JPH07277802A - Carbon fiber reinforced concrete - Google Patents

Carbon fiber reinforced concrete

Info

Publication number
JPH07277802A
JPH07277802A JP6085230A JP8523094A JPH07277802A JP H07277802 A JPH07277802 A JP H07277802A JP 6085230 A JP6085230 A JP 6085230A JP 8523094 A JP8523094 A JP 8523094A JP H07277802 A JPH07277802 A JP H07277802A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced concrete
corrosion
fiber reinforced
specific resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6085230A
Other languages
Japanese (ja)
Other versions
JP2876514B2 (en
Inventor
Yoshitaka Imai
義隆 今井
Yoshitaka Kageyama
義隆 景山
Yoshikazu Takei
吉一 武井
Tatsuo Suenaga
龍夫 末永
Kimiharu Satoyama
公治 里山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Kajima Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Mitsubishi Rayon Co Ltd filed Critical Kajima Corp
Priority to JP8523094A priority Critical patent/JP2876514B2/en
Publication of JPH07277802A publication Critical patent/JPH07277802A/en
Application granted granted Critical
Publication of JP2876514B2 publication Critical patent/JP2876514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/386Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inorganic Fibers (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

PURPOSE:To improve resistance to metal corrosion by specifying the specific resistance of reinforced concrete contg. cement and carbon fibers. CONSTITUTION:Carbon fibers having >=1.0X10<-1>OMEGA.cm specific resistance and >=100kg/mm<2> tensile strength of strands are incorporated into concrete by 0.1-20vol.% to obtain the objective reinforced concrete having. >=100OMEGA.cm specific resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

【0001】本発明は、改善された炭素繊維補強コンク
リートに関する。
The present invention relates to improved carbon fiber reinforced concrete.

【0002】[0002]

【従来の技術】建築、土木の材料として使われているセ
メント系マトリックスは、脆性的性質を持ち、これ単独
では構造材としての信頼性に欠けるため、これを補強、
補完する目的で従来から鉄筋が用いられている。近年、
補強繊維により構造材の特性(主に強度)の一層の改善
が検討されてきている。例えば、セメントマトリックス
に炭素繊維を適量混合することによって、従来のセメン
トコンクリートでは発現し得なかった強度特性、変形特
性、弾性特性などを付与することができ、新規構造材料
として大きな期待が寄せられている。
2. Description of the Related Art Cement-based matrices used as materials for construction and civil engineering have brittle properties, and by themselves lack structural reliability as structural materials.
Reinforcing bars have been conventionally used for the purpose of complementing. recent years,
Further improvements in the properties (mainly strength) of structural materials by reinforcing fibers have been investigated. For example, by mixing an appropriate amount of carbon fiber into a cement matrix, it is possible to impart strength properties, deformation properties, elasticity properties, etc., which could not be exhibited by conventional cement concrete, and it is expected to be a new structural material. There is.

【0003】しかしながら、炭素繊維の適用によって、
通常のコンクリートの実施工では考えられなかった基本
的な問題点が存在することが判明した。それは、金属が
炭素繊維補強コンクリートと接触すると、金属の腐食
(酸化)が著しく進行するという現象である。即ち、炭
素繊維補強コンクリートの実施工において、鉄筋や鉄
骨、型枠、結束線、アンカーファスナーやスペーサーそ
の他の金物などを使用した場合に、これらの金属が炭素
繊維補強コンクリートと接触する面で、通常のコンクリ
ートでは考えられない急速な腐食が進行する。
However, due to the application of carbon fibers,
It was found that there were basic problems that could not be considered in normal concrete construction work. It is a phenomenon that when the metal comes into contact with the carbon fiber reinforced concrete, the corrosion (oxidation) of the metal remarkably progresses. That is, in the construction work of carbon fiber reinforced concrete, when using reinforcing bars and steel frames, formwork, binding wires, anchor fasteners and spacers and other hardware, in the surface where these metals come into contact with carbon fiber reinforced concrete, The rapid corrosion that cannot be considered in concrete is advanced.

【0004】これには種々の原因が作用していると考え
られるが、その基本となるのは炭素繊維の電導性と酸化
還元電位である。即ち、炭素繊維は、極めて電導性が良
好でその電位は貴金属並みの貴な電位を有しており、こ
れより卑な鉄などの金属と、この炭素繊維が接触すると
そこに局部電池が形成され、この局部電池作用がその金
属腐食の主因となっている。従って、炭素繊維補強コン
クリートにおける金属腐食を防ぐには、炭素繊維の電導
性を下げるか、あるいは酸化還元電位を卑な電位にする
か、または炭素繊維と卑な金属との接触を断つことが考
えられる。
It is thought that various causes act on this, and the basis thereof is the electrical conductivity and redox potential of the carbon fiber. That is, carbon fiber has extremely good conductivity and its potential is as noble as that of noble metal, and when a metal such as iron, which is less base than this, comes into contact with the carbon fiber, a local battery is formed there. This local battery action is the main cause of the metal corrosion. Therefore, in order to prevent metal corrosion in carbon fiber reinforced concrete, it is conceivable to reduce the conductivity of carbon fiber, make the redox potential a base potential, or break the contact between carbon fiber and base metal. To be

【0005】従来から金属の腐食を防止すべく次のよう
な様々な工夫が試みられている。 (1)炭素繊維補強コンクリートと金属との間に樹脂、
セラミック、ゴム成分の何れかからなる電気絶縁層を形
成し、補強コンクリートを硬化させる方法(特開昭60
−184810号公報) (2)電気絶縁層に絶縁性樹脂を用いる方法(特開昭6
0−186446号公報) (3)電気絶縁層に無機材料を用いる方法(特開昭60
−186447号公報)及び (4)電気絶縁層にエポキシ樹脂を用いる方法(特開昭
62−21744号公報) などが知られているが、これらは主として炭素繊維と卑
な金属との接触を断つ方法を試みているものである。
Various attempts have heretofore been made to prevent metal corrosion. (1) Resin between carbon fiber reinforced concrete and metal,
A method of forming an electrically insulating layer made of either a ceramic or rubber component and hardening the reinforced concrete (Japanese Patent Laid-Open No. Sho 60).
No. 184810) (2) A method of using an insulating resin for the electric insulation layer (Japanese Patent Laid-Open No. 6-186,061).
No. 0-186446) (3) Method of using an inorganic material for the electric insulating layer (Japanese Patent Laid-Open No. Sho 60)
No. 186447) and (4) a method of using an epoxy resin for the electric insulation layer (Japanese Patent Laid-Open No. 62-21744), which mainly cuts the contact between the carbon fiber and the base metal. That's what the method is trying to do.

【0006】[0006]

【発明が解決しようとする課題】上述の従来技術は、何
れの場合においても、電気絶縁性材料で金属材を被覆す
ることにより補強コンクリート中の炭素繊維と金属が直
接に接触するのを防ぎ、絶縁しようとするものである
が、この絶縁による方法には以下に示したような問題点
がある。
In any of the above-mentioned prior arts, by covering a metal material with an electrically insulating material, it is possible to prevent direct contact between carbon fiber and metal in reinforced concrete. Although it is intended to insulate, this insulation method has the following problems.

【0007】ひとつには、型枠など広い面積で炭素繊維
補強コンクリートと接触する金属材を絶縁被覆しようと
する場合厚みムラが生じやすく、そのため部分的に絶縁
層の欠陥部分が生じて炭素繊維が直接金属に接触し、局
部電池の形成による金属腐食が起きることが挙げられ
る。また、厚みムラは、得られる炭素繊維補強コンクリ
ートの表面に微細な凹凸を形成し、塗装の仕上げに悪影
響を及ぼしかねない。
[0007] One of the problems is that when a metal material that comes into contact with carbon fiber reinforced concrete over a wide area such as a formwork is to be insulation-coated, thickness unevenness is likely to occur, so that a defective portion of the insulating layer partially occurs and carbon fiber is generated. It is possible to directly contact the metal and cause metal corrosion due to the formation of a local battery. Further, the uneven thickness may form fine irregularities on the surface of the obtained carbon fiber reinforced concrete, and may adversely affect the finish of coating.

【0008】このほかにも、例えば鉄筋や鉄骨などの場
合には、コンクリートとの接着性を考慮しなければなら
ず、また、これらを運搬移動したり施工する場合に絶縁
層の剥離が生じやすい、等が問題点として挙げられる。
従って、炭素繊維補強コンクリートを得るに際しては、
上述の不都合による制限が生じない補強コンクリートの
出現が望まれている。
In addition to this, for example, in the case of a reinforcing bar or a steel frame, the adhesiveness to concrete must be taken into consideration, and the insulating layer is likely to be peeled off when carrying or moving or constructing them. , Etc. are mentioned as problems.
Therefore, when obtaining carbon fiber reinforced concrete,
It is desired to develop a reinforced concrete that is not restricted by the above-mentioned inconvenience.

【0009】[0009]

【課題を解決するための手段】本発明者等は、これら従
来法の如き制約がなく、しかも金属腐食に対する抵抗性
に優れた炭素繊維補強コンクリートを開発すべく鋭意検
討した結果、比抵抗が高い炭素繊維補強コンクリートを
用いることにより、コンクリートと金属材とが接触する
部位における金属腐食が抑制されることを見出し本発明
に到達した。
Means for Solving the Problems The inventors of the present invention have diligently studied to develop a carbon fiber reinforced concrete which is not restricted by these conventional methods and is excellent in resistance to metal corrosion. As a result, the specific resistance is high. The present inventors have found that the use of carbon fiber reinforced concrete suppresses metal corrosion in the area where the concrete and the metal material come into contact with each other, and thus reached the present invention.

【0010】本発明の要旨とするところは、セメント成
分と炭素繊維補強コンクリートにおいて、補強コンクリ
ートの比抵抗が100Ω・cm以上であることを特徴と
する炭素繊維補強コンクリートにある。
The gist of the present invention resides in a carbon fiber reinforced concrete characterized in that the cement component and the carbon fiber reinforced concrete have a specific resistance of 100 Ω · cm or more.

【0011】以下、本発明を詳細に説明する。本発明の
炭素繊維補強コンクリートの比抵抗は、100Ω・cm
以上である必要があり、これによって炭素繊維補強コン
クリートと接触する金属材の腐食を抑制することができ
る。より完全に金属材の腐食を防ぐには、比抵抗が50
0Ω・cm以上であることが好ましい。
The present invention will be described in detail below. The specific resistance of the carbon fiber reinforced concrete of the present invention is 100 Ω · cm.
It is necessary to be above, and thereby, it is possible to suppress the corrosion of the metal material that comes into contact with the carbon fiber reinforced concrete. To prevent corrosion of metal materials more completely, the specific resistance should be 50
It is preferably 0 Ω · cm or more.

【0012】本発明炭素繊維補強コンクリートの上記比
抵抗を達成するには、使用する炭素繊維の比抵抗が1.
0×10-2Ω・cm以上のものを用いる。さらに、炭素
繊維の比抵抗が0.5×10-1Ω・cm以上であること
がより好ましい。また、炭素繊維補強コンクリート中の
炭素繊維が高体積分率でも、炭素繊維補強コンクリート
の比抵抗を十分に高く保つには、炭素繊維の比抵抗が
1.0×10-1Ω・cm以上であることが更に好まし
い。比抵抗が100Ω・cm未満では金属と炭素繊維と
の接触によるガルバニック腐食が進行しやすい状態とな
る。即ち、セメントマトリックス中での、高電導性の炭
素繊維の存在はガルバニック腐食電池のカソード面積を
増大させ、いわゆる小アノード、大カソードを形成して
腐食を促進すると考えられる。
In order to achieve the above specific resistance of the carbon fiber reinforced concrete of the present invention, the specific resistance of the carbon fiber used is 1.
Use the one of 0 × 10 -2 Ω · cm or more. Furthermore, the specific resistance of the carbon fiber is more preferably 0.5 × 10 −1 Ω · cm or more. Even if the carbon fiber in the carbon fiber reinforced concrete has a high volume fraction, in order to keep the specific resistance of the carbon fiber reinforced concrete sufficiently high, the specific resistance of the carbon fiber is 1.0 × 10 −1 Ω · cm or more. More preferably, If the specific resistance is less than 100 Ω · cm, galvanic corrosion due to contact between the metal and the carbon fiber is likely to proceed. That is, it is considered that the presence of highly conductive carbon fibers in the cement matrix increases the cathode area of the galvanic corrosion battery and forms so-called small anodes and large cathodes to promote corrosion.

【0013】この確認のため、コンクリート中で起こる
金属腐食反応と、その反応に導電性の炭素繊維がどのよ
うに関与しているかを調べるために次に示す様な腐食電
位及び分極曲線の測定を行った。
To confirm this, in order to investigate the metal corrosion reaction that occurs in concrete and how conductive carbon fiber is involved in the reaction, the following corrosion potential and polarization curves were measured. went.

【0014】腐食電位は、樹脂製容器内に3mmの長さ
にチョップした比抵抗:1×10-3Ω・cmの炭素繊維
を0.5容量%(Vf =0.5%)及び1.0容量%
(Vf=1.0%)混練したものと、炭素繊維を混練し
ない(CFなし)セメントペースト中に、鋼試片及び塩
橋を介した参照電極(Ag−AgCl)を挿入し、北斗
電工社製ポテンショスタット(HZ−1A)を用い、鋼
試片と参照電極間の電位の経時変化を測定した。図1に
その結果を示す。
The corrosion potential is 0.5 vol% (V f = 0.5%) and 1 of carbon fiber having a specific resistance of 1 × 10 −3 Ω · cm chopped into a resin container and having a length of 3 mm. 0.0% by volume
(V f = 1.0%) kneaded ones and a carbon paste not kneaded (no CF) cement paste into which a reference electrode (Ag-AgCl) through a steel sample and a salt bridge was inserted, and Hokuto Denko Using a potentiostat (HZ-1A) manufactured by Co., Ltd., the change with time in the potential between the steel sample and the reference electrode was measured. The result is shown in FIG.

【0015】図1に見られるように鋼材の腐食電位は初
期に貴側に移行し、その後時間の経過とともに卑側に移
行する。通常、セメントのpHは12〜13と高アルカ
リであり、この領域では鉄は不動態を形成する。初期の
腐食電位の変化は鋼材の表面に不動態層が形成される過
渡現像によるものと考えられる。また、腐食電位の卑側
への移行は、腐食のカソード反応が酸素の還元反応であ
るとすれば、セメント中の酸素が徐々に消費され、且
つ、補給が穏やかであるために、酸素が欠乏していくた
めと思われる。
As shown in FIG. 1, the corrosion potential of the steel material shifts to the noble side in the initial stage and then shifts to the base side with the passage of time. Usually, the pH of cement is as high as 12-13, and iron forms a passivation in this region. It is considered that the initial change in corrosion potential is due to transient development in which a passivation layer is formed on the surface of the steel material. Moreover, if the cathodic reaction of corrosion is a reduction reaction of oxygen, the shift of the corrosion potential to the base side is such that oxygen in the cement is gradually consumed and the supply is gentle, so that the oxygen is deficient. It seems to do.

【0016】炭素繊維を入れないセメントペーストに比
較して炭素繊維をセメント中に分散させた場合(Vf
0.5%及びVf =1.0%)の腐食電位は貴の方へ大
きくなった。また、添加量に比例してその値は大きくな
った。これは炭素繊維上での酸素の酸化還元反応により
腐食電位が決定されるとすると、セメント中の炭素繊維
が鋼材に接触し、カソード反応が起きる部位が増大して
腐食電位が大きくなったものと考えられる。
When carbon fibers are dispersed in cement as compared to cement paste containing no carbon fibers (V f =
The corrosion potential at 0.5% and V f = 1.0%) increased toward you. The value increased in proportion to the amount added. This means that if the corrosion potential is determined by the redox reaction of oxygen on the carbon fiber, the carbon fiber in the cement comes into contact with the steel material and the site where the cathodic reaction occurs increases and the corrosion potential increases. Conceivable.

【0017】次に、腐食反応をより定量的に把握するた
めに行った分極曲線の測定について説明する。分極曲線
は、腐食電位の測定系に作用極の鋼材に対し、対極とし
てPt電極を用いた3電極系で測定した。腐食電位の測
定のときと同様に参照電極にはAg−AgCl、北斗電
工社製ポテンショスタット(HZ−1A)を用いた。
Next, the measurement of the polarization curve carried out in order to grasp the corrosion reaction more quantitatively will be described. The polarization curve was measured by a three-electrode system using a Pt electrode as a counter electrode for the steel material of the working electrode in the corrosion potential measuring system. As with the measurement of the corrosion potential, Ag-AgCl and Potentiostat (HZ-1A) manufactured by Hokuto Denko KK were used for the reference electrode.

【0018】図2に、金属腐食反応の模式図を示す。腐
食の定常状態ではアノード反応電流とカソード反応電流
とが等しくなるので腐食状態は2つの分極曲線の交点で
表現される。その交点の電位及び電流密度が各々腐食電
位、腐食電流密度となる。
FIG. 2 shows a schematic diagram of the metal corrosion reaction. In the steady state of corrosion, the anode reaction current and the cathode reaction current are equal, so the corrosion state is represented by the intersection of two polarization curves. The potential and the current density at the intersection point are the corrosion potential and the corrosion current density, respectively.

【0019】図3に、セメント中に比抵抗2.0×10
-3Ω・cmの炭素繊維を1.0容量%を分散させた場合
(Vf =1.0%)と炭素繊維を入れない(CFなし)
場合について、セメント中に挿入した鋼材の分極挙動を
示す。セメント中への炭素繊維添加によって腐食電流が
著しく増大し、約10倍近くも増えていることがわか
る。これからもセメント中の炭素繊維が鋼材と接触し、
腐食が著しく促進されていることを窺い知ることができ
る。
As shown in FIG. 3, the specific resistance in the cement is 2.0 × 10.
-3 Ω · cm carbon fiber with 1.0% by volume dispersed (V f = 1.0%) and no carbon fiber (no CF)
In this case, the polarization behavior of the steel material inserted in the cement is shown. It can be seen that the addition of carbon fiber to the cement markedly increased the corrosion current and increased it by about 10 times. The carbon fibers in the cement will continue to come into contact with the steel,
It can be seen that the corrosion is significantly accelerated.

【0020】以上のようにセメントと炭素繊維の接触が
避けられない場合には、炭素繊維自身の電気特性、特に
比抵抗および炭素繊維補強コンクリート中の炭素繊維の
体積分率が腐食速度の大小を左右する。言い換えると、
炭素繊維補強コンクリート自身の比抵抗が腐食速度の大
小を左右することが窺える。従って、本発明に用いるこ
とのできる炭素繊維としては、強度特性の発現に優れ、
比抵抗を含む要求性能に対してバランスのとれた特性を
有するポリアクリロニトリル系の炭素繊維が好ましい。
強度特性としてはストランド引張り強度が100kg/
mm2 以上のものが好ましい。炭素繊維の形態は、長繊
維であっても、短繊維であっても構わない。
As described above, when the contact between cement and carbon fiber is unavoidable, the electrical properties of carbon fiber itself, particularly the specific resistance and the volume fraction of carbon fiber in carbon fiber reinforced concrete, make the corrosion rate large and small. It depends. In other words,
It can be seen that the specific resistance of the carbon fiber reinforced concrete itself affects the magnitude of the corrosion rate. Therefore, the carbon fiber that can be used in the present invention is excellent in the development of strength characteristics,
A polyacrylonitrile-based carbon fiber having characteristics balanced with respect to required performance including specific resistance is preferable.
As the strength characteristics, the strand tensile strength is 100 kg /
It is preferably mm 2 or more. The form of the carbon fiber may be a long fiber or a short fiber.

【0021】また、本発明のコンクリート中における炭
素繊維の量は、体積分率で0.1〜20%の範囲である
が、炭素繊維補強コンクリートの強度、補強コンクリー
トコストパフォーマンスを考えると0.3〜2%の範囲
が好ましい。
The amount of carbon fiber in the concrete of the present invention is in the range of 0.1 to 20% in terms of volume fraction, but is 0.3 when considering the strength of carbon fiber reinforced concrete and the cost performance of reinforced concrete. The range of 2% is preferable.

【0022】本発明で用いる高抵抗の炭素繊維は、特に
表面処理を施さなくても、セメントと強固な接着性を示
すが、硝酸等の薬液酸化による表面処理、高温空気やオ
ゾン中での表面処理、Ar,O2 ,CF3 等のガスのプ
ラズマ中での表面処理、硝酸、硫酸、水酸化ナトリウ
ム、重炭酸塩、硝酸塩、リン酸等の電解液中での電解酸
化による表面処理により、炭素繊維とセメントとの接着
性および分散性の向上を更に図ることができる。また、
無機、有機の低分子もしくは高分子を浸漬処理、化学的
蒸着法(CVD)、物理的蒸着法(PVD)、電解重合
等で炭素繊維表面をコーティングすることによっても接
着性、分散性の向上を図ることができる。特にアミノシ
ランカップリング剤で炭素繊維表面を処理をすることに
より、接着性および分散性を更に向上することができ
る。
The high-resistivity carbon fiber used in the present invention shows a strong adhesiveness with cement even if it is not surface-treated, but the surface treatment by the oxidation of a chemical solution such as nitric acid or the surface in high temperature air or ozone is carried out. Treatment, surface treatment in plasma of gas such as Ar, O 2 and CF 3 , surface treatment by electrolytic oxidation in electrolytic solution such as nitric acid, sulfuric acid, sodium hydroxide, bicarbonate, nitrate, phosphoric acid, It is possible to further improve the adhesiveness and dispersibility of the carbon fiber and the cement. Also,
Improving adhesion and dispersibility by coating the surface of carbon fiber by dipping treatment of inorganic or organic low or high molecular weight, chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic polymerization, etc. Can be planned. Particularly, by treating the surface of the carbon fiber with an aminosilane coupling agent, the adhesiveness and dispersibility can be further improved.

【0023】本発明に用いる鉄筋としては、通常の補強
コンクリートに使用されているもので良く、特に制限は
ない。また、積極的に黒皮を生成させた鉄筋を使用する
ことも通常であり、この場合にはこの酸化被膜が絶縁層
として作用するため、不完全ではあるが局部電池生成の
抑制が期待できる。
The reinforcing bars used in the present invention may be those used in ordinary reinforced concrete and are not particularly limited. Further, it is usual to use a reinforcing bar in which black skin is positively generated. In this case, since this oxide film acts as an insulating layer, it is possible to expect the suppression of local battery generation although it is incomplete.

【0024】本発明における炭素繊維補強コンクリート
は、セメントマトリックス中に炭素繊維を分散させたも
のであれば砂や砂利などの骨材の有無やその量の多少、
或いは各種の添加剤や混和剤の量の多少を問わず、更に
はセメントの種類を問わず、炭素繊維の電導性による局
部電池形成に基づく金属腐食に対して、防止効果を発揮
するものである。
The carbon fiber reinforced concrete according to the present invention has the presence or absence of aggregate such as sand and gravel and the amount thereof as long as carbon fiber is dispersed in a cement matrix.
Or, regardless of the amount of various additives and admixtures, and regardless of the type of cement, it exhibits an effect of preventing metal corrosion due to local battery formation due to the conductivity of carbon fiber. .

【0025】[0025]

【実施例】以下に、実施例に基づいて、より具体的に本
発明を説明する。 [実施例1〜3],[比較例1,2] ポリアクリロニトリル繊維を原料とし、炭素化焼成温度
600℃(実施例1に使用)、800℃(実施例2に使
用)、900℃(実施例3に使用)及び1300℃(比
較例1に使用)で処理した炭素繊維のストランド強度お
よび比抵抗を表1に示す。
EXAMPLES The present invention will be described in more detail based on the following examples. [Examples 1 to 3], [Comparative Examples 1 and 2] Using polyacrylonitrile fiber as a raw material, carbonization and firing temperature 600 ° C (used in Example 1), 800 ° C (used in Example 2), 900 ° C (implemented) Table 1 shows the strand strength and the specific resistance of the carbon fiber treated at Example 3) and at 1300 ° C. (used for Comparative Example 1).

【0026】[0026]

【表1】 [Table 1]

【0027】得られた炭素繊維を表2に示す配合のセメ
ントペースト中に容積分率1%の割合で混練し実施例1
〜3及び比較例1を得た。その炭素繊維補強コンクリー
トの中に、#400のサンドペーパーで研磨し、アセト
ンで十分脱脂した黒皮なし普通鉄筋を埋設し、40℃×
5時間の蒸気養生を施した後、オートクレーブ中で18
0℃×10気圧×5時間の腐食加速試験(第1回)を実
施した後、および、さらに、同じ条件でオートクレーブ
中で処理(第2回)後に、コンクリート中から取り出
し、その腐食状況として鋼材表面の腐食発生率(腐食面
積/全表面積×100%)を調べた。その結果を表3に
示した。比較例2として炭素繊維なしで実施例と同様に
して、鉄筋の腐食状況を調べた。その結果も併せて表3
に示した。
The carbon fiber obtained was kneaded in a cement paste having the composition shown in Table 2 at a volume fraction of 1% to obtain Example 1.
3 and Comparative Example 1 were obtained. In the carbon fiber reinforced concrete, a normal bar without black skin, which was sanded with # 400 sandpaper and thoroughly degreased with acetone, was embedded at 40 ° C.
After steam curing for 5 hours, 18 in the autoclave
After carrying out a corrosion acceleration test (1st time) at 0 ° C. × 10 atm × 5 hours, and further after treating it in an autoclave under the same conditions (2nd time), it was taken out from the concrete, and the corrosion condition was steel material. The surface corrosion rate (corrosion area / total surface area × 100%) was examined. The results are shown in Table 3. As Comparative Example 2, the corrosion state of the reinforcing bar was examined in the same manner as in Example without the carbon fiber. The results are also shown in Table 3
It was shown to.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】表4に各実施例及び比較例1で用いた炭素
繊維を、表2に示した配合のコンクリート中に配合して
なる炭素繊維補強コンクリートの曲げ強度、および炭素
繊維補強コンクリートの比抵抗の測定結果を、比較例2
のコンクリートについても併せて示す。その時の養生は
20℃、湿度90%以上の湿気室で1日養生した後、脱
型し、7日間の水中養生で行なった。供試体寸法はJI
S−R5201に準拠し、4cm×4cm×16cmで
行なった。各実施例とも低体積分率で十分な強度の発現
が確認できた。
Table 4 shows the bending strength of carbon fiber reinforced concrete obtained by mixing the carbon fibers used in each of Examples and Comparative Example 1 into the concrete having the composition shown in Table 2 and the specific resistance of the carbon fiber reinforced concrete. The measurement result of Comparative Example 2
The concrete is also shown. The curing at that time was carried out by curing in a humidity chamber at 20 ° C. and a humidity of 90% or more for 1 day, then demolding, and curing for 7 days in water. Specimen size is JI
According to S-R5201, the measurement was performed at 4 cm × 4 cm × 16 cm. In each of the examples, the expression of sufficient strength was confirmed at a low volume fraction.

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【発明の効果】本発明の炭素繊維補強コンクリートは、
極めて比抵抗が高く、強度が高い炭素繊維を用いている
ため、コンクリート中の鉄筋、鉄骨等金属の腐食に対す
る抵抗性に優れ、且つ高い曲げ強度を達成できた。
The carbon fiber reinforced concrete of the present invention is
Since carbon fiber, which has extremely high specific resistance and high strength, is used, excellent resistance to corrosion of metal such as rebar and steel in concrete and high bending strength can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】セメント中の鋼材の腐食電位と時間の関係を表
すグラフである。
FIG. 1 is a graph showing the relationship between the corrosion potential of steel in cement and time.

【図2】金属の腐食反応の構成図を示す。FIG. 2 shows a schematic diagram of a metal corrosion reaction.

【図3】セメント中の炭素繊維による鋼材の分極挙動を
示すグラフである。
FIG. 3 is a graph showing a polarization behavior of a steel material due to carbon fibers in cement.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 14:38 A 24:00) 111:26 111:90 (72)発明者 武井 吉一 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 末永 龍夫 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内 (72)発明者 里山 公治 東京都調布市飛田給二丁目19番1号 鹿島 建設株式会社技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C04B 14:38 A 24:00) 111: 26 111: 90 (72) Inventor Yoshikazu Takei Tokyo 2-19-1 Tobita-yasu, Chofu-shi Kashima Construction Co., Ltd. Technical Research Institute (72) Inventor Tatsuo Suenaga Tokyo 2-2-1 Tobita-yasu Tobita Kacho Construction Co., Ltd. Technical Research Institute (72) Inventor Satoyama Koji Tokyo 2-1-1, Tobita, Chofu-shi Kashima Construction Co., Ltd. Technical Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セメント成分と炭素繊維からなる補強コ
ンクリートにおいて、補強コンクリートの比抵抗が10
0Ω・cm以上であることを特徴とする炭素繊維補強コ
ンクリート。
1. A reinforced concrete comprising a cement component and carbon fiber, wherein the reinforced concrete has a specific resistance of 10 or less.
Carbon fiber reinforced concrete characterized by having a resistance of 0 Ω · cm or more.
【請求項2】 比抵抗が1.0×10-2Ω・cm以上の
炭素繊維を用いてなることを特徴とする請求項1記載の
炭素繊維補強コンクリート。
2. The carbon fiber reinforced concrete according to claim 1, wherein the carbon fiber has a specific resistance of 1.0 × 10 −2 Ω · cm or more.
【請求項3】 ストランド引張り強度が100kg/m
2 以上の炭素繊維を用いてなることを特徴とする請求
項1または2記載の炭素繊維補強コンクリート。
3. Strand tensile strength is 100 kg / m.
The carbon fiber reinforced concrete according to claim 1 or 2, characterized in that the carbon fiber of m 2 or more is used.
JP8523094A 1994-04-01 1994-04-01 Carbon fiber reinforced concrete Expired - Fee Related JP2876514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8523094A JP2876514B2 (en) 1994-04-01 1994-04-01 Carbon fiber reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8523094A JP2876514B2 (en) 1994-04-01 1994-04-01 Carbon fiber reinforced concrete

Publications (2)

Publication Number Publication Date
JPH07277802A true JPH07277802A (en) 1995-10-24
JP2876514B2 JP2876514B2 (en) 1999-03-31

Family

ID=13852769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8523094A Expired - Fee Related JP2876514B2 (en) 1994-04-01 1994-04-01 Carbon fiber reinforced concrete

Country Status (1)

Country Link
JP (1) JP2876514B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174342A (en) * 1989-11-30 1991-07-29 Nkk Corp Conductive inorganic hardened body
JPH0474747A (en) * 1990-07-12 1992-03-10 Denki Kagaku Kogyo Kk Conductive elastic mortar composition
JPH0781989A (en) * 1993-09-10 1995-03-28 Hyperion Catalysis Internatl Inc Carbon-fibril-containing inorganic composite cured product
JPH07206502A (en) * 1994-01-13 1995-08-08 Onoda:Kk Electrically conductive polymer cement mortar and its production
JPH07211418A (en) * 1994-01-14 1995-08-11 Osaka Gas Co Ltd Earth resistance reducing agent and earth electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174342A (en) * 1989-11-30 1991-07-29 Nkk Corp Conductive inorganic hardened body
JPH0474747A (en) * 1990-07-12 1992-03-10 Denki Kagaku Kogyo Kk Conductive elastic mortar composition
JPH0781989A (en) * 1993-09-10 1995-03-28 Hyperion Catalysis Internatl Inc Carbon-fibril-containing inorganic composite cured product
JPH07206502A (en) * 1994-01-13 1995-08-08 Onoda:Kk Electrically conductive polymer cement mortar and its production
JPH07211418A (en) * 1994-01-14 1995-08-11 Osaka Gas Co Ltd Earth resistance reducing agent and earth electrode

Also Published As

Publication number Publication date
JP2876514B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
Fu et al. Improving the bond strength between carbon fiber and cement by fiber surface treatment and polymer addition to cement mix
Sun et al. Corrosion behavior of carbon fiber reinforced polymer anode in simulated impressed current cathodic protection system with 3% NaCl solution
Wootton et al. Corrosion of steel reinforcement in carbon fiber-reinforced polymer wrapped concrete cylinders
Miyazato et al. Transport properties and steel corrosion in ductile fiber reinforced cement composites
Jin et al. Electrochemical chloride extraction (ECE) based on the high performance conductive cement-based composite anode
Guo et al. The application of novel lightweight functional aggregates on the mitigation of acidification damage in the external anode mortar during cathodic protection for reinforced concrete
Chen et al. Study of steel corrosion in strain-hardening cementitious composites (SHCC) via electrochemical techniques
Astuti et al. Effectiveness of rusted and non-rusted reinforcing bar protected by sacrificial anode cathodic protection in repaired patch concrete
WO1985003930A1 (en) Carbon fiber-reinforced concrete
KR101081991B1 (en) Artificial crack healing method for concrete using electrochemical deposition
CN110467378A (en) A kind of structure and corrosion control function are in the new concrete of one
NZ520344A (en) Process for the protection of reinforcement in reinforced concrete
Elgebaley et al. Role of cement type on performance change of reinforcing steel due to chloride extraction
JP2876514B2 (en) Carbon fiber reinforced concrete
WO2018082147A1 (en) Method for increasing penetration depth of silane in concrete
JP6968466B2 (en) Lightweight conductive mortar material, its manufacturing method and use
Pellegrini-Cervantes et al. Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes
JP3728086B2 (en) Anticorrosion reinforced concrete assembly and assembly method
Cervantes et al. Conductive cement pastes with carbon fibers as anodes in the electrochemical chloride extraction
RU2724236C1 (en) Method of protecting cathode blocks of aluminum electrolysis cells with burned anodes, a protective composition and a coating
El-Shazly et al. Investigation for the possibility of improving the reinforced concrete corrosion resistance using polyaniline coated steel
KR20030037336A (en) Method for cathodic protection-repairing of steel-reinforced concrete structures
JPH07205310A (en) Carbon fiber composite material
JP4170964B2 (en) Carbon fiber sheet, method for preventing corrosion of concrete structure using the same, and structure for preventing corrosion
JPH05294758A (en) Repairing method for concrete containing salt

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees