JPH07251605A - Pneumatic radial tire - Google Patents

Pneumatic radial tire

Info

Publication number
JPH07251605A
JPH07251605A JP6043601A JP4360194A JPH07251605A JP H07251605 A JPH07251605 A JP H07251605A JP 6043601 A JP6043601 A JP 6043601A JP 4360194 A JP4360194 A JP 4360194A JP H07251605 A JPH07251605 A JP H07251605A
Authority
JP
Japan
Prior art keywords
rubber
belt
tire
layers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6043601A
Other languages
Japanese (ja)
Inventor
Mitsuru Araki
充 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP6043601A priority Critical patent/JPH07251605A/en
Publication of JPH07251605A publication Critical patent/JPH07251605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a steel belt end from being damaged because of fatigue crack without any restriction of a degree of freedom in material design by providing end part layer rubber between layers in the belt width direction both end parts of a belt layer and setting dynamic moduli of elasticity of the end part layer rubber and steel cord coating rubber to the predetermined relation and to the predetermined values. CONSTITUTION:Steel cords of belt layers 2, 3 adjacent to each other vertically are formed into crossed layers crossing with each other, while the end part layer rubber 4 which is different from the steel cord coating rubber 5 is arranged between layers in the belt width direction end parts. When a dynamic modulus of elasticity of the end part layer rubber 4 is set to E' and a dynamic modulus of elasticity of the steel cord coating rubber 5 is set to E'0, the relation between them is expressed as 0.1XE'0<=E'<=0.6XE'0, and 1.0X10<8>dyn/cm<2=E '0<=4.0X10<8>-dyn/cm<2>. Therefore, the anti peel-off performance of a tire can be improved without unnecessarily restricting the degree of freedom in design of the cord coating rubber 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、スチ−ルコ−ドより成
るベルト構造を具えた空気入りラジアルタイヤにおい
て、ベルト構造の耐久性に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the durability of a belt structure in a pneumatic radial tire having a belt structure composed of a steel cord.

【0002】[0002]

【従来技術】タイヤの子午線方向にほぼ直角方向に複数
のコ−ドが並列されているカ−カス層と、該カ−カス層
のタイヤ径方向外側に複数のスチ−ルコ−ドを並列した
ベルト層を数層積層したベルト構造を持つラジアルタイ
ヤでは、タイヤ走行時特に隣接ベルト層のコ−ド方向が
互いに交錯する所謂交錯ベルト層の層間に過酷な局部応
力、歪みが発生しベルト幅方向の端部を発端としてスチ
−ルコ−ド周辺ゴムに疲労亀裂損傷が発生し、これが成
長した場合は最終的にベルト層間の剥離故障に至ること
がある。特にタイヤが更生タイヤとして何回も使用され
るなど長距離走行をする場合や、重荷重を負担して走行
する場合等では、この様なスチ−ルコ−ド周辺ゴムの亀
裂損傷及びベルト層間剥離故障の発生防止に十分の配慮
が必要となる。この為、従来では、スチ−ルコ−ド周辺
ゴム特にスチ−ルコ−ド被覆ゴムに着目した改良が多く
なされている。例えば、タイヤ走行時のベルト層の応力
歪みを減少する為に、被覆ゴムを高弾性率化してベルト
層の剛性を高めたり又は被覆ゴムのクリ−プ性を小さく
してベルト層の変形を抑制してタイヤ内圧充填時のタイ
ヤ形状の成長を抑制しベルト層端部の応力歪を低減させ
るもの、又、被覆ゴムの耐老化性、耐疲労性、耐亀裂成
長性などに関連する被覆ゴムの破壊限界を向上させるも
の等が試みられており、例えば特開昭50−60904
では、コ−ド被覆ゴムの耐剥離故障性を向上する為に、
被覆ゴムに混入する充填剤を最適に選択して被覆ゴムの
破断特性、耐疲労性を向上することが提案されている。
2. Description of the Related Art A carcass layer in which a plurality of cords are arranged in a direction substantially perpendicular to the meridian direction of a tire and a plurality of steel cords are arranged in a tire radial direction outer side of the carcass layer. In a radial tire having a belt structure in which several belt layers are laminated, severe local stress and strain occur between layers of so-called intersecting belt layers in which the cord directions of adjacent belt layers intersect with each other during running of the tire, resulting in belt width direction. Fatigue crack damage occurs in the rubber around the steel cord starting from the end of the, and if it grows, it may eventually lead to peeling failure between the belt layers. In particular, when the tire is used as a retreaded tire for a long time such as when the tire is used for a long time, or when a heavy load is applied, such crack damage of the rubber around the steel cord and delamination of the belt are caused. It is necessary to give sufficient consideration to prevent the occurrence of failures. For this reason, in the past, many improvements have been made by focusing on the rubber around the steel cord, particularly the rubber coated with the steel cord. For example, in order to reduce the stress strain of the belt layer during tire running, the elastic modulus of the coated rubber is increased to increase the rigidity of the belt layer, or the creep property of the coated rubber is reduced to suppress the deformation of the belt layer. And to suppress the growth of the tire shape during tire pressure filling and reduce the stress strain of the belt layer end, and also for the aging resistance of the coated rubber, fatigue resistance, cracking resistance of the related coated rubber, etc. Attempts have been made to improve the breaking limit, for example, Japanese Patent Application Laid-Open No. 50-60904.
Then, in order to improve the peeling failure resistance of the cord coated rubber,
It has been proposed that the filler mixed in the coated rubber is optimally selected to improve the fracture characteristics and fatigue resistance of the coated rubber.

【0003】[0003]

【発明が解決しょうとする課題】しかるに、スチ−ルベ
ルトの被覆ゴムには多数の高度な特性をバランス良く保
持することが要求される為、従来の様に被覆ゴム質の改
良のみに傾注した改良案では十分な成果を得ることが困
難であった。例えば、上記の特開昭50−60904で
は、被覆ゴムの抗破壊性の向上には効果が期待出来るも
のの耐クリ−プ性についての言及がなく、現状のゴム配
合技術では一般にクリ−プ性抑制と抗破壊性の向上とは
背反的な関係にある為に被覆ゴムの特性の改良に限界が
伺われる。更にこの様な多種の被覆ゴム特性をバランス
良くする為の解決策の一つとして特開昭52−1401
03では、ベルト中央部とベルト両端部で機能分担をさ
せ、ベルト中央部ではタイヤの外径成長を抑制する様に
抗クリ−プ性の向上に傾注した被覆ゴムを用いベルト両
端部では抗破壊性の向上に傾注した被覆ゴムを用いるこ
とを提案している。しかるに、スチ−ルコ−ドベルトに
おいてはコ−ドとゴムの接着を維持するための配合上の
条件を一方で十分に配慮する必要があり上記の様に特定
性能に傾注したゴムの改良効果に限界が出てくること
と、一層のベルトの幅内の3ケ所で被覆ゴム種を変更す
る必要がある為ベルト部材製造に当たってカレンダ−工
程での作業工数や設備の複雑化をもたらすこと等の問題
があり実用化に到っていない。従って、本発明の目的は
被覆ゴム質の材料設計の自由度を制約することなくタイ
ヤ走行によるスチ−ルベルト端の疲労亀裂損傷の進展を
防止しひいてはベルト層の耐剥離性を向上することであ
る。
However, since the coated rubber of the steel belt is required to maintain a large number of high-performance properties in a well-balanced manner, an improvement focused on only the improvement of the coated rubber quality as in the past. With the plan, it was difficult to obtain sufficient results. For example, in the above-mentioned Japanese Patent Laid-Open No. 50-60904, there is no mention of the creep resistance although the effect of improving the anti-destructive property of the coated rubber can be expected, and the current rubber compounding technique generally suppresses the creep property. Since there is a trade-off relationship between the improvement of the anti-destructive property and the improvement of the anti-destructive property, there is a limit to the improvement of the properties of the coated rubber. Further, as one of the solutions for improving the balance of such various types of coated rubber properties, Japanese Patent Laid-Open No. 52-14041
In No. 03, the central portion of the belt and the both end portions of the belt are made to share the functions, and the central portion of the belt is covered with rubber to improve the creep resistance so as to suppress the outer diameter growth of the tire. It has been proposed to use a coated rubber that concentrates on improving the properties. However, in steel cord belts, on the other hand, it is necessary to give due consideration to the compounding conditions for maintaining the adhesion between the cord and the rubber, and as mentioned above, there is a limit to the improvement effect of the rubber that is focused on specific performance. And that it is necessary to change the coated rubber type in three places within the width of the belt, which causes problems such as the number of work steps in the calendering process and the complexity of equipment in manufacturing the belt member. Yes, it has not been put to practical use. Therefore, an object of the present invention is to prevent the development of fatigue crack damage at the end of a steel belt due to tire running without restricting the degree of freedom in designing the material of the coated rubber material, and to improve the peeling resistance of the belt layer. .

【0004】[0004]

【課題を解決するための手段】上記の目的を達成する為
に、本発明のタイヤにおいては、請求項1に記載の如
く、ラジアルカ−カス層のタイヤ径方向上部に配置され
て、複数のスチ−ルコ−ドを並列し被覆ゴムで覆ったベ
ルト層を少なくとも2層以上積層にしたベルト構造にお
いて、上下に隣接するベルト層のコ−ド方向が互いに交
錯する交錯層のベルト幅方向両端部の層間にスチ−ルコ
−ド被覆ゴムとは異なる端部層間ゴムを介在させ、しか
も該端部層間ゴムの動的弾性率E`と前記スチ−ルコ−
ド被覆ゴムの動的弾性率E0`との関係が、 0.1×E0`≦E`≦0.6×E0`・・・(1) であり、かつ前記スチ−ルコ−ド被覆ゴムの動的弾性率
0`の値が、 1.0×108 dyn/cm2 ≦E0`≦4.0×108 dyn/cm2 ・・・(2) であることを特徴とする空気入りラジアルタイヤとして
いる。
In order to achieve the above object, in the tire of the present invention, as described in claim 1, a plurality of staples are arranged on the radial radial portion of the radial arcus layer in the tire radial direction. -In a belt structure in which at least two belt layers in which the cords are arranged in parallel and covered with a covering rubber are laminated, the belt width direction end portions of the intersecting layers in which the cord directions of vertically adjacent belt layers intersect each other An end layer rubber different from the steel cord-covered rubber is interposed between the layers, and the dynamic elastic modulus E ′ of the end layer rubber and the steel cord are different from each other.
The relationship with the dynamic elastic modulus E 0 `of the coated rubber is 0.1 × E 0` ≦ E` ≦ 0.6 × E 0 `... (1), and the steel cord The dynamic elastic modulus E 0 `of the coated rubber is 1.0 × 10 8 dyn / cm 2 ≦ E 0` ≦ 4.0 × 10 8 dyn / cm 2 (2) It is a pneumatic radial tire.

【0005】尚、上記の関係を満足する端部層間ゴム及
びスチ−ルコ−ド被覆ゴムを製造するに当たって、これ
らゴムの配合組成物としては、エラストマ−として天然
ゴム又は天然ゴムと合成ジエン系ゴムとのブレンド、補
強材として通常使用されているカ−ボンブラック、その
他加硫剤等の通常一般的に使用される各種のゴム薬品か
らなるものでよく、常法によって配合製造される。
In the production of the end-layer inter-layer rubber and the steel cord-coated rubber satisfying the above relationships, the compounding composition of these rubbers includes natural rubber as an elastomer or natural rubber and a synthetic diene rubber. It may be composed of various rubber chemicals that are generally used such as a blending agent with carbon black, which is usually used as a reinforcing material, and a vulcanizing agent.

【0006】又、動的弾性率E0`及びE`の測定は、岩
本製作所製のスペクトロメ−タ−を使用して気温25
℃、加振周波数52Hz、歪振幅2%の条件において、
タイヤのベルト部から切り出したゴム片を厚さ0.3〜
1.0mmに均一にバフ仕上げして、幅4.7mm,長
さ3cm(チャック間の測定距離2cm)の大きさに打
ち抜いて測定試料として行った。
The dynamic modulus of elasticity E 0 `and E` are measured by using a spectrometer manufactured by Iwamoto Seisakusho Co., Ltd.
In the condition of ℃, vibration frequency 52Hz, strain amplitude 2%,
The rubber piece cut out from the belt part of the tire has a thickness of 0.3-
The sample was uniformly buffed to 1.0 mm, punched into a size of width 4.7 mm, length 3 cm (measurement distance between chucks 2 cm) to obtain a measurement sample.

【0007】[0007]

【作用】本発明者は多くの室内ドラム耐久試験後のタイ
ヤを解剖しベルト層端部での亀裂発生及び成長の状況を
詳細に観察検討した結果によって、従来のタイヤでのタ
イヤの剥離故障に到る過程は、図2に示す如く、先ず走
行疲労によってベルト交錯層のベルトコ−ド末端に微小
亀裂が発生し、この微小亀裂が個々のコ−ドの長手方向
に沿ってベルト幅の内側に向かって成長進行し、ある一
定距離まで亀裂が進行した後隣接するコ−ド相互間でこ
のコ−ド長手方向に進行した亀裂が繋がってベルト層間
の微小剥離となり、次にこの微小剥離が交錯層のベルト
層間でタイヤ周方向又はベルト幅方向内側に広がってタ
イヤの剥離故障に到ることを見出した。そしてベルトコ
−ド末端の微小亀裂の発生からこの亀裂がコ−ドの長手
方向にある一定距離進行するまでの過程の遅速の程度が
タイヤ剥離故障発生の速さを支配しており、この一定距
離に到達した後では急激にベルト層間に剥離が広がりタ
イヤ剥離故障となることが判明した。即ち、ベルトコ−
ド末端の微小亀裂の発生からこの亀裂がコ−ドの長手方
向にある一定距離進行するまでの過程がタイヤの剥離故
障の発生速さを決めるいわば律速段階となっている。本
発明者は、この律速段階に着目して種々の考案実験の結
果、コ−ド被覆ゴムとベルトの端部層間ゴムの弾性率の
関係を調整することによって、ベルトコ−ド末端の微小
亀裂の進行方向をコ−ドの長手方向に沿わさず特に隣接
するベルト層の方向即ちベルトの端部層間ゴム内の方向
に変更することが出来、なおかつこの場合の端部層間ゴ
ム内の亀裂進行速度を前記ゴムの両弾性率の選択組み合
わせによって従来のコ−ド長手方向に沿う亀裂進行速度
対比格段に遅くすることが出来るとの知見を得た。
The present inventor dissected many tires after an indoor drum endurance test, and observed and examined in detail the state of crack generation and growth at the belt layer end, which resulted in tire peeling failure in conventional tires. As shown in FIG. 2, a microcrack is generated at the end of the belt cord of the belt crossing layer due to running fatigue, and the microcrack is formed inside the belt width along the longitudinal direction of each cord. Growth progresses toward a certain distance, and then cracks progressing in the longitudinal direction of the cords are connected between adjacent cords to form microdelamination between the belt layers. It has been found that the belt peels between the belt layers and spreads inward in the tire circumferential direction or in the belt width direction, resulting in a tire peeling failure. The degree of slowness of the process from the occurrence of a small crack at the end of the belt cord to the progress of this crack for a certain distance in the longitudinal direction of the cord governs the speed of occurrence of tire peeling failure. It has been found that after the temperature reaches, the peeling rapidly spreads between the belt layers, resulting in a tire peeling failure. That is, the belt cord
The process from the generation of a small crack at the end of the cord to the propagation of this crack for a certain distance in the longitudinal direction of the cord is the rate-determining step that determines the occurrence speed of the peeling failure of the tire. The inventors of the present invention focused on this rate-determining step, and as a result of various devising experiments, by adjusting the relationship between the elastic modulus of the cord-coated rubber and the end-layer interlayer rubber of the belt, the microcracks at the end of the belt cord were adjusted. The traveling direction can be changed to the direction of the adjacent belt layers, that is, the direction in the rubber layer between the end rubber layers of the belt, without advancing along the longitudinal direction of the cord. It was found that it is possible to significantly slow down the crack progress rate along the conventional cord longitudinal direction by the selective combination of both elastic moduli of the rubber.

【0008】本発明では、上記の知見に基ずき先ずコ−
ド被覆ゴムとベルト端部層間ゴムの動的弾性率の関係を
前記(1)式に示すものとしている。E`がE0`の60
%より大きいと亀裂の進行方向をコ−ドの長手方向に沿
った方向からベルト端部層間ゴム内の方向に変更するこ
とが出来ず前記律速段階での亀裂速度を遅くすることが
出来ない。一方E`がE0`の10%より小さいと亀裂は
コ−ドに沿わずに進行はするが、ベルト端部層間ゴム自
体の抗破壊性の低下が大きくなるので端部層間ゴム内で
の亀裂の進行が極端に早くなる。尚、上記したタイヤの
剥離故障に到る過程はタイヤのサイズやタイヤ構造の違
いによって若干上下の限界値が異なってくるので、好ま
しくは、0.2×E0`≦E`≦0.5×E0`,の範囲に
設定することが望ましい。
In the present invention, based on the above findings,
The relationship between the dynamic elastic modulus of the coating rubber and the belt-end interlayer rubber is shown in the above equation (1). E'is E 0 `60
If it is larger than%, it is not possible to change the progressing direction of the crack from the direction along the longitudinal direction of the cord to the direction inside the belt-end rubber layer, and it is not possible to slow down the crack rate in the rate-determining step. On the other hand, if E ′ is less than 10% of E 0 `, the cracks will proceed without following the code, but the deterioration of the anti-destructive property of the belt-end inter-layer rubber itself will become large, so that in the end-layer inter-layer rubber. The crack progresses extremely fast. In the process leading to the above-mentioned tire peeling failure, the upper and lower limit values are slightly different depending on the tire size and the tire structure. Therefore, 0.2 × E 0 `≦ E` ≦ 0.5 is preferable. It is desirable to set in the range of × E 0 `,.

【0009】又、上記の様に前記両ゴムの動的弾性率の
関係を限定すると同時にコ−ド被覆ゴムの動的弾性率E
0`を前記(2)式の範囲とする。E0`が1.0×108
dyn/cm2 より小さい値であると、タイヤの外径成長が増
大しベルト端部での応力歪が増加し亀裂の進行方向の如
何に関わらずベルト端部ゴムの破壊速度が早くなる。
又、E0`が4.0×108 dyn/cm2 より大きな値となる
と、タイヤが悪路を走行する場合の定歪的な入力を受け
るとゴムの伸びの限界を越えた状態となりコ−ド被覆ゴ
ムが切断破壊する懸念が増大する。
Further, as described above, the relationship between the dynamic elastic moduli of both rubbers is limited, and at the same time, the dynamic elastic modulus E of the cord-coated rubber is limited.
Let 0 `be the range of equation (2) above. E 0 `is 1.0 × 10 8
When the value is smaller than dyn / cm 2 , the outer diameter growth of the tire is increased, the stress strain is increased at the belt end portion, and the breaking speed of the rubber at the belt end portion is increased irrespective of the crack progressing direction.
Also, if E 0 `is a value larger than 4.0 × 10 8 dyn / cm 2 , if the tire receives a constant strain input when driving on a bad road, it will exceed the limit of rubber elongation. -There is an increased concern that the coated rubber will break.

【0010】[0010]

【実施例】タイヤサイズを11R22.5,14PRと
して、図1に示す如く、ベルト層数を4、第2ベルト2
第3ベルト3を交錯層とし、交錯層間に端部層間ゴム4
を挿入したベルト構造1を持つタイヤについて、表1に
示す如く、主要配合組成の異なる各種のコ−ド被覆ゴム
5と端部層間ゴム4を組み合わせて実施例1、2、3、
4及び比較例1、2、3、4、5の9種類のタイヤを各
々所定本数試作した。又、上記各種の実施例、比較例の
タイヤのコ−ド被覆ゴム及び端部層間ゴムの動的弾性率
(E0`及びE`)は各々のゴムの主要配合の違いに従っ
て、表1に示す如き組み合わせとなっている。尚、主要
配合の設定に当たっては、上記両ゴムの動的弾性率を変
化させる為に、基本ポリマ−を天然ゴム(NR)又は天
然ゴムとブチルゴム(BR)とのブレンドとし、カ−ボ
ン(HAF又はLS−HAF)の混入量が調整されてい
る。次にこの様にして試作した各種のタイヤを10屯ト
ラックの駆動軸に装着して良路、悪路を走行する実車剥
離耐久試験を実施した。良路走行試験ではJIS規格荷
重の100%をタイヤに負荷して高速道路主体の舗装路
を10万km走行後、また悪路試験ではJIS規格荷重
の150%の荷重を負荷して砂利道主体の悪路を4万k
m走行後にタイヤを車から取り外しベルト部分を解剖し
てベルト交錯層端部の亀裂6の成長状態を確認した。表
中指数の大きい値の方がベルト交錯層端部の亀裂6の成
長が少なく剥離耐久性が良いとしている。又、比較例1
を従来の標準品としてその亀裂の成長状態を指数100
としている。
EXAMPLE As shown in FIG. 1, the tire size is 11R22.5, 14PR, the number of belt layers is 4, and the second belt 2 is 2.
The third belt 3 is used as an intersecting layer, and an end layer rubber 4 is provided between the intersecting layers.
As for the tire having the belt structure 1 in which the above-mentioned is inserted, as shown in Table 1, various cord-coated rubbers 5 having different main compounding compositions and the end portion interlayer rubber 4 were combined with each other to obtain Examples 1, 2, 3,
A predetermined number of 9 types of tires of 4 and Comparative Examples 1, 2, 3, 4, and 5 were prototyped. Further, the dynamic elastic moduli (E 0 `and E`) of the cord-coated rubber and the end-layer interlayer rubber of the tires of the above various Examples and Comparative Examples are shown in Table 1 according to the difference in the main compounding of each rubber. The combinations are as shown. In setting the main composition, in order to change the dynamic elastic moduli of both rubbers, the basic polymer is a natural rubber (NR) or a blend of natural rubber and butyl rubber (BR), and carbon (HAF) is used. Alternatively, the amount of LS-HAF) mixed is adjusted. Next, various tires thus prototyped were mounted on a drive shaft of a 10-ton truck, and a peeling durability test of an actual vehicle running on a good road and a bad road was conducted. In the good road test, 100% of the JIS standard load was applied to the tires and after running 100,000 km on the highway-mainly paved road, and in the bad road test, the load of 150% of the JIS standard load was applied and mainly the gravel road The rough road of 40,000k
After running for m, the tire was removed from the car and the belt was dissected to confirm the growth state of the crack 6 at the end of the belt crossing layer. The larger the index in the table, the smaller the growth of the crack 6 at the end of the belt crossing layer and the better the peeling durability. Comparative Example 1
The crack growth state is indexed as 100
I am trying.

【0010】テスト結果を詳細に見ると、比較例2はコ
−ド被覆ゴムの動的弾性率E0`が低過ぎるために良路で
の耐久性が悪くなっている。逆に動的弾性率E0`が高過
ぎる比較例5では悪路での耐久性が大きく低下してい
る。比較例3、4は端部層間ゴムの動的弾性率E`が前
記コ−ド被覆ゴムの動的弾性率E0`との関係式(1)か
ら外れた例であり良路及び悪路耐久性がいずれも比較例
1の従来の標準品よりも低下している。これに対し、本
発明が提案する動的弾性率の限定範囲を満足する実施例
1、2、3、4のタイヤにあっては、良路、悪路ともに
剥離耐久性が大きく向上しているのが認められる。
A detailed examination of the test results shows that in Comparative Example 2, the durability on a good road is poor because the dynamic elastic modulus E 0 `of the cord-coated rubber is too low. On the contrary, in Comparative Example 5 in which the dynamic elastic modulus E 0 `is too high, the durability on rough roads is significantly reduced. Comparative Examples 3 and 4 are examples in which the dynamic elastic modulus E ′ of the end interlayer rubber is out of the relational expression (1) with the dynamic elastic modulus E 0 ′ of the cord-coated rubber, and good road and bad road. The durability is lower than that of the conventional standard product of Comparative Example 1. On the other hand, in the tires of Examples 1, 2, 3, and 4 which satisfy the limited range of the dynamic elastic modulus proposed by the present invention, the peeling durability is greatly improved on both the good road and the bad road. Is recognized.

【0011】又、特に実施例2、3の場合では、比較例
1の標準品と同一のコ−ド被覆ゴムを用いて端部層間ゴ
ムの動的弾性率のみを変更することによって剥離耐久性
の向上が得られている。このことは、ベルト材料として
多くの高度な特性のバランスを必要とし、又タイヤ製造
時に生産性及び製造コスト面からの制約の大きいコ−ド
被覆ゴムの変更を保留してこうした制約の比較的少ない
端部層間ゴムの変更のみで大幅な剥離耐久性の向上が容
易に得られることを示している。尚、勿論コ−ド被覆ゴ
ム自体の変更によっても剥離耐久性の向上を得ることが
出来、良路主体走行、あるいは悪路主体走行の使用条件
ごとに耐剥離性能向上を特化させてタイヤを用途別に設
計することが出来る。
In particular, in the case of Examples 2 and 3, the same cord-coated rubber as the standard product of Comparative Example 1 was used, and only the dynamic elastic modulus of the end-layer interlayer rubber was changed, so that the peeling durability was improved. Has been obtained. This requires a high degree of balance of properties as a belt material, and is relatively less restricted by changing the code-coated rubber, which is highly restricted in terms of productivity and manufacturing cost during tire production. It is shown that a great improvement in peeling durability can be easily obtained only by changing the rubber between the end layers. Of course, the peeling durability can be improved by changing the code-coated rubber itself, and the tire can be made to specialize in the peeling resistance improvement for each use condition of running on a good road or running on a bad road. It can be designed for each application.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】本発明によれば、コ−ド被覆ゴムの動的
弾性率を所定の値の範囲内にしながら、ベルト交錯層端
部層間ゴムの動的弾性率とコ−ド被覆ゴムの動的弾性率
との比率を一定の範囲内になるように調整することによ
って、接着性、発熱性、加工性等の多くの特性を極めて
高度にバランスさせる材料設計が必要なコ−ド被覆ゴム
の設計の自由度を不適当に狭めることなくタイヤの耐剥
離性能を大幅に向上することが出来、又、タイヤ製造上
の観点からは、ベルト材の加工性を低下することがなく
しかも製造コストの増加をもたらさないでタイヤの耐剥
離性能を向上できる。さらに、ベルト交錯層端部層間ゴ
ムの動的弾性率とコ−ド被覆ゴムの動的弾性率とを前記
比率内で適切に選択することにより良路向け、悪路向け
など各用途向けに耐剥離性を特化した所謂用途別タイヤ
を容易に作ることが出来る。
According to the present invention, while the dynamic elastic modulus of the code-coated rubber is kept within a predetermined range, the dynamic elastic modulus of the belt crossing layer end layer interlayer rubber and that of the code-coated rubber are reduced. A cord-coated rubber that requires a material design that extremely balances many properties such as adhesion, heat generation, and processability by adjusting the ratio with the dynamic elastic modulus to be within a certain range. The peeling resistance of the tire can be significantly improved without unduly narrowing the degree of freedom in design, and from the viewpoint of tire manufacturing, the workability of the belt material is not deteriorated and the manufacturing cost is low. The peel resistance of the tire can be improved without increasing Furthermore, by properly selecting the dynamic elastic modulus of the belt crossing layer end layer interlayer rubber and the dynamic elastic modulus of the cord-coated rubber within the above-mentioned ratio, it is possible to withstand various uses such as good roads and bad roads. It is possible to easily make a so-called application-specific tire that specializes in peelability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明タイヤのベルト端部での亀裂成長過程を
を示す図である。
FIG. 1 is a diagram showing a crack growth process at a belt end portion of a tire of the present invention.

【図2】従来タイヤのベルト端部での亀裂成長過程を示
す図である。
FIG. 2 is a diagram showing a crack growth process at a belt end portion of a conventional tire.

【符号の説明】[Explanation of symbols]

1 ベルト構造 2 第2ベルト 3 第3ベルト 4 端部層間ゴム 5 コ−ド被覆ゴム 6 ベルト交錯層端部の亀裂 DESCRIPTION OF SYMBOLS 1 Belt structure 2 2nd belt 3 3rd belt 4 End part inter-layer rubber 5 Code coating rubber 6 Belt crossing layer end part crack

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ラジアルカ−カス層のタイヤ径方向上部
に配置されて、複数のスチ−ルコ−ドを並列し被覆ゴム
で覆ったベルト層を少なくとも2層以上積層にしたベル
ト構造において、上下に隣接するベルト層のコ−ド方向
が互いに交錯する交錯層のベルト幅方向両端部の層間に
スチ−ルコ−ド被覆ゴムとは異なる端部層間ゴムを介在
させ、しかも該端部層間ゴムの動的弾性率E`と前記ス
チ−ルコ−ド被覆ゴムの動的弾性率E0`との関係が、 0.1×E0`≦E`≦0.6×E0` であり、かつ前記スチ−ルコ−ド被覆ゴムの動的弾性率
0`の値が、 1.0×108 dyn/cm2 ≦E0`≦4.0×108 dyn/cm2 であることを特徴とする空気入りラジアルタイヤ。
1. A belt structure in which at least two or more belt layers, which are arranged on an upper side in a tire radial direction of a radial arcuate layer and have a plurality of steel cords arranged in parallel and covered with a covering rubber, are laminated, An inter-layer rubber different from the steel cord-covered rubber is interposed between the layers at both ends in the belt width direction of the intersecting layer in which the cord directions of the adjacent belt layers intersect with each other, and the movement of the end-layer rubber is The relation between the dynamic elastic modulus E ′ and the dynamic elastic modulus E 0 ′ of the steel cord-coated rubber is 0.1 × E 0 ≦≦ E ′ ≦ 0.6 × E 0 ′ , and The value of the dynamic elastic modulus E 0 `of the steel cord coated rubber is 1.0 × 10 8 dyn / cm 2 ≦ E 0` ≦ 4.0 × 10 8 dyn / cm 2. Pneumatic radial tire.
JP6043601A 1994-03-15 1994-03-15 Pneumatic radial tire Pending JPH07251605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6043601A JPH07251605A (en) 1994-03-15 1994-03-15 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6043601A JPH07251605A (en) 1994-03-15 1994-03-15 Pneumatic radial tire

Publications (1)

Publication Number Publication Date
JPH07251605A true JPH07251605A (en) 1995-10-03

Family

ID=12668343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6043601A Pending JPH07251605A (en) 1994-03-15 1994-03-15 Pneumatic radial tire

Country Status (1)

Country Link
JP (1) JPH07251605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196866A (en) * 2006-01-26 2007-08-09 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257704A (en) * 1991-02-09 1992-09-11 Bridgestone Corp Pneumatic radial tire for automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257704A (en) * 1991-02-09 1992-09-11 Bridgestone Corp Pneumatic radial tire for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196866A (en) * 2006-01-26 2007-08-09 Sumitomo Rubber Ind Ltd Radial tire for heavy load

Similar Documents

Publication Publication Date Title
US4945964A (en) Tire with defined inner and outer tread rubber compositions
US8272412B2 (en) Elastomer composition having glass micro fibers
CA1120839A (en) Pneumatic safety tire with excellent long-running ability after puncture
EP2072289B1 (en) Run-flat tire
EP1923233A1 (en) Tire having a sidewall component containing a dispersion of adhesive coated short carbon fiber reinforcement
EP2376295B1 (en) Sidewall shear decoupling layer
ZA200410039B (en) Hybrid cables with layers which can be used to reinforce tyres.
US20130292028A1 (en) Tire, the carcass reinforcement of which is reinforced with a layer of reinforcing elements in the bead region
US20140305568A1 (en) Tire, the carcass reinforcement of which is reinforced with a layer of reinforcing elements in the bead region
US20130292027A1 (en) Tire, the carcass reinforcement of which is reinforced with a layer of reinforcing elements in the bead region
EP0592218B1 (en) Tyres
CA2081533A1 (en) Tire with apex rubber blend
US20130340913A1 (en) Tire, the carcass reinforcement of which is reinforced with a layer of reinforcing elements in the bead region
JP4778697B2 (en) Heavy duty pneumatic radial tire
EP2268492B1 (en) Tyre with crown comprising a layer of very high modulus rubber mix
US20140008003A1 (en) Tire, the carcass reinforcement of which is reinforced with a layer of reinforcing elements in the bead region
JP3366057B2 (en) Pneumatic radial tire for heavy loads
JP2017521302A (en) Tire having a layer of circumferential reinforcing elements
JPH07251605A (en) Pneumatic radial tire
JP2540124B2 (en) Pneumatic tire with improved durability
JP4500075B2 (en) Pneumatic tire
EP0481080B1 (en) Pneumatic radial tire
JP2955774B2 (en) Pneumatic radial tire for heavy loads
JP4312280B2 (en) Safety tire and rim assembly
JPH07266813A (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518