relaxing material 4 are joined by a hard brazing material and a brazing material with an approximately 620 deg.C, melting point. Then, these members to be brazed and a semiconductor element 5 are joined by a soft brazing material. Finally, the metal cooling plate 3 and a conductor 6 for electrically connecting the intermediate metal plate are joined by a soft brazing material. Silicon gel 9 is filled to secure the breakdown strength of the semiconductor element and then epoxy resin is filled to airtightly seal silicon gel and to fix an electrode 13 and an electrode 11 is mounted. Heat fatigue resistance can be improved since a part which is easily deformed can be joined firmly and heat resistance improves by joining with a hard brazing material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、IGBTなどの電力制
御用半導体装置に係り、特に使用時の加熱冷却の温度サ
イクルに対しても熱特性の劣化が少なく高信頼性を有す
る半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power controlling semiconductor device such as an IGBT, and more particularly to a semiconductor device having a high reliability with little deterioration in thermal characteristics even with a heating / cooling temperature cycle during use. Is.

【0002】[0002]

【従来の技術】半導体装置が作動する際には電力損失が
避けられず、これに伴い半導体基板に発熱が生じる。半
導体装置を安全且つ安定に作動させるためには、半導体
装置の動作時に生じる熱をパッケージ外部に有効に放散
させる必要がある。この熱放散は通常、発熱源である半
導体基板からこれと連なる各部材を通じ気中へ熱放散さ
れることで達成される。この熱伝導経路には材質の異な
る各基板を接合するための、ろう材が介在している。
2. Description of the Related Art When a semiconductor device operates, power loss is unavoidable, which causes heat generation in a semiconductor substrate. In order to operate the semiconductor device safely and stably, it is necessary to effectively dissipate the heat generated during the operation of the semiconductor device to the outside of the package. This heat dissipation is usually achieved by dissipating the heat from the semiconductor substrate, which is a heat source, into the air through each member connected to the semiconductor substrate. A brazing material for interposing substrates of different materials is interposed in the heat conduction path.

【0003】従来、半導体装置の支持部材は半導体装置
の一電極を兼ねる場合が多かった。このため半導体基板
は支持部材上に導電的に接続される必要があり、各基板
を接合するろう材はPb-Sn系はんだの如き450℃以下の融
点を有する電気伝導性の高い軟ろう材で接合されてい
た。
Conventionally, a supporting member of a semiconductor device often serves as one electrode of the semiconductor device. For this reason, the semiconductor substrate must be electrically conductively connected to the support member, and the brazing material for joining the substrates is a soft brazing material with a high melting point of 450 ° C. or less, such as Pb-Sn solder. It was joined.

【0004】従来の代表的な半導体装置は、第6図に示
す構成から成っている。図中、111はCu製支持板、222は
アルミナ製絶縁板、333はCu製放熱板、444はMo,Wなどの
熱応力緩衝板(以下緩衝板と略記)、555はSiチップであ
り、これら部材の間の4個所は軟ろうのはんだで接合さ
れている。これらの各部材は同一軟ろうにより同時接合
するか、または異なる融点をもつ軟ろうにより階層ろう
付けされる。
A typical conventional semiconductor device has a structure shown in FIG. In the figure, 111 is a Cu support plate, 222 is an alumina insulating plate, 333 is a Cu heat radiating plate, 444 is a thermal stress buffer plate (hereinafter abbreviated as buffer plate) such as Mo, W, 555 is a Si chip, The four places between these members are joined with soft solder. Each of these members is simultaneously joined with the same soft solder, or is hierarchically brazed with soft solders having different melting points.

【0005】このような半導体装置では、装置使用時に
はSiチップ555の電力損失による発熱で各部材は熱膨張
を起こし、また装置停止時には、熱収縮を起こす。半導
体装置は、このように使用、停止により膨張、収縮を繰
返し、4個所のはんだ接合部には、接合部の両側の部材
の熱膨張係数差による熱応力が繰返し作用する。その結
果はんだが疲労破壊を起し、き裂を生じる。このき裂は
熱サイクルの増加に従って広がり、十分に熱が放散され
なくなる、すなわち熱抵抗が高くなって冷却が十分に行
われなくなり、熱によるSiチップ555の破壊に至る。
In such a semiconductor device, each member causes thermal expansion due to heat generation due to power loss of the Si chip 555 when the device is used, and thermal contraction occurs when the device is stopped. The semiconductor device repeatedly expands and contracts after being used and stopped as described above, and the thermal stress due to the difference in the thermal expansion coefficient between the members on both sides of the solder joint is repeatedly applied to the four solder joints. As a result, the solder causes fatigue failure and cracks occur. This crack spreads as the number of thermal cycles increases, and the heat is not sufficiently dissipated, that is, the heat resistance is increased and the cooling is not sufficiently performed, and the Si chip 555 is destroyed by the heat.

【0006】この様に、熱応力による接合部の亀裂の発
生を抑制する手段として、熱膨張率の近い材料を組み
合わせて用いる接合部の強度を高める方法がある。
の具体的な方法としては上記従来装置にも用いられてい
るようにMo,Wなどの熱応力緩衝板を各接合部に隣接して
配置する方法が特開平4-287952号公報で開示されてい
る。の具体的な手法として特開平5−136286号
公報では軟ろうの接合部に網状体を挿入することによっ
て、接合部の厚さを均一化し接合強度を確保する方法が
開示されている。
As described above, as a means for suppressing the generation of cracks in the joint due to thermal stress, there is a method of increasing the strength of the joint using a combination of materials having similar thermal expansion coefficients.
As a concrete method of the above, a method of arranging a thermal stress buffer plate such as Mo and W adjacent to each joint as used in the above conventional apparatus is disclosed in JP-A-4-287952. There is. As a specific method of JP-A-5-136286, a method is disclosed in which a net-like body is inserted into the joint portion of the soft solder so as to make the thickness of the joint portion uniform and secure the joint strength.

【0007】[0007]

【発明が解決しようとする課題】上記の各接合部に熱応
力緩衝板を配置する方法は熱応力の緩和に大きな効果が
あり、亀裂の発生を抑制する効果は大きいものの、接合
する部材数が多くなるため組立て工程数が増加し、コス
トが高くなること、接合面の数が多くなるため、接合不
良による歩留まりの低下が懸念される。一方、網状体を
挿入する方法は、網状体を挿入しない方法に比べると接
合強度は向上するものの、融点の低い軟ろうを用いてい
る限り、接合強度の向上には限界がある。その結果、基
板の熱サイクルによる熱変形に伴う繰返し応力に対して
疲労強度が不十分であり、長期使用中に亀裂の発生を完
全に抑制できず、熱抵抗の増大による故障の発生の可能
性を払拭できなかった。
The above-mentioned method of disposing the thermal stress buffer plate at each joint has a great effect on alleviating the thermal stress and has a great effect on suppressing the occurrence of cracks, but the number of members to be joined is large. Since the number of assembling steps increases, the number of assembling steps increases, the cost increases, and since the number of bonding surfaces increases, there is concern that the yield may decrease due to defective bonding. On the other hand, the method of inserting the reticulate body improves the bonding strength as compared with the method of not inserting the reticulate body, but there is a limit to the improvement of the bonding strength as long as soft solder having a low melting point is used. As a result, the fatigue strength is insufficient with respect to the cyclic stress due to the thermal deformation of the substrate due to thermal deformation, it is not possible to completely suppress the occurrence of cracks during long-term use, and there is a possibility of failure due to an increase in thermal resistance. Could not be wiped out.

【0008】本発明の目的は、長期使用においても故障
の発生の極めて少ない、信頼性の高い半導体装置を提供
することにある。
An object of the present invention is to provide a highly reliable semiconductor device in which failure does not occur even during long-term use.

【0009】[0009]

【課題を解決するための手段】本発明の目的は、金属支
持板上に複数個の耐熱性絶縁板を配置接合し、該耐熱性
絶縁板上に該耐熱性絶縁板よりも面積の小さい中間金属
板を配置接合し、該中間金属板上に台金属板を配置接合
し、該台金属板上に半導体素子を配置接合した半導体装
置において、前記金属支持板の接合用ろう材の溶融温度
が、前記半導体素子の接合用ろう材の溶融温度よりも高
いろう材を用いることにより達成される。 また、上記
構成の半導体装置において、前記半導体素子の接合は、
融点450℃未満の軟ろう材で接合し、他は融点450℃以上
の硬ろう材で接合してもよい。
An object of the present invention is to dispose and bond a plurality of heat resistant insulating plates on a metal supporting plate, and to form an intermediate area on the heat resistant insulating plate having a smaller area than that of the heat resistant insulating plates. In a semiconductor device in which a metal plate is placed and joined, a base metal plate is placed and joined on the intermediate metal plate, and a semiconductor element is placed and joined on the base metal plate, the melting temperature of the brazing filler metal of the metal support plate is This is achieved by using a brazing material having a melting temperature higher than that of the brazing material for joining the semiconductor elements. Further, in the semiconductor device having the above structure, the bonding of the semiconductor element is
The joining may be performed with a soft brazing filler metal having a melting point of less than 450 ° C, and the others may be joined with a hard brazing filler metal having a melting point of 450 ° C or higher.

【0010】また、上記構成の半導体装置において、耐
熱性絶縁板と金属支持板の接合は、融点450℃以上の硬
ろう材で接合してもよい。
In the semiconductor device having the above structure, the heat-resistant insulating plate and the metal supporting plate may be joined with a hard brazing material having a melting point of 450 ° C. or higher.

【0011】上記半導体装置において、前記融点450℃
以上の硬ろう材は、Cu,Ag,Zn,Sn,P,Au,Ni,Cd,Tiの群よ
り選ばれた2種類以上の成分からなってもよい。
In the above semiconductor device, the melting point is 450 ° C.
The above hard brazing material may be composed of two or more kinds of components selected from the group of Cu, Ag, Zn, Sn, P, Au, Ni, Cd, and Ti.

【0012】上記半導体装置において、前記融点450℃
未満の軟ろう材は、Sn,Pb,Sb,Ag,In,Bi,Cd,Cu,Au,Pの群
より選ばれた2種類以上の成分からなってもよい。
In the above semiconductor device, the melting point is 450 ° C.
The soft brazing material below may be composed of two or more kinds of components selected from the group of Sn, Pb, Sb, Ag, In, Bi, Cd, Cu, Au and P.

【0013】上記半導体装置において、前記接合部は融
点450℃以上の硬ろう材を用い、更に各々融点の異なる
硬ろう材を用いた階層ろう付で接合することが効果的で
ある。 上記半導体装置において、前記金属支持板、前
記耐熱性絶縁体上に接着剤を用いて金属導体の中継ぎ端
子を配置接合してもよい。
In the above semiconductor device, it is effective that the joining portion is made of a hard brazing material having a melting point of 450 ° C. or higher, and is joined by hierarchical brazing using hard brazing materials having different melting points. In the above semiconductor device, a relay terminal of a metal conductor may be arranged and bonded on the metal support plate and the heat resistant insulator by using an adhesive.

【0014】[0014]

【作用】ろう材を用いて基板を接合する場合、大きな面
積の基板を均一に接合するために、拡散炉のような炉中
に入れ、さらに各部材の酸化を抑制するため不活性雰囲
気中で、ろう材を溶融させ接合を行っている。従来の半
導体装置では、融点の高い硬ろう材を用いて半導体素子
を接合しようとすると、加熱時に半導体素子が熱によっ
て電気的特性が劣化するため、半導体素子の接合は融点
が300℃前後のPb-Snはんだが用いられている。ま
た、接合時の熱変形量を小さくするためには、接合温度
の低いろう材を用いた方が有利である。そのため、従来
の電力制御用半導体装置では融点450℃未満の軟ろう材
を用いて接合を行っている。
When the substrates are joined using the brazing filler metal, they are placed in a furnace such as a diffusion furnace in order to join the substrates having a large area uniformly, and further in an inert atmosphere to suppress the oxidation of each member. , The brazing material is melted and joined. In a conventional semiconductor device, when an attempt is made to join a semiconductor element using a hard brazing material having a high melting point, the electrical characteristics of the semiconductor element deteriorate due to heat during heating. Therefore, the semiconductor element is joined with Pb having a melting point of about 300 ° C. -Sn solder is used. Moreover, in order to reduce the amount of thermal deformation during joining, it is advantageous to use a brazing material having a low joining temperature. Therefore, in a conventional power control semiconductor device, joining is performed using a soft brazing material having a melting point of less than 450 ° C.

【0015】また、電力制御用半導体装置は、近年の大
電力制御の要求から、基板面積が大きくなっており、同
一ろう材を用いて一体接合することは、基板作製工程の
精度上難しく、また接合層の強度を確保するためには、
ろう材層の厚さを一定以上に保つ必要があるが、多数の
部品、特に複数個ある半導体素子の接合層の厚さを同時
に一定値に制御することは作業上非常に困難である。こ
のため現在の技術では製造する過程から全てを同一ろう
材で接合することは不可能であり、階層ろう付により組
み立てを遂行する。階層ろう付は、まず融点の高いろう
材で接合し、次に最初の接合部が再溶融しない温度、す
なわち最初のろう材の融点より低いろう材を用いて接合
する方法をいう。
In addition, the power control semiconductor device has a large substrate area in response to the recent demand for large power control, and it is difficult to integrally bond the same by using the same brazing filler metal because of the precision of the substrate manufacturing process. To secure the strength of the bonding layer,
Although it is necessary to keep the thickness of the brazing material layer above a certain level, it is very difficult to control the thicknesses of the bonding layers of a large number of parts, especially a plurality of semiconductor devices, simultaneously to a certain value. For this reason, it is not possible to join them all with the same brazing material in the manufacturing process using the current technology, and the assembly is performed by hierarchical brazing. Hierarchical brazing refers to a method of first joining with a brazing material having a high melting point, and then using a brazing material having a temperature at which the first joined portion does not remelt, that is, a brazing material having a melting point lower than the melting point of the first brazing material.

【0016】従来は、半導体素子を台金属板に接合した
後、半導体素子の各電極を配線するワイヤボンディング
工程を行ったものを中間金属板に接合し次に絶縁基板に
接合するというように基板の面積の小さいものから順次
組み立てるのが普通であった。これは、小さい基板を順
次組み立てる方が組立て精度向上の点で有利であったこ
とが考えられる。このため、従来のろう材は半導体素子
を接合するろう材の融点が最も高く、金属支持板を接合
するろう材の融点が最も低かった。
Conventionally, a semiconductor element is bonded to a base metal plate, then a wire bonding step for wiring the electrodes of the semiconductor element is performed, and then the intermediate metal plate is bonded and then an insulating substrate. It was customary to assemble them in order, starting from the one with the smallest area. It is considered that this is because it is more advantageous to sequentially assemble the small substrates in terms of improving the assembly accuracy. Therefore, the conventional brazing material has the highest melting point of the brazing material for joining the semiconductor element, and the lowest melting point of the brazing material for joining the metal supporting plate.

【0017】しかし、使用時の接合部亀裂は、熱膨張率
の差の大きい金属支持板または中間金属板と耐熱性絶縁
板の間において主に発生していた。この接合部亀裂の発
生を抑制するため軟ろう材より剪断強度の大きい硬ろう
材を用いて金属支持板または中間金属板と耐熱性絶縁板
を接合し、その後、軟ろう材を用いて半導体素子を接合
する方法を用いると、長時間の使用においても亀裂の発
生が起こらない。これらのろう材自身の引張強さは、成
分によって異なるが大体融点の高いものの方が大きい。
いずれのろう材とも引張強さは約200MPa以上あり、従来
のPb-Sn系の軟ろう材の引張強さ約50MPaに比べて4倍以
上を有する。この様にろう材自身の機械的強度が高いも
のを適用すれば接続部の剥離を回避することが可能とな
る。
However, the cracks at the joints during use were mainly generated between the metal supporting plate or the intermediate metal plate having a large difference in thermal expansion coefficient and the heat resistant insulating plate. In order to suppress the occurrence of cracks at the joint, a metal brazing plate or an intermediate metal plate and a heat-resistant insulating plate are joined using a hard brazing material having a shear strength higher than that of the soft brazing material, and then a semiconductor element is formed using the soft brazing material. If the method of joining is used, cracks do not occur even after long-term use. The tensile strength of these brazing filler metals themselves differs depending on the components, but is generally higher for those with a higher melting point.
Each of the brazing materials has a tensile strength of about 200 MPa or more, which is four times or more that of the conventional Pb-Sn soft brazing material having a tensile strength of about 50 MPa. In this way, if the brazing filler metal itself having high mechanical strength is applied, peeling of the connection portion can be avoided.

【0018】しかし、全てを硬ろう材で接合すること
は、半導体素子を損傷するので半導体素子の接合は軟ろ
う材を用いる必要が有り、その場合、硬ろう材で予め接
合した後で軟ろう材を用いて接合することが重要であ
る。また、電極のCu端子の接合も後付けになるので軟ろ
う材を用いて接合することになる。電極の接続は軟ろう
材の他に接着剤を用いて接続することも可能である。
However, since joining all with a hard brazing material damages the semiconductor element, it is necessary to use a soft brazing material for joining the semiconductor elements. In this case, the soft brazing material is pre-joined with the hard brazing material. It is important to join using materials. Also, the Cu terminal of the electrode will be joined later, so it will be joined using a soft brazing material. The electrodes can be connected by using an adhesive agent instead of the soft brazing material.

【0019】各部材間の接続に適用するろう材の中で、
高融点のろう材を最初に適用し、次に最初のろう材の融
点より低い硬ろう材(低融点ろう材)を適用し、そして半
導体素子を融点の低い軟ろう材で接合する。いわゆる融
点差を利用した階層接合法の適用により、高信頼性の半
導体装置を得ることが出来る。
Among the brazing filler metals applied to the connection between the respective members,
A high melting point brazing material is applied first, then a hard brazing material lower than the melting point of the first brazing material (low melting point brazing material), and the semiconductor element is joined with a low melting point soft brazing material. A highly reliable semiconductor device can be obtained by applying a so-called hierarchical junction method utilizing a so-called melting point difference.

【0020】具体的に3階層の接続が必要になった場合
を考えてみる。まず最初の高融点ろう材としてはその融
点を約750℃の銀ろう材(JIS規格 BAg-1〜BAg-24)を用い
る。次のろう材は最初のろう材より融点が低い約650℃
のりん銅ろう材(JIS規格 BCuP-1〜BCuP-6)または低融点
りん銅ろう材(Cu-15%Ag-3.5%P-9.5%Sn-1%Au)などからな
っている。そして最後の接続は半導体素子を搭載するた
め、半導体を損傷しないようにはんだを用いる。はんだ
の中でも信頼性を向上させるため比較的高融点はんだを
適用する。例えば250℃の融点を有するSn,Sb,Ni,P含有
のはんだが用いられる。
Consider a case where the connection of three layers is specifically required. As the first high melting point brazing material, a silver brazing material (JIS standard BAg-1 to BAg-24) having a melting point of about 750 ° C. is used. The second brazing filler metal has a lower melting point than the first brazing filler metal, approximately 650 ° C.
It is made of phosphorous copper brazing filler metal (JIS standard BCuP-1 to BCuP-6) or low melting point phosphorous copper brazing filler metal (Cu-15% Ag-3.5% P-9.5% Sn-1% Au). Since the semiconductor element is mounted on the last connection, solder is used so as not to damage the semiconductor. Among solders, a relatively high melting point solder is used to improve reliability. For example, a solder containing Sn, Sb, Ni, P having a melting point of 250 ° C. is used.

【0021】この様に接続部が3階層の場合にはろう材
の融点も3段階のもので接続することになる。前述のろ
う材は、いわゆる銀ろう材の成分で示したが、その他に
750℃の融点のろう材のものでAg,P,Cu成分のもの、約65
0℃の融点のろう材のものでAg,P,Sn,Cu成分のいわゆる
りん銅ろう材が適用可能である。
In this way, when the connecting portions are of three layers, the melting point of the brazing material is also three-step. The above-mentioned brazing filler metal is shown as a component of so-called silver brazing filler metal,
A brazing filler metal with a melting point of 750 ° C and containing Ag, P, Cu components, about 65
A so-called phosphor copper brazing material having Ag, P, Sn, and Cu components and having a melting point of 0 ° C. can be applied.

【0022】また、4階層の接続の場合の半導体モジュ
ールも存在する。その場合は加工の容易さを考慮し例え
ば2階層を一度に750℃のろう材で接合する。次に650℃
のろう材で接合する。最後に融点の低いはんだで半導体
素子を接合する。
There is also a semiconductor module in the case of four-level connection. In that case, considering the ease of processing, for example, two layers are joined at once with a brazing material at 750 ° C. Next 650 ℃
Join with brazing material. Finally, the semiconductor element is joined with solder having a low melting point.

【0023】3階層でも前述と違う方法も適用できる。2
階層を650℃のろう材で一度に接合する。次に半導体素
子及び電気端子をはんだを用いて接合する。
A method different from the above can be applied to three layers. 2
Join the floors at once with brazing material at 650 ° C. Next, the semiconductor element and the electric terminal are joined using solder.

【0024】以上のようにろう材とはんだをうまく使い
分けて適用することにより、各部品が強固に接合され
た、高信頼の半導体装置が得られる。
By properly using the brazing material and the solder as described above, it is possible to obtain a highly reliable semiconductor device in which the components are firmly joined.

【0025】本発明の半導体装置は、異種材の接続を行
うもので当然ながら加熱、冷却により熱膨張差が生じて
くる。そのため接合温度は出来るだけ低い方が好まし
く、ろう材の選択には接合強度との兼ね合いで出来るだ
け融点の低い、且つ熱伝導性の良好なものを適用すべき
である。
In the semiconductor device of the present invention, different materials are connected to each other. Naturally, a difference in thermal expansion occurs due to heating and cooling. Therefore, the joining temperature is preferably as low as possible, and a brazing material having a low melting point and a good thermal conductivity should be applied in consideration of the joining strength.

【0026】この様にろう材の融点差の利用、半導体素
子を損傷しないはんだを組合せることにより、長期使用
にも耐える高信頼の半導体装置が得られることが判明し
た。
As described above, it was found that a highly reliable semiconductor device that can withstand long-term use can be obtained by using the melting point difference of the brazing material and combining the solders that do not damage the semiconductor element.

【0027】耐熱性絶縁基板は、価格の安さ、熱膨張係
数の点からはアルミナ基板が望ましいが、熱伝導の点か
らは窒化アルミニウムやSiC基板が適している。これら
は使われる電力容量により適宜選択される。
The heat-resistant insulating substrate is preferably an alumina substrate in terms of low cost and thermal expansion coefficient, but aluminum nitride or SiC substrate is suitable in terms of heat conduction. These are appropriately selected according to the power capacity used.

【0028】金属導体の接合に用いられる接着剤として
は低融点ガラス、シリコン樹脂、エポキシ樹脂、アクリ
ル系樹脂などが用いられる。これらの接着剤はできるだ
け熱伝導率の良いものが適している。
As the adhesive used for joining the metal conductors, low melting point glass, silicon resin, epoxy resin, acrylic resin and the like are used. It is suitable that these adhesives have as high thermal conductivity as possible.

【0029】[0029]

【実施例】【Example】

(実施例1)本発明の実施例を図を用いて説明する。実施
例1の半導体装置の構成を示す。第2図において、1は純C
u(純度99.9%以上)の金属支持板(大きさ100mm×100mm、
厚さ10mm)、2、21はアルミナ製の耐熱性絶縁板(大きさ2
0mm×50mm、厚さ1mm)、3、31は純Cu(純度99.9%以上)の
中間金属板(大きさ15mm×45mm、厚さ5mm)、4はMoの台金
属板(大きさ15mm×20mm、厚さ2mm)、5は半導体素子(大
きさ15mm×20mm、厚さ2mm)であり、これらを相互に電気
的に連結する導体6は、純Cuの電極板である。 組立て
方としては1と2、1と21、2と3、21と31及び3と4、31と4
を硬ろう即ち、重量で45%Ag-15%Zn-24%Cd-16%Cuの約620
℃の融点を有するろう材(JIS BAg-1)で接合する。次に
ろう付したこれらの部材と5の半導体素子は軟ろう即
ち、Sn-5%Sb-0.6%Ni-0.05%Pの約240℃の融点を有する
ろう材を用いて接合した。最後に3と31を電気的に連結
する導体6をPb-37%Snの約180℃の融点をもつ軟ろう材を
用いて接合した。このようにして、半導体基板を作製し
た。この基板にエポキシ製のケ−ス12をかぶせた後、
半導体素子の耐電圧を確保するためのシリコンゲル9を
充填する。次に、シリコンゲルの気密封止および電極1
3の固定のためエポキシレジンを充填し、電極11を取
付け、エポキシ製のふた14をして図1に示す半導体モ
ジュ−ルが完成する。IGBT基板最下部の金属支持板
はねじにより所定の場所に固定される。
(Example 1) An example of the present invention will be described with reference to the drawings. 1 shows a configuration of a semiconductor device of Example 1. In Figure 2, 1 is pure C
u (purity 99.9% or more) metal support plate (size 100 mm × 100 mm,
10 mm thick), 2 and 21 are heat-resistant insulating plates made of alumina (size 2
0 mm × 50 mm, thickness 1 mm), 3, 31 are pure Cu (purity 99.9% or more) intermediate metal plate (size 15 mm × 45 mm, thickness 5 mm), 4 is Mo base metal plate (size 15 mm × 20 mm) , Thickness 2 mm), and 5 are semiconductor elements (size 15 mm × 20 mm, thickness 2 mm), and the conductor 6 electrically connecting these elements is a pure Cu electrode plate. Assembling method 1 and 2, 1 and 21, 2 and 3, 21 and 31 and 3 and 4, 31 and 4
Hard solder, i.e. 45% Ag-15% Zn-24% Cd-16% Cu by weight about 620
Bonding is performed with a brazing material (JIS BAg-1) having a melting point of ° C. Next, these brazed members and the semiconductor element of 5 were joined using a soft solder, that is, a brazing material having a melting point of about 240 ° C. of Sn-5% Sb-0.6% Ni-0.05% P. Finally, the conductor 6 for electrically connecting 3 and 31 was joined by using a soft brazing filler metal having a melting point of about 180 ° C. of Pb-37% Sn. In this way, a semiconductor substrate was produced. After covering the board with epoxy case 12,
A silicon gel 9 for ensuring the withstand voltage of the semiconductor element is filled. Next, hermetically sealing the silicon gel and the electrode 1
3 is fixed, epoxy resin is filled, the electrode 11 is attached, and the lid 14 made of epoxy is attached to complete the semiconductor module shown in FIG. The metal support plate at the bottom of the IGBT substrate is fixed in place by screws.

【0030】比較例として図6に示すような従来の構造
の半導体基板を作製した。金属支持板の大きさは実施例
1と同様である。111は純Cu製(純度99.9%以上)支持板、2
22はアルミナ絶縁板(純度99%)、333は純Cu製(純度99.9%
以上)の放熱板、444はMo(純度99%)の熱緩衝材、555は半
導体素子である。これらの部材間は450℃未満の軟ろう
材で接合されている。接合の順序は最初に555のSiチッ
プと444のMoの熱緩衝材を約240℃の融点を有するSn-5%S
b-0.6%Ni-0.05%Pを用いて接合する。次にこの接合部品
を222のアルミナ絶縁板と、222のアルミナ絶縁板と111
のCu支持板とを融点約180℃のPb-37%Sn軟ろう材を用い
て同様に接合する。いずれの接合部も450℃未満の軟ろ
うで接合している。これも図1のように半導体モジュ−
ルとして完成した。
As a comparative example, a semiconductor substrate having a conventional structure as shown in FIG. 6 was produced. Example of metal support plate size
Same as 1. 111 is a pure Cu (purity 99.9% or more) support plate, 2
22 is an alumina insulating plate (99% purity), 333 is pure Cu (99.9% purity)
) Is a heat sink, 444 is a Mo (purity 99%) heat buffer, and 555 is a semiconductor element. These members are joined with a soft brazing material of less than 450 ° C. The sequence of bonding is first Sn-5% S with 555 Si chips and 444 Mo thermal buffer with a melting point of about 240 ° C.
Bonded using b-0.6% Ni-0.05% P. Next, this bonded part is connected to the alumina insulation plate 222 and the alumina insulation plate 222.
And the Cu support plate of No. 3 are similarly joined using a Pb-37% Sn soft brazing material having a melting point of about 180 ° C. All joints are joined with soft solder below 450 ° C. This is also a semiconductor module as shown in Fig. 1.
It was completed as Le.

【0031】(実施例2)第3図は、金属支持板の大き
さが実施例1と同じ大きさのIGBT基板の一部を示し
ている。純Cu(純度99.9%以上)の金属支持板1の上にアル
ミナ製の耐熱性絶縁体あるいは純Cu(純度99.9%以上)の
金属導体 7を配置し、その上に純Cu(純度99.9%以上)の
導体端子8を搭載する。ここで1と7はエポキシ系の接着
剤で接続した。また7と8は融点約180℃のPb-37%Sn軟ろ
う材を用いて接合した。
(Embodiment 2) FIG. 3 shows a part of an IGBT substrate in which the size of the metal supporting plate is the same as that of Embodiment 1. Place a heat-resistant insulator made of alumina or a pure Cu (purity 99.9% or higher) metal conductor 7 on the pure Cu (purity 99.9% or higher) metal support plate 1, and put pure Cu (purity 99.9% or higher) on it. ) Is equipped with conductor terminal 8. Here, 1 and 7 were connected with an epoxy adhesive. Also, 7 and 8 were joined using Pb-37% Sn soft brazing filler metal having a melting point of about 180 ° C.

【0032】(実施例3)第4図は第2図の中間金属板
を用いない半導体装置構造を示したものである。10は純
W(純度99.9%)製の金属支持板(大きさ200mm×200mm、厚
さ5mm)、200、210は窒化アルミニウム製耐熱性絶縁板
(純度99%,大きさ50mm×50mm、厚さ2mm)、201と202、211
と212は耐熱性絶縁板を接合しやすいようにCuでメタラ
イズした層(厚さ100μm程度)であり、50はIGBT半導体素
子(大きさ20mm×20mm、厚さ2mm)である。これらを電気
的に接続する60は純Cu(純度99.9%以上)の導体である。
(Embodiment 3) FIG. 4 shows a semiconductor device structure without the intermediate metal plate of FIG. 10 is a metal support plate made of pure W (purity 99.9%) (size 200 mm × 200 mm, thickness 5 mm), 200 and 210 are heat resistant insulating plates made of aluminum nitride.
(Purity 99%, size 50 mm × 50 mm, thickness 2 mm), 201 and 202, 211
Reference numerals 212 and 212 are layers (thickness: about 100 μm) metallized with Cu so that a heat-resistant insulating plate can be easily joined, and 50 is an IGBT semiconductor element (size 20 mm × 20 mm, thickness 2 mm). Reference numeral 60 electrically connecting these is a conductor of pure Cu (purity 99.9% or more).

【0033】組み立ては、10と201、211を約635℃の融
点を有する50%Ag-16%Zn-18%Cd-16%Cuの硬ろう材で接合
する。次にろう付したこれらの部材とIGBT半導体素子50
は、約240℃の融点を有するSn-5%Sb-0.6%Ni-0.05%Pの軟
ろう材を用いて接合した。最後に202と60及び212と60を
電気的に接続するため約180℃の融点を有するPb-37%Sn
の軟ろう材を用いて接合した。これを図1に示す半導体
モジュ−ルとして組み込んだ。作製方法は実施例1と同
様である。
For assembly, 10 and 201, 211 are joined with a hard brazing material of 50% Ag-16% Zn-18% Cd-16% Cu having a melting point of about 635 ° C. Next, these brazed members and the IGBT semiconductor device 50
Was joined using a soft brazing material of Sn-5% Sb-0.6% Ni-0.05% P having a melting point of about 240 ° C. Finally, Pb-37% Sn, which has a melting point of about 180 ° C, is used to electrically connect 202 and 60 and 212 and 60 electrically.
It joined using the soft brazing filler metal of. This was incorporated as a semiconductor module shown in FIG. The manufacturing method is the same as in the first embodiment.

【0034】(実施例4)第5図は実施例3と同等の大
きさの金属支持板をもつIGBT基板の一部を示してい
る。純Cu(純度99.9%)製の金属支持板10の上に酸化アル
ミニウム製耐熱性絶縁板7を配置し、その上に純Cu(純度
99.9%)製導体端子8を搭載する。ここで10と7をエポキシ
系の接着剤で接続した。また7と8は軟ろうの金属材で接
合した。
(Embodiment 4) FIG. 5 shows a part of an IGBT substrate having a metal supporting plate of the same size as that of Embodiment 3. A heat-resistant insulating plate 7 made of aluminum oxide is placed on a metal support plate 10 made of pure Cu (purity 99.9%), and pure Cu (purity 9
99.9%) Conductor terminal 8 is mounted. Here, 10 and 7 were connected with an epoxy adhesive. Also, 7 and 8 were joined with a soft brazing metal material.

【0035】以上の接合により作製した図2、図4、図
6に示すIGBT基板を用いたIGBTモジュ−ルを電
気的通電のON,OFFによる熱疲労寿命サイクル試験を行な
い半導体素子の電気特性が発生する熱によって劣化する
までの寿命、いわゆる熱疲労寿命を測定した。サイクル
数が多いほど実際に使用する際の寿命が長いことを意味
する。結果を第7図に示す。図にはデータのバラツキの
範囲と平均値を示す。図からわかるように従来の半導体
装置(実施例1の図6)は約103サイクルの熱疲労寿命サ
イクルであるのに対し、本発明のものは、第2図(実施
例1)の構造の半導体装置で平均値で約1万サイクル、第
4図(実施例3)構造の半導体装置では平均値で約3万サイ
クルを示した。この様に従来の軟ろう材を用いた接合と
比較して、硬ろう材と軟ろう材を適切に使いわけること
により耐熱疲労特性が著しく向上することが実証され
た。
The IGBT module using the IGBT substrates shown in FIGS. 2, 4 and 6 manufactured by the above-mentioned joining was subjected to a thermal fatigue life cycle test by turning ON / OFF electric conduction, and the electric characteristics of the semiconductor element were confirmed. The life until deterioration due to generated heat, so-called thermal fatigue life was measured. The larger the number of cycles, the longer the life in actual use. The results are shown in Fig. 7. The figure shows the range of data variation and the average value. As can be seen from the figure, the conventional semiconductor device (FIG. 6 of Example 1) has a thermal fatigue life cycle of about 10 3 cycles, whereas the present invention has the structure of FIG. 2 (Example 1). The semiconductor device showed an average value of about 10,000 cycles, and the semiconductor device having the structure of FIG. 4 (Example 3) showed an average value of about 30,000 cycles. As described above, it was proved that the thermal fatigue resistance is remarkably improved by appropriately using the hard brazing material and the soft brazing material as compared with the conventional joining using the soft brazing material.

【0036】耐熱疲労特性が向上したのは、最初に硬ろ
うで接合することにより、最も熱変形が生じやすい部分
の接合強度が高く、かつ耐熱性にも優れることに起因す
るものである。その後に450℃未満の軟ろうで他の部品
を接合することにより熱変形の小さい半導体装置が得ら
れる。
The improved thermal fatigue resistance is due to the fact that the first joining with the hard solder has a high joining strength at the portion where the thermal deformation is most likely to occur and also has an excellent heat resistance. After that, by joining other parts with a soft solder of less than 450 ° C., a semiconductor device with small thermal deformation can be obtained.

【0037】なお、第4図構造の半導体装置が最も良好
な結果を示したのは、構造が簡略化されているため、そ
れに伴い熱変形量が最も小さくなったことによる。
The semiconductor device having the structure shown in FIG. 4 showed the best results because the structure was simplified and the amount of thermal deformation was the smallest accordingly.

【0038】また、第3図及び第5図構造の半導体装置
においても第2図及び第4図構造の半導体装置とほぼか
わりない耐熱疲労寿命特性を示した。
Further, the semiconductor devices having the structures shown in FIGS. 3 and 5 also showed the thermal fatigue life characteristics which are almost the same as those of the semiconductor devices having the structures shown in FIGS. 2 and 4.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
熱疲労の小さい構造体を維持できるので、電気的通電の
ON,OFFによる熱疲労寿命サイクルに対し、著しく向上さ
せた半導体装置を得ることが出来る。
As described above, according to the present invention,
Since a structure with low thermal fatigue can be maintained,
It is possible to obtain a semiconductor device having a significantly improved thermal fatigue life cycle due to ON / OFF.

【図面の簡単な説明】[Brief description of drawings]

【図1】IGBTモジュ−ルの断面図FIG. 1 is a sectional view of an IGBT module.

【図2】本発明の実施例を示す概略断面図FIG. 2 is a schematic sectional view showing an embodiment of the present invention.

【図3】本発明の導体端子を配置した概略断面図FIG. 3 is a schematic sectional view in which conductor terminals of the present invention are arranged.

【図4】本発明の簡略構造の概略断面図FIG. 4 is a schematic sectional view of a simplified structure of the present invention.

【図5】本発明の導体端子を配置した概略断面図FIG. 5 is a schematic sectional view in which conductor terminals of the present invention are arranged.

【図6】従来の半導体を示す概略断面図FIG. 6 is a schematic sectional view showing a conventional semiconductor.

【図7】本発明及び従来の構造の半導体装置と熱疲労寿
命サイクル数の関係を示す図
FIG. 7 is a diagram showing the relationship between the semiconductor device having the present invention and the conventional structure and the number of thermal fatigue life cycles.

【符号の説明】[Explanation of symbols]

1、111:金属支持板、 2、21、222:耐熱性絶縁板、 3、3
1、333:中間金属板、4、444:台金属板、 5、50、555:半
導体素子、 6:ろう層、 7:アルミ線、 9、10:封止用樹
脂、 11:電極、12 ケ−ス、 15、150:導体金属 16:耐熱
性絶縁板 17:導体端子 18:金属支持板 20、210:耐熱性
絶縁板、 201、202、211、212:金属層
1, 111: Metal support plate, 2, 21, 222: Heat resistant insulation plate, 3, 3
1, 333: intermediate metal plate, 4, 444: base metal plate, 5, 50, 555: semiconductor element, 6: brazing layer, 7: aluminum wire, 9, 10: sealing resin, 11: electrode, 12 pieces − 15, 150: Conductor metal 16: Heat-resistant insulating plate 17: Conductor terminal 18: Metal support plate 20, 210: Heat-resistant insulating plate, 201, 202, 211, 212: Metal layer

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05K 7/20 B H01L 29/78 321 J (72)発明者 鶴岡 征男 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H05K 7/20 B H01L 29/78 321 J (72) Inventor Masao Tsuruoka 3-chome, Saiwaicho, Hitachi, Ibaraki No. 1 Stock company Hitachi Ltd. Hitachi factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属支持板上に複数個の耐熱性絶縁板を配
置接合し、該耐熱性絶縁板上に該耐熱性絶縁板よりも面
積の小さい中間金属板を配置接合し、該中間金属板上に
台金属板を配置接合し、該台金属板上に半導体素子を配
置接合した半導体装置において、前記金属支持板の接合
用ろう材の溶融温度が、前記半導体素子の接合用ろう材
の溶融温度よりも高い接合用ろう材を用いることを特徴
とする半導体装置。
1. A plurality of heat-resistant insulating plates are arranged and joined on a metal supporting plate, and an intermediate metal plate having an area smaller than that of the heat-resistant insulating plate is arranged and joined on the heat-resistant insulating plate. In a semiconductor device in which a base metal plate is placed and joined on a plate, and a semiconductor element is placed and joined on the base metal plate, the melting temperature of the joining brazing material of the metal supporting plate is higher than that of the joining brazing material of the semiconductor element. A semiconductor device characterized by using a brazing material for bonding having a temperature higher than a melting temperature.
【請求項2】金属支持板上に複数個の耐熱性絶縁板を配
置接合し、該耐熱性絶縁板上に該耐熱性絶縁板よりも面
積の小さい中間金属板を配置接合し、該中間金属板上に
台金属板を配置接合し、該台金属板上に半導体素子を配
置接合した半導体装置において、前記半導体素子の接合
は、融点450℃未満の軟ろう材で接合し、他は融点450℃
以上の硬ろう材で接合することを特徴とする半導体装
置。
2. A plurality of heat-resistant insulating plates are arranged and joined on a metal supporting plate, and an intermediate metal plate having an area smaller than that of the heat-resistant insulating plate is arranged and joined on the heat-resistant insulating plate. In a semiconductor device in which a base metal plate is arranged and bonded on a plate, and a semiconductor element is arranged and bonded on the base metal plate, the semiconductor element is bonded by a soft brazing material having a melting point of less than 450 ° C., and the other melting point is 450. ℃
A semiconductor device characterized by being joined with the above hard brazing material.
【請求項3】金属支持板上に複数個の耐熱性絶縁板を配
置接合し、該耐熱性絶縁板上に該耐熱性絶縁板よりも面
積の小さい中間金属板を配置接合し、該中間金属板上に
台金属板を配置接合し、該台金属板上に半導体素子を配
置接合した半導体装置において、耐熱性絶縁板と金属支
持板の接合部は融点450℃以上の硬ろう材により接合す
ることを特徴とする半導体装置。
3. A plurality of heat-resistant insulating plates are arranged and joined on a metal supporting plate, and an intermediate metal plate having an area smaller than that of the heat-resistant insulating plate is arranged and joined on the heat-resistant insulating plate. In a semiconductor device in which a base metal plate is arranged and bonded on a plate, and a semiconductor element is arranged and bonded on the base metal plate, the joint between the heat resistant insulating plate and the metal support plate is bonded by a brazing filler metal having a melting point of 450 ° C. or higher. A semiconductor device characterized by the above.
【請求項4】請求項1〜3のいずれかに記載の半導体装
置において、前記融点450℃以上の硬ろう材は、Cu,Ag,Z
n,Sn,P,Au,Ni,Cd,Tiの群より選ばれた2種類以上の成分
からなることを特徴とする半導体装置。
4. The semiconductor device according to claim 1, wherein the brazing filler metal having a melting point of 450 ° C. or higher is Cu, Ag, Z.
A semiconductor device comprising two or more components selected from the group consisting of n, Sn, P, Au, Ni, Cd, and Ti.
【請求項5】請求項1〜3のいずれかに記載の半導体装
置において、前記融点450℃未満の軟ろう材は、Sn,Pb,S
b,Ag,In,Bi,Cd,Cu,Au,Pの群より選ばれた2種類以上の成
分からなることを特徴とする半導体装置。
5. The semiconductor device according to claim 1, wherein the soft brazing filler metal having a melting point of less than 450 ° C. is Sn, Pb, S.
A semiconductor device comprising two or more kinds of components selected from the group consisting of b, Ag, In, Bi, Cd, Cu, Au and P.
【請求項6】請求項1〜3のいずれかに記載の半導体装
置において、前記接合部は融点450℃以上の硬ろう材を
用い、更に各々融点の異なる硬ろう材を用いた階層ろう
付で接合することを特徴とする半導体装置。
6. The semiconductor device according to claim 1, wherein the joining portion is made of a hard brazing material having a melting point of 450 ° C. or more, and further hard brazing materials having different melting points are used. A semiconductor device characterized by bonding.
【請求項7】請求項1〜6のいずれかに記載の半導体装
置において、前記金属支持板、前記耐熱性絶縁体上に接
着剤を用いて金属導体の中継ぎ端子を配置接合すること
を特徴とする半導体装置。
7. The semiconductor device according to claim 1, wherein a relay terminal of a metal conductor is arranged and bonded on the metal supporting plate and the heat resistant insulator by using an adhesive. Semiconductor device.
JP6628594A 1994-04-04 1994-04-04 Semiconductor device Pending JPH07283339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6628594A JPH07283339A (en) 1994-04-04 1994-04-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6628594A JPH07283339A (en) 1994-04-04 1994-04-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07283339A true JPH07283339A (en) 1995-10-27

Family

ID=13311411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6628594A Pending JPH07283339A (en) 1994-04-04 1994-04-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07283339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091802A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Microwave circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091802A (en) * 1998-09-11 2000-03-31 Matsushita Electric Ind Co Ltd Microwave circuit

Similar Documents

Publication Publication Date Title
JP7204770B2 (en) Double-sided cooling power module and manufacturing method thereof
US6426561B1 (en) Short-circuit-resistant IGBT module
JP5214936B2 (en) Semiconductor device
US20170309544A1 (en) Semiconductor device and method for manufacturing semiconductor device
JPS6038867B2 (en) Isolated semiconductor device
JP2002521843A (en) Electrically separated power semiconductor package
KR20120032497A (en) Semiconductor device and method for producing the same
KR20120095313A (en) Power semiconductor module and method of manufacturing a power semiconductor module
JP2007157863A (en) Power semiconductor device, and method of manufacturing same
JP2013016525A (en) Power semiconductor module and manufacturing method of the same
CN109698179B (en) Semiconductor device and method for manufacturing semiconductor device
JP2006100640A (en) Ceramic circuit board and power semiconductor module using same
JP2005332874A (en) Circuit board and semiconductor device employing it
KR102588854B1 (en) Power module and manufacturing method thereof
JP4096741B2 (en) Semiconductor device
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP3417297B2 (en) Semiconductor device
JP2000323647A (en) Module semiconductor device and manufacture thereof
JPH10135377A (en) Molded semiconductor
JP2004235566A (en) Semiconductor device for electric power
JPH11214612A (en) Power semiconductor module
JP2006332084A (en) Process for manufacturing semiconductor device, and semiconductor device
JPH1079453A (en) Molded electronic component and manufacturing method thereof
JPH07283339A (en) Semiconductor device
JP2000349231A (en) Power semiconductor module