JPH07253529A - Automatic focusing camera with macro lens - Google Patents

Automatic focusing camera with macro lens

Info

Publication number
JPH07253529A
JPH07253529A JP4342894A JP4342894A JPH07253529A JP H07253529 A JPH07253529 A JP H07253529A JP 4342894 A JP4342894 A JP 4342894A JP 4342894 A JP4342894 A JP 4342894A JP H07253529 A JPH07253529 A JP H07253529A
Authority
JP
Japan
Prior art keywords
lens
light
subject
distance
macro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4342894A
Other languages
Japanese (ja)
Inventor
Takeshi Musashi
剛 八道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4342894A priority Critical patent/JPH07253529A/en
Publication of JPH07253529A publication Critical patent/JPH07253529A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate an unrequired lens scan and to perform smooth focusing operation in automatic focusing adjustment with a macro lens by driving a photographing lens to a prescribed position on a short distance side when a subject is discriminated to exist on the short distance side shorter than a prescribed distance. CONSTITUTION:First of all, a distance is decided by first, second light flooding/ light receiving parts 13, 15, and a lens side micro computer (LCPU) 17 compares the quantity of a received light with that of a prescribed reference level, and discriminates whether or not the subject exists on the short distance side shorter than a prescribed distance, or whether or not the subject exists within a macrophotographing area, and transmits the discriminated result to a body side micro computer (BCPU) 21. Then, when the subject is discriminated to exist at no great distance, the photographing lens 1 is pre-driven, that is, driven to a position equivalent to the distance value of the prescribed short distance in advance. When no macrophotographing lens is used, no pre-drive is performed. Then, the LCPU 17 performs AF detection of a passive system by a ranging part 13 in a camera main body 2, and thus, when the deviation is found, the CPU 17 decides focusing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマクロ撮影用交換レンズ
やマクロ撮影可能なズ−ムレンズのようなマクロ撮影可
能なレンズが装着可能もしくは一体化されているカメラ
の自動焦点調節装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focus adjusting device for a camera to which a macro photographing lens such as a macro photographing interchangeable lens or a macro photographing zoom lens can be attached or integrated.

【0002】[0002]

【従来技術】従来より上記の如きマクロ撮影可能な撮影
レンズによる撮影を行う場合、通常撮影範囲における撮
影と比べてマクロ撮影時は撮影レンズの繰り出し量が非
常に大きくなり、オートフォーカス撮影するとき被写体
と撮影レンズとの位置関係によっては1回で焦点検出が
できないことがある。このような状態のとき、焦点検出
光束がセンサー上に導かれる位置、即ち、被写体情報が
得られる状態となるまで撮影レンズをスキャンする方式
がとられている。
2. Description of the Related Art Conventionally, when shooting with a shooting lens capable of macro shooting as described above, the amount of extension of the shooting lens is extremely large during macro shooting compared to shooting in a normal shooting range, and the subject is not visible during autofocus shooting. Depending on the positional relationship between the lens and the taking lens, focus detection may not be possible once. In such a state, a method is used in which the photographing lens is scanned until the position where the focus detection light flux is guided to the sensor, that is, the state where the subject information is obtained.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術において
はその繰り出し量の大きさからレンズスキャンに要する
時間が長くなり、シャッターチャンスを逃すという不具
合が生じる。これは被写体の条件が悪いとさらに大きく
なる。上記不具合を解消するため、駆動量をマクロ撮影
領域と通常撮影領域とのいずれかに制限するフォーカス
リミットスイッチを設けたものが知られている。しか
し、このような構成では、撮影中に通常撮影領域からマ
クロ撮影領域に切り替えたいとき、あるいはその逆のと
き、使用者はその都度フォーカスリミットスイッチを解
除しなければならず煩わしい、という不具合を生ずる。
In the above-mentioned conventional technique, the time required for lens scanning becomes long due to the amount of extension and the problem of missing a photo opportunity occurs. This becomes even larger if the condition of the subject is bad. In order to solve the above-mentioned inconvenience, it is known to provide a focus limit switch for limiting the drive amount to either the macro shooting area or the normal shooting area. However, with such a configuration, when the user wants to switch from the normal shooting area to the macro shooting area during shooting, or vice versa, the user has to release the focus limit switch each time, which causes a trouble. .

【0004】本発明は上記不具合に鑑みて成されたもの
であって、マクロ撮影可能なレンズを用いたオ−トフォ
−カス撮影において、合焦までの時間を早め、シャッタ
−チャンスを逃がすという事態をできるだけ防止すると
ともに、無駄なレンズスキャン駆動を防止し、スムーズ
な撮影ができるようにしたカメラの自動焦点調節装置を
得ることを目的としたものである。
The present invention has been made in view of the above problems, and in autofocus photographing using a lens capable of macro photographing, the time until focusing is shortened and a shutter chance is missed. It is an object of the present invention to provide an automatic focus adjustment device for a camera that prevents unnecessary lens scan driving and enables smooth shooting.

【0005】[0005]

【課題を解決するための手段】マクロ撮影可能なレンズ
を有したカメラの自動焦点調節装置において、測距手段
と、上記レンズに設けられ被写体へ光を投射する投光手
段と、上記レンズに設けられ上記投光の被写体からの反
射光を受光する受光手段と、上記受光手段出力に基づ
き、被写体が所定の距離より近距離側にあるか否かを判
別する判別手段と、上記判別手段が、被写体が所定距離
より近距離側にあると判別したとき、撮影レンズを近距
離側の所定位置へ駆動し、その後、上記測距手段出力に
基づき撮影レンズを合焦位置へ駆動するレンズ駆動制御
手段と、を有している。
In an automatic focus adjusting device for a camera having a lens capable of macro photography, distance measuring means, light projecting means provided on the lens for projecting light onto a subject, and provided on the lens. The light receiving means for receiving the reflected light from the subject of the projected light; the determining means for determining whether or not the subject is closer than a predetermined distance based on the output of the light receiving means; and the determining means, When it is determined that the object is closer to the predetermined distance than the predetermined distance, the photographing lens is driven to a predetermined position on the short distance side, and then the photographing lens is driven to the in-focus position based on the output of the distance measuring means. And have.

【0006】[0006]

【作用】自動焦点調節動作を行わせるに当たって、被写
体が所定の距離より近距離側にあるときには、この自動
焦点調節動作に先立って上記レンズを所定の近距離位置
へ駆動させ、この後合焦動作を行わせる。
In performing the automatic focusing operation, when the subject is closer to the predetermined distance than the predetermined distance, the lens is driven to the predetermined short distance position prior to the automatic focusing operation, and then the focusing operation is performed. To perform.

【0007】[0007]

【実施例】図1は本発明が適用されるカメラの一実施例
を示す概略図である。図中、撮影レンズ1はマクロ撮影
用交換レンズやマクロ撮影可能なズ−ムレンズといった
マクロ撮影可能なレンズであり、カメラ本体2に着脱自
在に取り付けられている。この撮影レンズ1を通った被
写体からの光束は既知のごとくカメラ本体2内で回動自
在に設けられたメインミラー3a、サブミラ−3bにて
下方へ反射され測距部4へと導かれる。この測距部4は
既知のごとく測距に関するデータを出力し、適宜の制御
回路を介して撮影レンズ1を合焦点へと駆動する。
FIG. 1 is a schematic view showing an embodiment of a camera to which the present invention is applied. In the figure, a photographing lens 1 is a macro photographing lens such as a macro photographing interchangeable lens or a macro photographing zoom lens, and is detachably attached to a camera body 2. The light flux from the subject that has passed through the photographing lens 1 is reflected downward by a main mirror 3a and a sub mirror-3b that are rotatably provided in the camera body 2 as is known, and is guided to the distance measuring unit 4. The distance measuring unit 4 outputs data related to distance measurement as is known, and drives the taking lens 1 to a focal point through an appropriate control circuit.

【0008】図2は、上記一実施例の回路構成をブロッ
ク図として示すものである。図中1は上記マクロ撮影可
能なレンズ、2はカメラ本体を示し、これらは各々レン
ズ側マイコン(以下LCPUと略称する)17、ボディ
側マイコン(以下BCPUと略称する)21を有してい
る。これらLCPU17とBCPU21とはレンズマウ
ント部に設けられた通信ライン端子群19を介して接続
されている。またこのLCPU17はその内部記憶回路
部にマクロ撮影可能なレンズであるというレンズ種類を
示す情報記憶部が設けられている。上記レンズ1の鏡筒
前面枠1aには、図2、図3に示すごとく赤外投光LE
D等からなる投光手段13a、15aとSPD等からな
る受光手段13b、15bとが、各々対になった状態で
第1の投・受光部13、第2の投・受光部15として、
レンズ光軸の上下に対称に配設されている。この投光手
段13a、15aは被写体に向けて赤外光を投射するも
のであり、受光手段13b、15bはこの赤外光の被写
体からの反射光を受光するものである。またこの第1の
投・受光部13、第2の投・受光部15は後述する内容
から明らかなように被写体距離のゾ−ン判別用として機
能するようになっている。ここで上記第1の投・受光部
13、第2の投・受光部15を上下に配置している理由
は、マクロ領域では被写体とカメラとの距離、いわゆる
ワーキング・ディスタンスが短く、非TTLの投受光系
ではパララックスが生じてしまうことからくる不具合、
すなわち、カメラ本体内の測距部4との視野がずれてし
まうことによる不具合を減少させるための構成であっ
て、同図のように複数の投・受光部を設けることでその
影響を小さくできる。
FIG. 2 is a block diagram showing the circuit configuration of the above embodiment. In the figure, reference numeral 1 denotes a lens capable of macro photography, and 2 denotes a camera body, each of which has a lens side microcomputer (hereinafter abbreviated as LCPU) 17 and a body side microcomputer (hereinafter abbreviated as BCPU) 21. The LCPU 17 and the BCPU 21 are connected via a communication line terminal group 19 provided on the lens mount section. Further, the LCPU 17 is provided with an information storage section indicating a lens type that is a lens capable of macro photography in its internal storage circuit section. The lens barrel front frame 1a of the lens 1 has an infrared projection LE as shown in FIGS.
The light projecting means 13a, 15a composed of D etc. and the light receiving means 13b, 15b composed of SPD etc. are paired as the first light projecting / light receiving section 13 and the second light projecting / light receiving section 15, respectively.
They are arranged symmetrically above and below the optical axis of the lens. The light projecting means 13a and 15a project infrared light toward the subject, and the light receiving means 13b and 15b receive reflected light of the infrared light from the subject. Further, the first light emitting / receiving unit 13 and the second light receiving / receiving unit 15 function to discriminate the zone of the object distance, as will be apparent from the contents described later. Here, the reason why the first light emitting / receiving unit 13 and the second light receiving / receiving unit 15 are arranged vertically is that the distance between the subject and the camera in the macro region, that is, the so-called working distance is short, and the non-TTL Problems caused by parallax in the light emitting and receiving system,
That is, this is a configuration for reducing the problem caused by the shift of the visual field from the distance measuring unit 4 in the camera body, and the effect can be reduced by providing a plurality of light emitting / receiving units as shown in FIG. .

【0009】さらに上記レンズ1内には投光手段13
a、15aを所定回数断続的に発光させるための投光制
御手段、この断続的な発光の被写体からの反射光を受光
した受光手段13b、15bからの受光量デ−タ信号を
積分処理するための受光制御手段が設けられている。こ
の投光制御手段、受光制御手段は各々、上記一対の投光
手段13a、15a、受光手段13b、15bに合わせ
て、投光制御回路14a、16a、受光制御回路14
b、16bとして一対ずつ設けられている。これら制御
手段は上記LCPU17により制御されるようになって
いる。更に、このレンズ1内にはレンズ駆動のための駆
動制御手段12と、レンズの駆動位置を示すエンコーダ
出力やレンズ情報を出力する出力制御手段18とが配置
されている。
Further, the light projecting means 13 is provided in the lens 1.
a, 15a for projecting the light intermittently a predetermined number of times, and for integrating the received light amount data signal from the light receiving means 13b, 15b which receives the reflected light from the subject of the intermittent light emission. Light receiving control means is provided. The light projecting control means and the light receiving control means respectively match the pair of light projecting means 13a, 15a and the light receiving means 13b, 15b, and the light projecting control circuits 14a, 16a and the light receiving control circuit 14 respectively.
One pair is provided as b and 16b. These control means are controlled by the LCPU 17. Further, in the lens 1, a drive control means 12 for driving the lens and an output control means 18 for outputting an encoder output indicating a lens drive position and lens information are arranged.

【0010】一方、カメラ本体側には上記BCPU21
及び測距部4が配設されている。この測距部4は一対の
CCD等のラインセンサからなる測距素子4aを含む既
知の構成のものである。前記レンズ1内にあるレンズ駆
動制御手段12は上記受光制御回路14b、16b、情
報出力制御手段18、測距部4、LCPU17、BCP
U21等との間での情報処理結果に基づいてレンズを駆
動するようになっている。ここで前記投光手段13a、
15aは一般的に赤外光等の視感度から外れた波長域の
光が使用されるようになっており、受光手段13b、1
5bもそれにあわせて主に赤外域に感応するような構成
とされている。本実施例では960nmのピーク波長の
光源を使用する。このため、投光手段13a、15a及
び受光手段13b、15bの前面には可視光カットフィ
ルタ30を配設している。この様な構成とした場合、可
視光カットフィルタ30の存在により、被写体からの反
射光がこのフィルタ30にて反射されることとなり、撮
影時にこの光が撮影レンズを介してフィルム面に達して
しまう虞が有る。その対策のため、本実施例では図4、
図5に示すように上記フィルタ30の前面を覆う位置と
開放する位置との間で可動な遮光部材1b、1cを配設
している。この遮光部材1b、1cは各々上記レンズ鏡
枠前面部1aに、光軸周りに摺動自在に保持され、かつ
その後方から各々被駆動腕1d、1gを光軸方向に向け
て延出させている。この被駆動腕1d、1gは上記鏡枠
前面部1aの後側に、光軸を中心として円弧状に設けら
れた長孔(図示省略)を介して、延出し、駆動腕1e、
1fと片当たり状態で当接している。上記駆動腕1e、
1fは絞り駆動リング1iと一体的に成されている。こ
の絞り駆動リング1iはレンズ1内で回動自在に保持さ
れており、ステッピングモ−タMにて回転駆動されるよ
うになっている。また上記駆動腕1e、1fと被駆動腕
1d、1gとの間には各々両者を引き付けるためのバネ
1h、1jが掛け渡されている。
On the other hand, the BCPU 21 is provided on the camera body side.
And the distance measuring unit 4 is provided. The distance measuring unit 4 has a known structure including a distance measuring element 4a composed of a pair of line sensors such as CCDs. The lens drive control means 12 in the lens 1 includes the light receiving control circuits 14b and 16b, the information output control means 18, the distance measuring unit 4, the LCPU 17, and the BCP.
The lens is driven based on the information processing result with U21 and the like. Here, the light projecting means 13a,
15a is generally adapted to use light in a wavelength range outside the luminosity such as infrared light, and the light receiving means 13b, 1
5b is also adapted to be sensitive mainly to the infrared region. In this embodiment, a light source having a peak wavelength of 960 nm is used. For this reason, the visible light cut filter 30 is provided in front of the light projecting means 13a, 15a and the light receiving means 13b, 15b. In the case of such a configuration, due to the presence of the visible light cut filter 30, the reflected light from the subject is reflected by this filter 30, and this light reaches the film surface through the taking lens during photographing. There is a fear. As a countermeasure, in this embodiment, as shown in FIG.
As shown in FIG. 5, movable light shielding members 1b and 1c are arranged between a position where the front surface of the filter 30 is covered and a position where the filter 30 is opened. The light blocking members 1b and 1c are slidably held around the optical axis on the lens barrel front surface 1a, and the driven arms 1d and 1g are respectively extended from the rear side in the optical axis direction. There is. The driven arms 1d and 1g extend to the rear side of the lens frame front surface portion 1a through elongated holes (not shown) provided in an arc shape around the optical axis, and drive arms 1e,
It comes into contact with 1f in a one-sided contact state. The drive arm 1e,
1f is formed integrally with the diaphragm drive ring 1i. The diaphragm drive ring 1i is rotatably held in the lens 1 and is rotationally driven by a stepping motor M. Further, springs 1h and 1j for attracting the driving arms 1e and 1f and the driven arms 1d and 1g are respectively stretched between the driving arms 1e and 1f.

【0011】次に上記一実施例の作用を説明する。ま
ず、第1、第2の投・受光部13、15による距離判定
即ち、被写体が近距離にあるか否かのゾ−ン判定につい
て説明する。図6に示すごとく、被写体Oがカメラ2に
近いとき、撮影レンズ1の先端から被写体Oまでの距離
Lは小さく、撮影レンズ1の先端から投光された光の、
受光手段13b、15bでの受光量は大きい。一方、被
写体Oが遠くにあるときは、被写体からの反射光は小さ
く、受光手段13b、15bでの受光量は小さい。LC
PU17は上記受光量の大小関係を所定の基準レベルと
比較し、被写体が所定の距離、例えば1m、より近距離
側にあるか否か、あるいはマクロ撮影領域内にあるか否
かを判別し、これをBCPU29に伝達する。上記第
1、第2の投・受光部13、15の制御はレンズ1内の
LCPU17が行う。図7にそのタイムチャートを示
す。BCPU21より被写体有無判断命令が出力される
と、LCPU17から投光許可信号TH1が投光制御回
路14a、16aへ送られる。この投光制御回路14
a、16aは上記信号TH1を受けて所定周期でIRE
D信号を出力する。投光手段13a、15aはこの信号
のHiに同期して被写体への投光を行う。被写体が比較
的近くにあるときは投光による被写体からの反射光が大
きくなるため受光手段13b、15bからの出力の積分
値INT出力も傾きが大きくなる。所定回数の投光、受
光を行なわせた後、LCPU17はこの積分出力をサン
プルホ−ルドパルスSHに同期してサンプルホールド
し、A/D変換し、反射光量を計算して被写体が所定の
距離より近距離側にあるか否かを判断する。そして被写
体が近距離側に有ると判断した時には距離判定フラグ
(以下NFLGと略称する)に1を立てる。
Next, the operation of the above embodiment will be described. First, the distance determination by the first and second light emitting / receiving units 13 and 15, that is, the zone determination as to whether or not the subject is at a short distance will be described. As shown in FIG. 6, when the subject O is close to the camera 2, the distance L from the tip of the taking lens 1 to the subject O is small, and the light emitted from the tip of the taking lens 1 is
The amount of light received by the light receiving means 13b and 15b is large. On the other hand, when the subject O is far away, the reflected light from the subject is small, and the amount of light received by the light receiving means 13b and 15b is small. LC
The PU 17 compares the magnitude relationship of the received light amount with a predetermined reference level to determine whether the subject is at a predetermined distance, for example, 1 m, closer, or within the macro shooting area, This is transmitted to the BCPU 29. The LCPU 17 in the lens 1 controls the first and second light emitting / receiving units 13 and 15. FIG. 7 shows the time chart. When the subject presence / absence determination command is output from the BCPU 21, the LCPU 17 sends a light emission permission signal TH1 to the light emission control circuits 14a and 16a. This light emission control circuit 14
a and 16a receive the signal TH1 and IRE at a predetermined cycle.
Output D signal. The light projecting means 13a and 15a project light onto the subject in synchronization with Hi of this signal. When the subject is relatively close to the subject, the reflected light from the subject due to the projection becomes large, and therefore the slope of the integrated value INT output of the outputs from the light receiving means 13b and 15b also becomes large. After projecting and receiving light for a predetermined number of times, the LCPU 17 samples and holds the integrated output in synchronization with the sample-hold pulse SH, A / D-converts it, calculates the amount of reflected light, and determines the subject from a predetermined distance. It is determined whether or not it is on the short distance side. When it is determined that the subject is on the short distance side, the distance determination flag (hereinafter abbreviated as NFLG) is set to 1.

【0012】図8はBCPU21が行う測距動作を示す
ものである。電源スイッチのオンに応じてBCPU21
は装着されている撮影レンズの種別情報を得る(ステッ
プ61)。撮影レンズがマクロ撮影用レンズのとき或い
はズ−ムレンズでマクロ撮影領域に切り替えられている
とき、シャッターボタンの半押に伴うレリ−ズスイッチ
の1stスイッチオンでLCPU17からBCPU21
に上記NFLGの状態が送られてくる。NFLG=1の
とき、被写体が近距離にあると判断して撮影レンズを所
定の近距離側の距離値例えば0.5mに相当する位置へ
レンズを予備駆動すなわち、事前駆動する(ステップ6
2〜64)。マクロ撮影可能なレンズでないか、NFL
G=0の時はこの予備駆動は行わない。次に、LCPU
は既知のごとくカメラ本体内の測距部13にてパッシブ
方式のAF検出を行う(ステップ65、66)。その結
果、ずれ量が求められた時は合焦判定を行う(ステップ
74)。
FIG. 8 shows a distance measuring operation performed by the BCPU 21. When the power switch is turned on, the BCPU21
Obtains the type information of the photographic lens attached (step 61). When the photographing lens is a macro photographing lens or when the zoom lens is switched to the macro photographing area, the first switch of the release switch is turned on when the shutter button is half pressed, and the LCPU 17 to the BCPU 21 are turned on.
The state of NFLG is sent to. When NFLG = 1, it is determined that the subject is at a short distance, and the lens is pre-driven, that is, pre-driven to a position corresponding to a predetermined short distance side distance value, for example, 0.5 m (step 6).
2-64). Isn't the lens capable of macro photography, or NFL
When G = 0, this pre-driving is not performed. Next, LCPU
As is known, the distance measuring unit 13 in the camera body performs passive AF detection (steps 65 and 66). As a result, when the shift amount is obtained, the focus determination is performed (step 74).

【0013】一方上記ステップ66で非合焦と判定され
ると、NFLG=1の時は被写体が近距離にあると判断
されるので、撮影レンズを、例えば0.1m〜1mの近
距離範囲内で撮影レンズのスキャン動作を行わせる(ス
テップ69)。NFLG=0の時は被写体が遠距離にあ
ると判断しているので撮影レンズを例えば1m〜無限遠
の範囲でスキャンする(68)。この後、前記測距部4
にて再度合焦判定を行い(70)合焦ならステップ(7
5)へ行き、非合焦なら測距動作を終了する。
On the other hand, if it is determined in step 66 that the object is out of focus, it is determined that the object is in a short distance when NFLG = 1, so that the photographing lens is set within a short distance range of, for example, 0.1 m to 1 m. Then, the scanning operation of the taking lens is performed (step 69). When NFLG = 0, it is determined that the subject is at a long distance, so the photographing lens is scanned, for example, in the range of 1 m to infinity (68). After this, the distance measuring unit 4
The focus determination is performed again in step (70), and if in focus, step (7)
Go to 5), and if out of focus, the distance measuring operation ends.

【0014】シャッターボタンがさらに押されて2nd
スイッチがオンすると上記測距結果に基づきレンズ駆動
を行わせ(ステップ76)た後、露光動作(ステップ7
8)を行う。このとき、撮影レンズがマクロ撮影可能な
レンズの場合は前記第1、第2の投・受光部13、15
のカバー用遮光部材1b、1cを作動させる。すなわ
ち、2ndスイッチのオンに伴い上記レンズ駆動を行わ
せた後、前記ステッピングモ−タMにより絞り駆動リン
グ1iを回転させ、駆動腕1e、1f、バネ1h1jを
介して上記被駆動腕1d、1g、遮光部材1b、1cを
第1、第2の投・受光部13、15の前面に位置させ
る。ここで、上記絞り駆動リング1iの初期位置は、そ
のレンズの有する最大開放絞り値、例えばF1.4より
更に開放側にあり、この初期位置から最大開放絞り値位
置までの移動で上記遮光部材1b、1cが第1、第2の
投・受光部13、15の前面を遮光するよう定められて
いる。この後絞りは上記被写体明るさに応じた上記ステ
ッピングモ−タMの回転により適性値に設定されるが、
遮光部材1b、1cは上記遮光位置に止まり、両者の移
動量の差は上記バネ1h、1jにて吸収される。露光動
作の終了後はステッピングモ−タMが逆回転し、絞りを
開放側へ戻した後、前記第1、第2の投・受光部13、
15を再び開放するよう遮光部材を元の位置へ復帰させ
る。
When the shutter button is further pressed, 2nd
When the switch is turned on, the lens is driven based on the distance measurement result (step 76), and then the exposure operation (step 7) is performed.
Perform 8). At this time, when the photographing lens is a macro photographing lens, the first and second light emitting / receiving units 13 and 15 are used.
The cover light shielding members 1b and 1c are operated. That is, after the 2nd switch is turned on, the lens is driven, and then the aperture driving ring 1i is rotated by the stepping motor M to drive the driven arms 1d, 1g via the driving arms 1e, 1f and springs 1h1j. The light shielding members 1b and 1c are located in front of the first and second light emitting / receiving units 13 and 15. Here, the initial position of the diaphragm drive ring 1i is on the further open side of the maximum aperture value of the lens, for example, F1.4, and the light blocking member 1b is moved by moving from this initial position to the maximum aperture value position. 1c is designed to shield the front surfaces of the first and second light emitting / receiving sections 13 and 15 from light. After that, the aperture is set to an appropriate value by rotating the stepping motor M according to the brightness of the subject.
The light blocking members 1b and 1c stay at the light blocking position, and the difference in the amount of movement between the two is absorbed by the springs 1h and 1j. After the exposure operation is completed, the stepping motor M rotates in the reverse direction, and after returning the aperture to the open side, the first and second light emitting / receiving sections 13,
The light blocking member is returned to its original position so that the opening 15 is opened again.

【0015】なお、上記実施例においては、視野のずれ
による不具合の防止という観点から第1、第2の投・受
光部13、15をレンズ鏡筒の上下に配置したが、これ
は左右に配置しても良いことはもちろんであり、さらに
上下左右等さらに数を増やしても良い。逆に視野のずれ
による不具合がそれ程現れないというような状態であれ
ば、例えば上側のみ、というようにいずれか一箇所に配
置しておくだけでも良い。ここで、上記実施例において
は上下に第1、第2の投・受光部13、15を配設して
いることから、被写体とカメラとの位置関係や条件によ
って、両方の受光部から近距離判定が出される時、一方
の受光部のみから近距離判定が出されるとき、両方の受
光部とも近距離判定を出さないとき、の種々の組み合わ
せが考えられる。上記実施例においては少なくとも一方
の受光部から近距離判定が出されれば上記NFLGに1
を立てるようにしているが、これは適宜上記判定の組み
合わせの種類に応じて変えるようにしても良い。また、
被写体の距離ゾ−ンの判定は、例えば被写体が1mより
近距離側にあるか、遠距離側にある可を判定させたり、
被写体がマクロ撮影領域内にあるかないかで判定させた
り、レンズ種類に応じて適宜の判定を行わせれば良い。
また遮光部材1b、1cは絞り駆動用のリング1iにて
作動させていたが、これは前記可動ミラ−3a等からの
力を受けて作動するようにしたり、その他の適宜の駆動
源を用いても良い。
In the above embodiment, the first and second light emitting / receiving sections 13 and 15 are arranged above and below the lens barrel from the viewpoint of preventing problems due to the shift of the visual field. Of course, it is also possible to further increase the number such as up, down, left and right. On the contrary, in the case where the problem due to the shift of the visual field does not appear so much, it may be arranged only at any one position, for example, only on the upper side. Here, in the above-mentioned embodiment, since the first and second light emitting / receiving sections 13 and 15 are arranged on the upper and lower sides, depending on the positional relationship between the subject and the camera and the conditions, the short distance from both the light receiving sections may occur. Various combinations are conceivable, such as when the determination is made, when the short distance determination is made only from one of the light receiving portions, and when both the light receiving portions do not make the short distance determination. In the above embodiment, if at least one of the light receiving units makes a short-distance determination, the NFLG is set to 1
However, this may be appropriately changed depending on the type of the combination of the above determinations. Also,
The distance zone of the subject is determined by, for example, determining whether the subject is closer to 1 m or farther from the distance,
It may be determined whether or not the subject is within the macro shooting area, or may be appropriately determined according to the lens type.
Further, the light shielding members 1b and 1c are operated by the ring 1i for driving the diaphragm. However, this may be operated by receiving a force from the movable mirror-3a or the like, or by using another appropriate drive source. Is also good.

【0016】図9は本発明の第2実施例のブロック図で
ある。図中1は撮影レンズ、2はカメラ本体を示し、上
記第1実施例におけるレンズ側のCPU(LCPU)を
廃し、本体側のCPU(BCPU)21にて測距部4と
第1、第2の投・受光部、レンズ駆動制御手段12、レ
ンズ情報制御手段18等を全て制御するようにしたもの
であり、同一部材には同一の符号を付し、詳細は省略す
る。また本実施例においては、投光制御回路と受光制御
回路とは14、16として一つにまとめられている。ま
た、第1の投・受光部13、第2の投・受光部15の内
の一方を広角系、他方を狭角系としてある。すなわち投
光制御回路14は2つの異なる特性を持つ投光素子13
a、15aを共に制御する。各々の投光素子13a、1
5aは図10に示すような指向性を持っている。即ち、
一方の投光素子13a、例えば鏡枠前面部の上側に配置
した投光素子、は図10の(b)に示すごとく比較的指
向性の強い投光特性即ち狭角系の投光特性を持ち、他方
の投光素子15a、例えば鏡枠前面部の下側に配置した
投光素子、は図10の(a)に示すごとく比較的指向性
の弱い投光特性即ち広角系の投光特性を持っている。
FIG. 9 is a block diagram of the second embodiment of the present invention. In the figure, reference numeral 1 denotes a photographing lens, 2 denotes a camera body, the CPU (LCPU) on the lens side in the first embodiment is eliminated, and the CPU (BCPU) 21 on the body side and the distance measuring section 4 and the first and second CPUs. The light emitting / receiving unit, the lens drive control unit 12, the lens information control unit 18, and the like are all controlled, and the same members are denoted by the same reference numerals, and details thereof will be omitted. Further, in this embodiment, the light projecting control circuit and the light receiving control circuit are integrated as 14 and 16. Further, one of the first light emitting / receiving unit 13 and the second light emitting / receiving unit 15 is a wide-angle system and the other is a narrow-angle system. That is, the light projecting control circuit 14 includes the light projecting element 13 having two different characteristics.
Both a and 15a are controlled. Each light projecting element 13a, 1
5a has directivity as shown in FIG. That is,
One of the light projecting elements 13a, for example, the light projecting element arranged on the upper side of the front surface of the lens frame, has a light projecting characteristic having a relatively strong directivity, that is, a light projecting characteristic of a narrow angle system, as shown in FIG. The other light projecting element 15a, for example, the light projecting element arranged on the lower side of the front surface of the lens frame, has a relatively weak directivity, as shown in FIG. have.

【0017】上記実施例においては図11に示すよう
に、まず、指向性の強い投光素子13aに対する発光信
号TH1をBCPU21から出力した後、A/D変換信
号SHにより積分信号をAD変換する。その後、引き続
き指向性の弱い投光素子15aに対する発光信号TH2
をBCPU21から出力し、同様に信号SHによてA/
D変換する。本実施例では受光素子13b、15bは一
本のラインの信号SHで同時に制御されるように構成し
ている。前記2回の投受光の結果、上記第1、第2の投
・受光部13、15が共に被写体は近距離でないと判断
したときには被写体が遠くにあると判断し、少なくとも
第1の投・受光部13が近距離と判断したときは被写体
が近くにあると判断する。また第2の投・受光部15の
みが近距離と判断したときは被写体が近くに存在するが
測距視野の周辺にあると判断する。ここで本体内の測距
部4を既知のごとく、測距視野は画面中心部に位置さ
せ、スポット測距と広視野測距との切り替えが可能なよ
うに構成しておくことにより、前記の近距離判断の結果
から主要被写体位置の選択を行い、該選択された視野に
応じた測距を行うようにする。
In the above embodiment, as shown in FIG. 11, first, the light emission signal TH1 for the light emitting element 13a having a strong directivity is output from the BCPU 21, and then the integrated signal is AD-converted by the A / D conversion signal SH. After that, the light emission signal TH2 to the light projecting element 15a having a weak directivity continues.
Is output from the BCPU 21, and similarly, A /
D-convert. In this embodiment, the light receiving elements 13b and 15b are configured to be controlled simultaneously by the signal SH of one line. As a result of the above-mentioned two times of light projection / reception, when both the first and second projection / reception sections 13 and 15 judge that the subject is not a short distance, it judges that the subject is far, and at least the first projection / reception is performed. When the unit 13 determines that the distance is short, it determines that the subject is near. Further, when only the second light emitting / receiving unit 15 determines that the distance is short, it is determined that the subject exists near but is around the distance measuring field. Here, as is known, the distance measuring unit 4 in the main body is arranged so that the distance measuring field of view is located at the center of the screen and the switching between the spot distance measuring and the wide field distance measuring is possible. The position of the main subject is selected from the result of the short-distance determination, and the distance measurement is performed according to the selected visual field.

【0018】なお、この測距視野に関しては、測距視野
自体を複数有した多点測距に対しても有効であることは
いうまでもない。この場合、更に、測距位置に応じた投
光を行うために3方向に指向性を持つ投・受光部を設け
て近距離判定部を構成しても良い。また、投光素子の仕
様も、指向性だけではなく、発光エネルギーの異なるも
ので判定距離に差をつけるような構成にしても良い。
Needless to say, this distance measuring field is also effective for multipoint distance measuring having a plurality of distance measuring fields themselves. In this case, a short distance determination unit may be configured by further providing light emitting / receiving units having directivity in three directions in order to perform light emission according to the distance measurement position. Further, the specifications of the light projecting elements may be different from each other not only in the directivity but also in the light emission energy, so that the determination distance may be different.

【0019】なお、上記各実施例の構成によれば以下の
ごとき発明を得ることもできる。 (発明1)測距手段を有した自動焦点調節式カメラにお
いて、前面に投光手段及び受光手段を有したマクロ撮影
可能な撮影レンズと、上記受光手段出力に基づいて被写
体がマクロ領域内にあるかないかを判別する判別手段
と、上記投光手段及び受光手段の前面を選択的に覆う遮
光手段と、を具備し、上記判別手段出力に基づき被写体
がマクロ撮影領域にあると判別された場合には、撮影レ
ンズをマクロ領域内の所定距離位置へ事前駆動した後、
測距手段出力に基づきこれを合焦位置まで本駆動すると
ともに、露光動作の前後では上記遮光手段を投光手段及
び受光手段の前面から退避させ、露光動作時にはこれを
上記前面に位置されるようにしたことを特徴とする自動
焦点調節式カメラ。 (発明2) 測距手段を有した自動焦点式カメラにおい
て、マクロ撮影可能なレンズと、通常撮影レンズとが択
一的にカメラ本体に装着されるレンズ交換式カメラにお
いて、上記マクロ撮影可能なレンズに設けられた投光手
段および受光手段と、上記マクロ撮影レンズが装着され
ているか通常撮影レンズが装着されているかを識別する
識別手段と、上記マクロ撮影レンズが装着されていると
き、上記受光手段出力に基づいて被写体が所定距離より
近距離側に有るか否かを判別する判別手段と、上記投光
手段及び受光手段の前面を覆う位置とこれを開放する位
置との間で可動な遮光手段と、上記マクロ撮影レンズが
装着されていると識別されたときには上記判別手段を作
動させ、この判別手段が、被写体のマクロ撮影領域での
存在を判別した場合には、撮影レンズをマクロ領域内の
所定距離へ事前駆動した後、測距手段出力に基づきこれ
を合焦位置まで本駆動するレンズ制御手段と、を具備
し、露光動作の前後では上記遮光手段を投光手段及び受
光手段の前面から退避させ、露光動作時にはこれを上記
前面に位置させるようにしたことを特徴とする自動焦点
式カメラ。 (発明3)上記発明2において、投光手段はレンズ鏡枠
の前端面に設けられている。 (発明4)上記発明2において、遮光手段はレンズ光軸
回りに移動可能な遮光性の板部材っから成っている。 (発明5)マクロ撮影用交換レンズを装着可能な自動焦
点調節式カメラにおいて、上記マクロ撮影用交換レンズ
に設けられ、被写体ゾ−ン判別用光を投光する投光手段
と、上記マクロ撮影用交換レンズに設けられ、上記投光
の被写体からの反射光を受光する受光手段と、カメラ本
体内に設けられた測距手段と、上記受光手段出力に基づ
き、被写体が所定の距離より近距離側のゾ−ンにあるか
否かに応じて出力を発する処理手段と、上記処理手段
が、被写体が上記ゾ−ン内にあるとの信号を出力すると
き、撮影レンズを近距離側の所定位置へ駆動し、その
後、上記測距手段出力に基づき撮影レンズを合焦位置へ
駆動する駆動制御手段と、を具備したことを特徴とする
カメラの自動焦点調節装置。 (発明6)上記発明5において、投光手段と受光手段と
は各々複数設けられている。 (発明7)上記発明6において、投光手段はその投光範
囲が狭い第1の投光素子とこれより投光範囲が広い第2
の投光素子とを有している。 (発明8)上記発明5において、投光手段は投光素子を
断続的に発光させる投光制御手段を有している (発明9)上記発明5において、受光手段は投光手段か
ら断続的に投光される光の被写体からの反射光を積分す
る積分手段を有している。
According to the constitution of each of the above embodiments, the following inventions can be obtained. (Invention 1) In an automatic focus adjustment type camera having a distance measuring means, a photographing lens having a light projecting means and a light receiving means on the front surface and capable of macro photography, and a subject is within a macro area based on the output of the light receiving means. In the case where it is determined that the subject is in the macro photography area based on the output of the determination means, the determination means determines whether or not the light is emitted, and the light shielding means that selectively covers the front surfaces of the light projecting means and the light receiving means. After pre-driving the taking lens to a predetermined distance position in the macro area,
Based on the output of the distance measuring means, this is driven to the in-focus position, and the light shielding means is retracted from the front surfaces of the light projecting means and the light receiving means before and after the exposure operation so that it is positioned on the front surface during the exposure operation. The automatic focusing camera characterized in that (Invention 2) In an autofocus type camera having a distance measuring means, in a lens interchangeable camera in which a macro photography lens and a normal photography lens are selectively mounted on a camera body, the macro photography lens A light emitting means and a light receiving means, an identifying means for identifying whether the macro photographing lens is attached or a normal photographing lens, and the light receiving means when the macro photographing lens is attached. A discriminating means for discriminating whether or not the subject is closer than a predetermined distance based on the output, and a light shielding means movable between a position for covering the front surfaces of the light projecting means and the light receiving means and a position for opening the front surface. When it is determined that the macro photography lens is attached, the determination means is operated, and the determination means determines the presence of the subject in the macro photography area. Further comprises a lens control means for pre-driving the photographing lens to a predetermined distance within the macro area, and then main-driving the photographing lens to the in-focus position based on the output of the distance measuring means. Is retracted from the front surfaces of the light projecting means and the light receiving means, and is positioned on the front surface during the exposure operation. (Invention 3) In Invention 2, the light projecting means is provided on the front end surface of the lens frame. (Invention 4) In the above Invention 2, the light-shielding means is composed of a light-shielding plate member movable around the optical axis of the lens. (Invention 5) In an autofocusing type camera to which an interchangeable lens for macro photography can be attached, a projecting means provided on the interchangeable lens for macro photography and projecting light for determining a subject zone, and the macro photography. Based on the light receiving means provided in the interchangeable lens for receiving the reflected light from the projected object, the distance measuring means provided in the camera body, and the output of the light receiving means, the object is closer than a predetermined distance. When the processing means for outputting an output depending on whether the subject is in the zone and the processing means output a signal indicating that the subject is in the zone, the photographing lens is moved to a predetermined position on the near distance side. And a drive control means for driving the taking lens to the in-focus position based on the output of the distance measuring means, the automatic focus adjusting device for the camera. (Invention 6) In Invention 5, a plurality of light projecting means and a plurality of light receiving means are provided. (Invention 7) In Invention 6, the light projecting means includes a first light projecting element having a narrow light projecting range and a second light projecting element having a wider light projecting range.
And a light projecting element. (Invention 8) In the above Invention 5, the light projecting means has a light projecting control means for causing the light projecting element to emit light intermittently. (Invention 9) In the above Invention 5, the light receiving means is intermittent from the light projecting means. It has an integrating means for integrating the reflected light from the subject of the projected light.

【0020】[0020]

【発明の効果】上記したごとく、本発明によればマクロ
撮影可能なレンズでの自動焦点調節において余分なレン
ズスキャンを行うことがなくなり、円滑な合焦動作を行
うことができるようになる。
As described above, according to the present invention, it is possible to perform a smooth focusing operation without performing an extra lens scan in the automatic focus adjustment with a lens capable of macro photography.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す全体図。FIG. 1 is an overall view showing an embodiment of the present invention.

【図2】 本発明の一実施例の回路ブロック図。FIG. 2 is a circuit block diagram of an embodiment of the present invention.

【図3】 本発明の一実施例の正面概略図。FIG. 3 is a schematic front view of an embodiment of the present invention.

【図4】 本発明の一実施例における遮光部材の作動を
示す正面概略図。
FIG. 4 is a schematic front view showing the operation of the light shielding member in the embodiment of the present invention.

【図5】 本発明の一実施例における遮光部材の構成を
示す斜視図。
FIG. 5 is a perspective view showing a configuration of a light shielding member according to an embodiment of the present invention.

【図6】 本発明の一実施例における被写体距離判別動
作を示す平面図。
FIG. 6 is a plan view showing a subject distance determining operation according to an embodiment of the present invention.

【図7】 本発明の一実施例における回路の作用を示す
チャ−ト図。
FIG. 7 is a chart showing the operation of the circuit according to the embodiment of the present invention.

【図8】 本発明の一実施例の回路のフロ−チャ−トを
示す図。
FIG. 8 is a diagram showing a flow chart of a circuit according to an embodiment of the present invention.

【図9】 本発明の他の実施例を示す回路ブロック図。FIG. 9 is a circuit block diagram showing another embodiment of the present invention.

【図10】 本発明の他の実施例における回路の発光状
態を示す図。
FIG. 10 is a diagram showing a light emitting state of a circuit according to another embodiment of the present invention.

【図11】 本発明の他の実施例における回路の作用を
示すチャ−ト図。
FIG. 11 is a chart showing the operation of the circuit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 レンズ 2 カメラ本体 4 測距部 12 レンズ駆動制御手段 13a、15a 投光素子 13b、15b 受光素子 17 レンズCPU 21 本体CPU DESCRIPTION OF SYMBOLS 1 lens 2 camera body 4 distance measuring section 12 lens drive control means 13a, 15a light projecting elements 13b, 15b light receiving element 17 lens CPU 21 body CPU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03B 7/20 17/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G03B 7/20 17/14

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マクロ撮影可能な交換レンズを装着可能
なカメラの自動焦点調節装置において、 上記マクロ撮影可能な交換レンズに設けられ、被写体へ
光を投射する投光手段と、 上記マクロ撮影可能な交換レンズに設けられ、上記投射
光の被写体からの反射光を受光する受光手段と、 カメラ本体内に設けられた測距手段と、 上記受光手段出力に基づき、被写体が所定の距離より近
距離側にあるか否かを判別する判別手段と、 上記判別手段が、被写体が所定距離より近距離側にある
と判別したとき、撮影レンズを近距離側の所定位置へ駆
動し、その後、上記測距手段出力に基づき撮影レンズを
合焦位置へ駆動するレンズ駆動制御手段と、 を具備したことを特徴とするカメラの自動焦点調節装
置。
1. An automatic focus adjusting device for a camera in which an interchangeable lens capable of macro photography can be mounted, and a projecting means provided on the interchangeable lens capable of macro photography and projecting light onto an object, and the macro photography being possible. Based on the light receiving means provided in the interchangeable lens for receiving the reflected light of the projected light from the subject, the distance measuring means provided in the camera body, and the output of the light receiving means, the subject is closer than a predetermined distance. And the determining means determines that the subject is closer than the predetermined distance, the photographing lens is driven to a predetermined position on the shorter distance side, and then the distance measuring is performed. An automatic focus adjusting device for a camera, comprising: a lens drive control unit that drives a taking lens to a focus position based on an output from the unit.
【請求項2】 請求項1において、判別手段は撮影レン
ズ内に設けられていることを特徴とするカメラの自動焦
点調節装置。
2. The automatic focus adjusting device for a camera according to claim 1, wherein the determining means is provided in the taking lens.
【請求項3】 測距手段を有した自動焦点調節式カメラ
において、 前面に投光手段及び受光手段を有したマクロ撮影可能な
レンズと、 上記受光手段出力に基づいて被写体がマクロ撮影領域内
にあるかないかを判別する判別手段と、 を具備し、 上記判別手段出力に基づき被写体がマクロ撮影領域内に
あると判別された場合には、撮影レンズをマクロ撮影領
域内の所定距離へ事前駆動した後、測距手段出力に基づ
きこれを合焦位置まで本駆動するようにしたことを特徴
とする自動焦点調節式カメラ。
3. An auto-focusing type camera having a distance measuring means, a macro photographing lens having a light projecting means and a light receiving means on the front surface, and a subject within a macro photographing area based on the output of the light receiving means. If it is determined that the subject is within the macro photography area based on the output of the above determination means, the photographing lens is pre-driven to a predetermined distance within the macro photography area. After that, the automatic focusing camera is characterized in that it is driven to the in-focus position based on the output of the distance measuring means.
JP4342894A 1994-03-15 1994-03-15 Automatic focusing camera with macro lens Withdrawn JPH07253529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342894A JPH07253529A (en) 1994-03-15 1994-03-15 Automatic focusing camera with macro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342894A JPH07253529A (en) 1994-03-15 1994-03-15 Automatic focusing camera with macro lens

Publications (1)

Publication Number Publication Date
JPH07253529A true JPH07253529A (en) 1995-10-03

Family

ID=12663435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342894A Withdrawn JPH07253529A (en) 1994-03-15 1994-03-15 Automatic focusing camera with macro lens

Country Status (1)

Country Link
JP (1) JPH07253529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283957A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Automatic focus controller for imaging device
JP2008046255A (en) * 2006-08-11 2008-02-28 Fujifilm Corp Camera with built-in af auxiliary light
JP2017142410A (en) * 2016-02-12 2017-08-17 キヤノン株式会社 Imaging device, lens device, and light emission control program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283957A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Automatic focus controller for imaging device
JP2008046255A (en) * 2006-08-11 2008-02-28 Fujifilm Corp Camera with built-in af auxiliary light
JP2017142410A (en) * 2016-02-12 2017-08-17 キヤノン株式会社 Imaging device, lens device, and light emission control program

Similar Documents

Publication Publication Date Title
JP4142205B2 (en) Electronic still camera
JP2753495B2 (en) Camera zoom lens automatic zooming device
JP5532565B2 (en) camera
JPH04295837A (en) Active range-finding device provided with remote control function
JPH07253529A (en) Automatic focusing camera with macro lens
US20100124413A1 (en) Auto focusing apparatus and image pick-up apparatus having sub-mirror
JP3439261B2 (en) camera
JP3387901B2 (en) Electronic camera
JPH08211283A (en) Autofocus camera
JPH095843A (en) Camera
JP3027022B2 (en) Camera with panorama shooting function
JP3402690B2 (en) Camera with ranging device
US5664233A (en) Remote control apparatus of camera
JP3385062B2 (en) Camera auto focus device
JP2757396B2 (en) camera
JPS6150298B2 (en)
JPH11212175A (en) Camera
JP2920383B2 (en) camera
JP2761771B2 (en) Camera strobe control
JP2881987B2 (en) Auto focus camera
JP2772593B2 (en) Zoom camera with telescope function
JP2000196921A (en) Camera system
JPH08234273A (en) Optical apparatus
JP2002122907A (en) Optical equipment
JPH06313839A (en) Multipoint ranging camera

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605