JPH07244057A - Fine adjustment mechanism - Google Patents

Fine adjustment mechanism

Info

Publication number
JPH07244057A
JPH07244057A JP6038310A JP3831094A JPH07244057A JP H07244057 A JPH07244057 A JP H07244057A JP 6038310 A JP6038310 A JP 6038310A JP 3831094 A JP3831094 A JP 3831094A JP H07244057 A JPH07244057 A JP H07244057A
Authority
JP
Japan
Prior art keywords
parallel spring
actuator
point
displacement
fine movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6038310A
Other languages
Japanese (ja)
Inventor
Masatoshi Suzuki
正敏 鈴木
Toru Fujii
藤井  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6038310A priority Critical patent/JPH07244057A/en
Publication of JPH07244057A publication Critical patent/JPH07244057A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make large displacement quantity and vibration-resistant characteristics compatible with each other in a fine adjustment mechanism using a parallel spring. CONSTITUTION:In the fine adjustment mechanism having a parallel spring 10 and the actuator 4 brought into contact with one point on the parallel spring and applying load to the parallel spring to displace the parallel spring in a predetermined displacement direction, a mechanism applying pre-load to the parallel spring 10 in the direction opposite to the displacement direction through a buffer material 7 at the point set to the same axis with respect to the contact point of the actuator 4 and the parallel spring 10 and the displacement direction on the side opposite to the contact point is provided. Pref., pre-load is applied so that the parallel spring 10 becomes a self-supporting state or a state slightly inclined in the minus direction of the displacement direction in a zero displacement state wherein no displacement due to the actuator 4 is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型トンネル顕微鏡用
等に用いて好適な微動機構、および該微動機構を用いた
走査型トンネル顕微鏡の微動走査機構に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine movement mechanism suitable for use in a scanning tunnel microscope and the like, and a fine movement scanning mechanism of a scanning tunnel microscope using the fine movement mechanism.

【0002】[0002]

【従来の技術】走査型トンネル顕微鏡用等に用いられる
微動機構として様々な方式があるが、その一つに平行ば
ね機構がある。平行ばねを用いた従来の微動機構を図6
に示す。平行ばね30は土台である固定部31から互い
に平行に伸びる2本の腕32および該2本の腕の端部ど
うしを結ぶ連結部33よりなる。そして固定部に固定さ
れた圧電アクチュエータ等のアクチュエータ34を該平
行ばね30上の一点に鋼球35を介して接触させる。ア
クチュエータ34を動作させると、平行ばねは鋼球35
を介して図4の右方向に押され、平行ばねの一部を切り
欠いて形成した4か所のヒンジ部36をヒンジとして変
形し、連結部33が固定部に対して平行移動する。図6
に2点鎖線で移動後の平行ばねの一位置を示す。平行ば
ねの利点として、変位の直進性が優れていること、てこ
倍率によりアクチュエータの変位拡大が容易であるこ
と、変位位置検出のための干渉計や変位計の取り付けが
容易であることがあげられる。
2. Description of the Related Art There are various types of fine movement mechanisms used for scanning tunneling microscopes, and one of them is a parallel spring mechanism. FIG. 6 shows a conventional fine movement mechanism using a parallel spring.
Shown in. The parallel spring 30 is composed of two arms 32 extending in parallel to each other from a fixed portion 31 which is a base, and a connecting portion 33 connecting end portions of the two arms. Then, an actuator 34 such as a piezoelectric actuator fixed to the fixed portion is brought into contact with a point on the parallel spring 30 via a steel ball 35. When the actuator 34 is operated, the parallel spring moves the steel ball 35.
4, the hinge portions 36 formed by cutting out a part of the parallel spring are deformed as hinges, and the connecting portion 33 moves in parallel with the fixed portion. Figure 6
The position of the parallel spring after movement is indicated by a two-dot chain line in FIG. The advantages of the parallel spring are that it has excellent straightness of displacement, it is easy to expand the displacement of the actuator by lever magnification, and it is easy to install an interferometer or displacement meter for displacement position detection. .

【0003】[0003]

【発明が解決しようとする課題】平行ばねとアクチュエ
ータで変位機構を構成する際に、アクチュエータが平行
ばねに力を加える荷重点が常に接触しているようにする
ために荷重方向の与圧(予圧)が必要である。与圧をか
ける方法として平行ばね自体の弾性を利用する方法が考
えられる。そのためには、アクチュエータによって平行
ばねを動かす前に、既に平行ばねが自身の平衡点を越え
て変位方向(即ちアクチュエータにより変位させるべき
方向)に押されているような状態となるようにアクチュ
エータと接触させればよい(この場合点接触をもたらす
ためにアクチュエータと平行ばねの間に鋼球等をいれる
とよい)。しかしこの方法には以下のような問題があ
る。即ち、特に極めて高い精度を持つ一体切り欠き型の
平行ばねの場合、ヒンジ部にあまり曲げ応力がかかると
塑性変形領域に入ってしまうため、曲げられる最大角度
には限度がある。そのため変位0の点で既に平行ばねが
変位方向に与圧分の傾きを持っている上記の構成では、
有効に使える角度の範囲は制限され、大きな変位量を得
るための障害となる。
When a displacement mechanism is constituted by a parallel spring and an actuator, in order to ensure that the load point at which the actuator applies a force to the parallel spring is in constant contact, a preload (preload) in the load direction is applied. )is necessary. A method of utilizing the elasticity of the parallel spring itself can be considered as a method of applying a pressure. To do this, before moving the parallel spring by the actuator, contact the actuator so that the parallel spring is already pushed in the displacement direction (that is, the direction to be displaced by the actuator) beyond its equilibrium point. (In this case, a steel ball or the like may be inserted between the actuator and the parallel spring to bring about the point contact). However, this method has the following problems. That is, in the case of an integral notch type parallel spring having extremely high accuracy, if the hinge portion is subjected to excessive bending stress, it will enter the plastic deformation region, so there is a limit to the maximum bending angle. Therefore, in the above configuration in which the parallel springs already have an inclination of the applied pressure in the displacement direction at the point of zero displacement,
The range of angles that can be effectively used is limited, which is an obstacle to obtaining a large displacement amount.

【0004】また、同じ角度変化でより大きな変位を得
るため腕を長くすると、機械的共振点が低下して外乱振
動に対して弱くなる。その対策として、ダンプをかけて
Q値を下げることと、十分な与圧による鋼球の接触部の
変形による効果を利用することが考えられる。後者の効
果とは以下のようなものである。即ち、平行ばねは弾性
材料により出来ているので、与圧により鋼球との接触点
において変形を生ずるとその部分が一つの局所的なばね
として振る舞う。この局所的なばねは平行ばねの本来の
ばねより硬いばねである。平行ばねはその局所的なばね
を介して駆動されるため、全体としての系(即ち局所的
ばね、平行ばねおよびその質量を含めた系)は硬いばね
となり、共振点が上がって外乱振動に対して強くなると
いう効果が生れるものである。
If the arm is lengthened in order to obtain a larger displacement with the same angle change, the mechanical resonance point is lowered, and the arm becomes weak against disturbance vibration. As a countermeasure against this, it is possible to reduce the Q value by applying a dump and to utilize the effect of the deformation of the contact portion of the steel ball due to sufficient pressurization. The latter effect is as follows. That is, since the parallel spring is made of an elastic material, when a contact point with the steel ball is deformed by pressurization, the part behaves as one local spring. This local spring is harder than the original parallel spring. Since the parallel spring is driven via its local spring, the system as a whole (that is, the system including the local spring, the parallel spring, and its mass) becomes a hard spring, and the resonance point rises to the disturbance vibration. The effect of becoming stronger is born.

【0005】上記のようにダンプをかけてQ値を下げる
ことは振動対策として有用ではあるが、ダンプの方法と
して例えばゴムやゲル状物質を固定部との間に挟んで使
うと、それ自体ばね要素でもあるため取付ける位置によ
っては平行ばねの動きを阻害する。平行ばねのピボット
であるヒンジ部に緩衝材を塗る方法では、ピッチ、ヨ
ー、ローリング等のヒンジの本来の平行ばねとしての変
形以外の変形が生じ、特性を低下させる。本発明の目的
は、平行ばねの変位量を大きくすることを可能にしつ
つ、かつ上述のような問題を生じないような微動機構を
提供することである。
Although it is useful as a countermeasure against vibration to reduce the Q value by applying a dump as described above, when a rubber or gel-like substance is sandwiched between a fixing portion and a method of dumping, the spring itself is used. Since it is also an element, it hinders the movement of the parallel spring depending on the mounting position. In the method of applying the cushioning material to the hinge portion, which is the pivot of the parallel spring, the hinge, such as pitch, yaw, and rolling, is deformed other than the original deformation of the parallel spring, and the characteristics are deteriorated. It is an object of the present invention to provide a fine movement mechanism that makes it possible to increase the amount of displacement of the parallel spring and does not cause the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、平行ばねと、
該平行ばね上の一点に接触させた、平行ばねに荷重をか
けて所定変位方向に変位させるアクチュエータとを有す
る微動機構において、アクチュエータと平行ばねの前記
接触点と前記変位方向にかんして同軸上でありかつ前記
平行ばね部材を挟んで前記接触点と反対側の点におい
て、前記平行ばねに前記変位方向と反対方向に、緩衝材
を介して与圧をかける機構を備える。また本発明は上記
のような微動機構を用いた走査型トンネル顕微鏡の微動
走査機構を提供する。その場合上記の平行ばねに走査型
トンネル顕微鏡の探針または試料ステージを固定すれば
よい。
SUMMARY OF THE INVENTION The present invention comprises a parallel spring,
In a fine movement mechanism having an actuator which is brought into contact with a point on the parallel spring and is displaced in a predetermined displacement direction by applying a load to the parallel spring, the actuator and the contact point of the parallel spring and the displacement direction are coaxial with each other. And a mechanism for applying a pressure to the parallel spring via a cushioning material in a direction opposite to the displacement direction at a point opposite to the contact point with the parallel spring member interposed therebetween. The present invention also provides a fine movement scanning mechanism of a scanning tunneling microscope using the fine movement mechanism as described above. In that case, the probe of the scanning tunneling microscope or the sample stage may be fixed to the parallel spring.

【0007】[0007]

【作用】上記構成によれば、緩衝材を介して与圧をかけ
ているため、該緩衝材のダンピング効果で外乱による共
振を押えることができる。また上述した与圧による鋼球
の接触部の変形による効果もあり、平行ばねの耐振動特
性を上げることができる。緩衝材はゴムやゲル状物質で
よく、それがダンパと与圧用ばねの両方の作用をするの
で構成が単純である。平行ばねに与えられる与圧力はア
クチュエータによる荷重点に対し平行ばねを挟んで同軸
上の点に、荷重方向の反対方向に加えられるため、平行
ばねに対しモーメント力がかからない。したがって平行
ばね本来の変形以外の無用な変形が生じず、変位を阻害
することがない。また、平行ばねがアクチュエータによ
って変位されるべき方向(変位方向、即ち荷重方向)と
反対の方向に与圧をかけるので、平行ばねを自立状態と
同じかもしくはアクチュエータの変位方向のマイナス方
向に曲げた状態を変位の0点とすることができ、平行ば
ねをヒンジ部の弾性限度内で変位させられる範囲を有効
に使える。
According to the above construction, since the pressure is applied through the cushioning material, the damping effect of the cushioning material can suppress the resonance due to the disturbance. Further, there is also an effect of the deformation of the contact portion of the steel ball due to the above-mentioned pressurization, and the vibration resistance characteristic of the parallel spring can be improved. The cushioning material may be rubber or a gel-like substance, and since it acts as both a damper and a pressurizing spring, it has a simple structure. Since the pressure applied to the parallel spring is applied to a point on the same axis as the load point by the actuator with the parallel spring interposed therebetween in the opposite direction of the load direction, no moment force is applied to the parallel spring. Therefore, unnecessary deformation other than the original deformation of the parallel spring does not occur and displacement is not hindered. Also, since the parallel spring applies pressure in the direction opposite to the direction in which it should be displaced by the actuator (displacement direction, that is, load direction), the parallel spring is bent in the same direction as the self-supporting state or in the minus direction of the actuator displacement direction. The state can be set to the zero point of the displacement, and the range in which the parallel spring can be displaced within the elastic limit of the hinge portion can be effectively used.

【0008】[0008]

【実施例】以下図面を参照して本発明の実施例を説明す
る。図1は本発明の第1の実施例の微動機構を図式的に
示す。平行ばね10が土台ないし基板である固定部1か
ら互いに平行に伸びる2本の腕2および該2本の腕の端
部どうしを結ぶ移動部3より構成されている。該平行ば
ね10を変位させるアクチュエータである積層型圧電素
子4は一端が固定部1に接着され他端に直径2mmの鋼
球5が接着してある。鋼球の他端は平行ばね10の移動
部3にほぼ点接触している。平行ばねに関して圧電素子
4の反対側において、ゴムやゲル状物質からなる緩衝材
7の一端が固定部1に接着されている。緩衝材7の他端
には中央に鋼球8が接着された金属板9が接着されてい
る。平行ばね10に図1の左方向に与圧を与えるべく緩
衝材7は圧縮された状態とする。本実施例では、圧電素
子が動作していないとき(ゼロ変位状態)に、平行ばね
が自立状態(即ち外力を受けない自然状態でとる姿勢)
となるようになされている。図1はこのゼロ変位状態を
示す。なお図1では圧電素子4および緩衝材7を取り付
ける固定部を平行ばねの土台となっている下部の固定部
と一体的に描いているが、必ずしも一体である必要はな
い。また緩衝材はゴムやゲル状物質に限らず、与圧とダ
ンパの両方の作用を行ない得るような不完全弾性を有す
るものであればよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically shows a fine movement mechanism of a first embodiment of the present invention. A parallel spring 10 is composed of two arms 2 extending in parallel to each other from a fixed portion 1 which is a base or a substrate, and a moving portion 3 which connects end portions of the two arms. The laminated piezoelectric element 4, which is an actuator for displacing the parallel spring 10, has one end bonded to the fixed portion 1 and the other end bonded with a steel ball 5 having a diameter of 2 mm. The other end of the steel ball is in point contact with the moving portion 3 of the parallel spring 10. On the opposite side of the piezoelectric element 4 with respect to the parallel spring, one end of a cushioning material 7 made of rubber or gel-like material is bonded to the fixed portion 1. A metal plate 9 having a steel ball 8 bonded to the center thereof is bonded to the other end of the cushioning material 7. The cushioning member 7 is in a compressed state in order to apply a pressure to the parallel spring 10 in the left direction in FIG. In this embodiment, when the piezoelectric element is not operating (zero displacement state), the parallel spring is in a self-supporting state (that is, a posture taken in a natural state in which no external force is applied).
It is designed to be. FIG. 1 shows this zero displacement state. In FIG. 1, the fixed portion to which the piezoelectric element 4 and the cushioning material 7 are attached is shown integrally with the lower fixed portion which is the base of the parallel spring, but it does not necessarily have to be integrated. Further, the cushioning material is not limited to rubber or gel-like material, and may be any material having incomplete elasticity that can perform both the functions of pressurization and damper.

【0009】上記のような機構において、圧電素子4に
電圧をかけると圧電素子4は力学的歪を生じ、鋼球5を
介して平行ばね10を図1の右方向に押す。これにより
平行ばねは、その一部を切り欠いて形成した4か所のヒ
ンジ部6をヒンジとして変形し、移動部3が固定部に対
して平行移動する。この移動部3が本微動機構により微
動せしめられる部位であり、圧電素子4に印加する電圧
を調節することで所望量の微小変位を図の水平方向に生
ずる。本微動機構においては、外乱により固定部1が振
動しても緩衝材7がダンパの役割を果たすことにより、
平行ばね10には振動が生じにくい。
In the mechanism as described above, when a voltage is applied to the piezoelectric element 4, the piezoelectric element 4 causes a mechanical strain and pushes the parallel spring 10 to the right in FIG. 1 via the steel ball 5. As a result, the parallel spring is deformed by using the four hinge portions 6 formed by cutting out a part thereof as hinges, and the moving portion 3 moves in parallel with the fixed portion. This moving portion 3 is a portion that is finely moved by the fine movement mechanism, and by adjusting the voltage applied to the piezoelectric element 4, a desired amount of fine displacement is generated in the horizontal direction in the figure. In this fine movement mechanism, the cushioning material 7 plays the role of a damper even if the fixed portion 1 vibrates due to disturbance,
Vibration is unlikely to occur in the parallel spring 10.

【0010】図2は本発明の第2の実施例の微動機構を
示す。本実施例の機構は図1の機構とほぼ同様のもので
あり、対応する部分には同じ参照符号を付けて説明を省
略する。図1の実施例と異なる点は、圧電素子4による
変位が生じていないゼロ変位状態で、与圧力によりあら
かじめ平行ばね10を圧電素子4による変位方向のマイ
ナス方向に曲げて、平行ばねをヒンジ部の弾性限度内で
変位させられる範囲を有効に使えるようにした点であ
る。図2はこのゼロ変位状態を示す。このようにすれば
理論的には最大で平行ばねの左側弾性限界から右側弾性
限界まで変位範囲をとることができるので、大きな変位
量が確保できる。
FIG. 2 shows a fine movement mechanism of the second embodiment of the present invention. The mechanism of the present embodiment is almost the same as the mechanism of FIG. 1, and corresponding parts are designated by the same reference numerals and description thereof is omitted. The difference from the embodiment of FIG. 1 is that in the zero displacement state in which the displacement by the piezoelectric element 4 has not occurred, the parallel spring 10 is bent in advance in the negative direction of the displacement direction by the piezoelectric element 4 by the applied pressure, and the parallel spring is hinged. The point is that the range of displacement within the elastic limit of can be effectively used. FIG. 2 shows this zero displacement state. In this way, theoretically, a maximum displacement range from the left elastic limit to the right elastic limit of the parallel spring can be taken, so that a large displacement amount can be secured.

【0011】図3は本発明の第3の実施例の微動機構で
ある。この実施例でも同様の部分には同じ参照符号を付
けて説明を省略する。本実施例においては、圧電素子か
らの力が作用する点を平行ばねの腕の中央部とすること
により、2倍のてこ比で圧電素子の変位量を拡大してい
る。すなわちこの機構では圧電素子4の変位量に対して
移動部3の変位量は2倍に拡大される。以上の実施例の
微動機構はいずれも走査型トンネル顕微鏡の走査機構と
して好適に用いることができる。該走査機構は走査型ト
ンネル顕微鏡の探針と被検物を載置するステージとを相
対的に移動させるためのものである。
FIG. 3 shows a fine movement mechanism of a third embodiment of the present invention. Also in this embodiment, the same parts are designated by the same reference numerals and the description thereof will be omitted. In the present embodiment, the point where the force from the piezoelectric element acts is located at the center of the arm of the parallel spring, so that the displacement amount of the piezoelectric element is expanded with a double lever ratio. That is, in this mechanism, the displacement amount of the moving portion 3 is doubled with respect to the displacement amount of the piezoelectric element 4. Any of the fine movement mechanisms of the above embodiments can be suitably used as the scanning mechanism of the scanning tunneling microscope. The scanning mechanism is for relatively moving the probe of the scanning tunneling microscope and the stage on which the object is placed.

【0012】図4は図1に示した微動機構を走査型トン
ネル顕微鏡の探針の移動機構として用いた例を示す。前
記の移動部3の上に探針20が図の垂直方向の微動を行
なう垂直方向微動素子22を介して固定されている。参
照符号21は探針のホルダである。この構成により、探
針を図の水平方向に微小移動させて走査を行なう。
FIG. 4 shows an example in which the fine movement mechanism shown in FIG. 1 is used as a moving mechanism of a probe of a scanning tunneling microscope. A probe 20 is fixed on the moving portion 3 via a vertical direction fine movement element 22 which performs fine movement in the vertical direction in the figure. Reference numeral 21 is a holder of the probe. With this structure, scanning is performed by slightly moving the probe in the horizontal direction in the figure.

【0013】図5は同じく図1に示した微動機構を走査
型トンネル顕微鏡のステージの移動機構として用いた例
を示す。前記の移動部3の上にステージ23が固定され
ており、ステージを図の水平方向に微小移動させて走査
を行なう。
FIG. 5 shows an example in which the fine movement mechanism shown in FIG. 1 is also used as a stage movement mechanism of a scanning tunneling microscope. A stage 23 is fixed on the moving unit 3 and the stage is moved in the horizontal direction in the figure to perform scanning.

【0014】[0014]

【発明の効果】本発明によれば、緩衝材を介して与圧を
かけているため、該緩衝材のダンピング効果で外乱によ
る共振を押えることができる。また上述した与圧による
鋼球の接触部の変形による効果もあり、平行ばねの耐振
動特性を上げることができる。緩衝材はゴムやゲル状物
質でよく、それがダンパと与圧用ばねの両方の作用をす
るので構成が単純である。更に、平行ばねに与えられる
与圧力はアクチュエータによる荷重点に対し平行ばねを
挟んで同軸上の点に、荷重方向の反対方向に加えられる
ため、平行ばねに対しモーメント力がかからない。した
がって平行ばね本来の変形以外の無用な変形が生じず、
変位を阻害することがない。また、平行ばねがアクチュ
エータによって変位されるべき方向と反対の方向に与圧
をかけるので、平行ばねを自立状態と同じかもしくはア
クチュエータの変位方向のマイナス方向に曲げた状態を
変位の0点とすることができ、平行ばねをヒンジ部の弾
性限度内で変位させられる範囲を有効に用いることがで
きる。
According to the present invention, since the pressure is applied through the cushioning material, the damping effect of the cushioning material can suppress the resonance caused by the disturbance. Further, there is also an effect of the deformation of the contact portion of the steel ball due to the above-mentioned pressurization, and the vibration resistance characteristic of the parallel spring can be improved. The cushioning material may be rubber or a gel-like substance, and since it acts as both a damper and a pressurizing spring, it has a simple structure. Further, since the pressure applied to the parallel spring is applied to points coaxial with the load point of the actuator with the parallel spring interposed therebetween in the opposite direction to the load direction, no moment force is applied to the parallel spring. Therefore, unnecessary deformation other than the original deformation of the parallel spring does not occur,
It does not hinder displacement. Further, since the parallel spring applies pressure in the direction opposite to the direction in which it should be displaced by the actuator, the state where the parallel spring is the same as the self-standing state or bent in the minus direction of the displacement direction of the actuator is taken as the zero point of the displacement. Therefore, the range in which the parallel spring can be displaced within the elastic limit of the hinge portion can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例である微動機構を図式的
に示す図である。
FIG. 1 is a diagram schematically showing a fine movement mechanism that is a first embodiment of the present invention.

【図2】本発明の第2の実施例である微動機構を図式的
に示す図である。
FIG. 2 is a diagram schematically showing a fine movement mechanism that is a second embodiment of the present invention.

【図3】本発明の第3の実施例である微動機構を図式的
に示す図である。
FIG. 3 is a diagram schematically showing a fine movement mechanism that is a third embodiment of the present invention.

【図4】図1に示した微動機構を走査型トンネル顕微鏡
の探針移動機構として用いた実施例を示す図である。
FIG. 4 is a diagram showing an embodiment in which the fine movement mechanism shown in FIG. 1 is used as a probe moving mechanism of a scanning tunneling microscope.

【図5】図1に示した微動機構を走査型トンネル顕微鏡
の試料ステージ移動機構として用いた実施例を示す図で
ある。
5 is a diagram showing an example in which the fine movement mechanism shown in FIG. 1 is used as a sample stage moving mechanism of a scanning tunneling microscope.

【図6】平行ばねを用いた微動機構の従来例を示す図で
ある。
FIG. 6 is a diagram showing a conventional example of a fine movement mechanism using a parallel spring.

【符号の説明】[Explanation of symbols]

1 固定部 2 平行ばねの腕 3 移動部 4 積層型圧電素子 5、8 鋼球 6 ヒンジ部 7 緩衝材 9 金属板 10 平行ばね 20 探針 23 ステージ DESCRIPTION OF SYMBOLS 1 Fixed part 2 Arm of parallel spring 3 Moving part 4 Laminated piezoelectric element 5, 8 Steel ball 6 Hinge part 7 Buffer material 9 Metal plate 10 Parallel spring 20 Probe 23 Stage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02N 2/00 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display H02N 2/00 B

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 平行ばねと、該平行ばね上の一点に接触
するアクチュエータであって、平行ばねに荷重をかけて
所定変位方向に変位させるアクチュエータとを有する微
動機構において、アクチュエータと平行ばねの前記接触
点と前記変位方向にかんして同軸上でありかつ前記平行
ばね部材を挟んで前記接触点と反対側の点において、前
記平行ばねに前記変位方向と反対方向に、緩衝材を介し
て与圧をかける機構を有することを特徴とする微動機
構。
1. A fine movement mechanism comprising: a parallel spring; and an actuator that comes into contact with a point on the parallel spring, the actuator displacing a load on the parallel spring in a predetermined displacement direction. At a point that is coaxial with the contact point in the displacement direction and is opposite to the contact point with the parallel spring member interposed, the parallel spring is pressed in the opposite direction to the displacement direction via a cushioning material. A fine movement mechanism having a mechanism for applying a force.
【請求項2】 前記アクチュエータに接着された鋼球を
有し、前記アクチュエータは該鋼球を介して前記平行ば
ねに点接触して荷重を加えることを特徴とする請求項1
記載の微動機構。
2. A steel ball bonded to the actuator, wherein the actuator applies point load to the parallel spring through the steel ball to make point contact with the parallel spring.
Fine movement mechanism described.
【請求項3】 前記緩衝材を介して与圧をかける機構
は、前記平行ばねが固定されている固定部に対して相対
的に固定されている固定部材に取り付けられた緩衝材と
該緩衝材の該固定部材側とは反対の側で該緩衝部材に取
り付けられた前記平行ばねと点接触する部材を含むこと
を特徴とする請求項1記載の微動機構。
3. A cushioning member attached to a fixing member fixed relative to a fixing portion to which the parallel spring is fixed, and a cushioning member in the mechanism for applying pressure through the cushioning member. 2. The fine movement mechanism according to claim 1, further comprising a member that makes point contact with the parallel spring attached to the buffer member on a side opposite to the fixed member side.
【請求項4】 前記与圧は前記緩衝材自身の弾性を利用
して付与されることを特徴とする請求項1記載の微動機
構。
4. The fine movement mechanism according to claim 1, wherein the pressurizing force is applied by utilizing elasticity of the cushioning material itself.
【請求項5】 前記与圧は、前記アクチュエータによる
変位が生じていないゼロ変位状態において、前記平行ば
ねが単独で自立しているときと同じ状態かまたは前記変
位方向のマイナス方向にわずかに傾いた状態になるよう
にかけられていることを特徴とする請求項1記載の微動
機構。
5. The pressurizing force is in the same state as when the parallel spring stands alone by itself in a zero displacement state in which no displacement is caused by the actuator, or is slightly inclined in the minus direction of the displacement direction. The fine movement mechanism according to claim 1, wherein the fine movement mechanism is hung so as to be in a state.
【請求項6】 固定部から略平行に伸びる2つの腕と該
2つの腕の端部をつなぐ移動部とを含む平行ばねと、該
平行ばね上の一点に接触するアクチュエータであって、
平行ばねに荷重をかけて変形させて前記移動部の所定方
向の微小変位をもたらすアクチュエータと、前記平行ば
ねの移動部に固定された探針とを有する走査型トンネル
顕微鏡の微動走査機構において、アクチュエータと平行
ばねの前記接触点と前記変位方向にかんして同軸上であ
りかつ前記平行ばね部材を挟んで前記接触点と反対側の
点において、前記平行ばねに前記変位方向と反対方向
に、緩衝材を介して与圧をかける機構を有することを特
徴とする微動走査機構。
6. A parallel spring including two arms extending substantially in parallel from a fixed part and a moving part connecting the ends of the two arms, and an actuator for contacting a point on the parallel spring,
An actuator in a fine movement scanning mechanism of a scanning tunnel microscope having an actuator that applies a load to a parallel spring to deform it to cause a minute displacement of the moving part in a predetermined direction, and a probe fixed to the moving part of the parallel spring. At a point on the opposite side of the contact point of the parallel spring with respect to the contact point of the parallel spring and the displacement direction, and on the opposite side of the contact point with the parallel spring member sandwiched, the parallel spring is provided with a cushioning material in a direction opposite to the displacement direction. A fine movement scanning mechanism characterized by having a mechanism for applying a pressure through the.
【請求項7】 固定部から略平行に伸びる2つの腕と該
2つの腕の端部をつなぐ移動部とを含む平行ばねと、該
平行ばね上の一点に接触するアクチュエータであって、
平行ばねに荷重をかけて変形させて前記移動部の所定方
向の微小変位をもたらすアクチュエータと、前記平行ば
ねの移動部に固定された試料ステージとを有する走査型
トンネル顕微鏡の微動走査機構において、アクチュエー
タと平行ばねの前記接触点と前記変位方向にかんして同
軸上でありかつ前記平行ばね部材を挟んで前記接触点と
反対側の点において、前記平行ばねに前記変位方向と反
対方向に、緩衝材を介して与圧をかける機構を有するこ
とを特徴とする微動走査機構。
7. A parallel spring including two arms extending substantially in parallel from a fixed part and a moving part connecting the ends of the two arms, and an actuator for contacting a point on the parallel spring,
An actuator in a fine movement scanning mechanism of a scanning tunneling microscope having an actuator that applies a load to a parallel spring to deform it to cause a minute displacement of the moving part in a predetermined direction, and a sample stage fixed to the moving part of the parallel spring. At a point on the opposite side of the contact point of the parallel spring with respect to the contact point of the parallel spring and the displacement direction, and on the opposite side of the contact point with the parallel spring member sandwiched, the parallel spring is provided with a cushioning material in a direction opposite to the displacement direction. A fine movement scanning mechanism characterized by having a mechanism for applying a pressure through the.
JP6038310A 1994-03-09 1994-03-09 Fine adjustment mechanism Withdrawn JPH07244057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038310A JPH07244057A (en) 1994-03-09 1994-03-09 Fine adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038310A JPH07244057A (en) 1994-03-09 1994-03-09 Fine adjustment mechanism

Publications (1)

Publication Number Publication Date
JPH07244057A true JPH07244057A (en) 1995-09-19

Family

ID=12521729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038310A Withdrawn JPH07244057A (en) 1994-03-09 1994-03-09 Fine adjustment mechanism

Country Status (1)

Country Link
JP (1) JPH07244057A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325323A (en) * 2005-05-18 2006-11-30 Pioneer Electronic Corp Driving apparatus
JP2008079492A (en) * 2006-08-22 2008-04-03 Seiko Instruments Inc Drive device using piezoelectric actuator, and electronic equipment mounted with the same
WO2009093681A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive mechanism and drive device
JP2010190657A (en) * 2009-02-17 2010-09-02 Olympus Corp Scanning mechanism and scanning probe microscope
WO2013171896A1 (en) 2012-05-18 2013-11-21 独立行政法人産業技術総合研究所 Rotating shaft holding mechanism and rotational viscometer with same
JP2016073006A (en) * 2014-09-26 2016-05-09 有限会社メカノトランスフォーマ Stage device and drive mechanism used for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325323A (en) * 2005-05-18 2006-11-30 Pioneer Electronic Corp Driving apparatus
JP2008079492A (en) * 2006-08-22 2008-04-03 Seiko Instruments Inc Drive device using piezoelectric actuator, and electronic equipment mounted with the same
WO2009093681A1 (en) * 2008-01-23 2009-07-30 Konica Minolta Opto, Inc. Drive mechanism and drive device
JP2010190657A (en) * 2009-02-17 2010-09-02 Olympus Corp Scanning mechanism and scanning probe microscope
WO2013171896A1 (en) 2012-05-18 2013-11-21 独立行政法人産業技術総合研究所 Rotating shaft holding mechanism and rotational viscometer with same
US9163663B2 (en) 2012-05-18 2015-10-20 National Institute Of Advanced Industrial Science And Technology Rotating shaft holding mechanism and rotational viscometer with same
JP2016073006A (en) * 2014-09-26 2016-05-09 有限会社メカノトランスフォーマ Stage device and drive mechanism used for the same

Similar Documents

Publication Publication Date Title
US5862003A (en) Micromotion amplifier
US5220835A (en) Torsion beam accelerometer
US5034647A (en) Inchworm type driving mechanism
US7348571B2 (en) Scanning mechanism for scanning probe microscope and scanning probe microscope
JP3654603B2 (en) Suspension device for micromachine structure and micromachine acceleration sensor
US6384515B1 (en) Multidirectional motors
JPH07244057A (en) Fine adjustment mechanism
US4855633A (en) Piezoelectric actuator
JP3772005B2 (en) Moving device and scanning probe microscope having the moving device
JP2544812B2 (en) Seismic isolation device
JPH066906A (en) Current collector
JP2004523369A (en) Strain / potential converter
JP3124617B2 (en) Fine movement drive mechanism
JP2001022445A (en) Displacement enlarging mechanism
CN1225607C (en) Multiple free degree ultralow frequenry precision vibration-insulating system
JP2000009867A (en) Stage moving device
JPH08334519A (en) Driving device
US7690046B2 (en) Drive stage for scanning probe apparatus, and scanning probe apparatus
US4128747A (en) Hinge for a pivotable arm of an electric snap switch
JPH07208997A (en) Structure for supporting vibrator
JP2861919B2 (en) Piezo actuator
JPS6319745A (en) Positioning apparatus
JP2550542B2 (en) Printer
JP4439965B2 (en) Parallel link device
JPS62125408A (en) Fine adjustment mechanism

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605