JPH07234207A - Evaluating method for cavity generation by hydrogen erosion - Google Patents

Evaluating method for cavity generation by hydrogen erosion

Info

Publication number
JPH07234207A
JPH07234207A JP6047951A JP4795194A JPH07234207A JP H07234207 A JPH07234207 A JP H07234207A JP 6047951 A JP6047951 A JP 6047951A JP 4795194 A JP4795194 A JP 4795194A JP H07234207 A JPH07234207 A JP H07234207A
Authority
JP
Japan
Prior art keywords
frequency
cavities
hydrogen
cavity
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6047951A
Other languages
Japanese (ja)
Other versions
JP2799824B2 (en
Inventor
Toru Nomura
徹 野村
Isayoshi Shimizu
勇芳 清水
Takuichi Imanaka
拓一 今中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N F KAIRO SEKKEI BLOCK KK
Eneos Corp
Original Assignee
N F KAIRO SEKKEI BLOCK KK
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N F KAIRO SEKKEI BLOCK KK, Japan Energy Corp filed Critical N F KAIRO SEKKEI BLOCK KK
Priority to JP6047951A priority Critical patent/JP2799824B2/en
Publication of JPH07234207A publication Critical patent/JPH07234207A/en
Application granted granted Critical
Publication of JP2799824B2 publication Critical patent/JP2799824B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2695Bottles, containers

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To provide detailed and quantitative information, which employs a frequency as a parameter, concerning hydrogen erosion by carrying out simultaneous measurement by using multiple frequencies. CONSTITUTION:A pulse introduced into a substance via a transducer undergoes contamination due to interaction with elements (crystalline grain, cavity, and the like) constituting the substance while transmitted in the substance, and the substance can be evaluated by analyzing the contamination. By an ultrasonic flaw detection method based on multiple frequency simultaneous measurement, cavity information employing a frequency as a parameter is obtained by using a broad probe, for example, output are flattened over a range of 5-40MHz so that sonic velocity and the quantity of attenuation in multiple frequencies can be measured at once. In this way, a value for an optional frequency can be obtained by a window function, and information found from a change in the sonic velocity and the quantity of attenuation based on a frequency, for example, the number of cavities and a diameter, can be obtained in a single measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素侵食によるキャビ
ティ(ミクロ割れ)発生評価方法に関するものであり、
特には多周波同時計測法による水素侵食によるキャビテ
ィの寸法及び分布密度、侵食の程度等を評価することの
できる、周波数をパラメータとして考慮した新規な評価
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the occurrence of cavities (microcracks) due to hydrogen attack.
In particular, the present invention relates to a new evaluation method that can evaluate the size and distribution density of cavities, the degree of erosion, etc. due to hydrogen erosion by the multi-frequency simultaneous measurement method, taking frequency as a parameter.

【0002】[0002]

【従来の技術】高温高圧水素を取り扱う石油・化学プラ
ント等においては、容器、配管、機器その他の部材が水
素侵食を受けて、それら部材内部にキャビティを生じる
ようになる。そうしたキャビティに代表される経年損傷
を放置すると大きな事故につながり、そのために定期的
に非破壊検査を行うことが重要となっている。水素侵食
を受けると、材料に現れてくる損傷の過程は、突然に機
械的性質の変化が現れるわけでなく、次のような過程を
たどる: 1)潜伏期間:サブミクロンサイズのメタンバブルがフ
ェライト粒界で炭化物の近傍またはその上に核生成し、
成長する。この状態では、機械的性質において、ほとん
ど変化を示さない。 2)フィシャー成長期:バブルが結合して粒界フィシャ
ーが形成される。 3)飽和状態:フィシャーが連結し、マクロ亀裂が発生
する。
2. Description of the Related Art In a petroleum / chemical plant or the like that handles high-temperature and high-pressure hydrogen, containers, pipes, equipment and other members are corroded by hydrogen, and cavities are formed inside these members. If the aging damage represented by such cavities is left unchecked, it will lead to a serious accident, and for that reason it is important to perform nondestructive inspection regularly. When hydrogen is attacked, the damage process that appears in the material does not suddenly change its mechanical properties but follows the following process: 1) Incubation period: submicron methane bubbles are ferrite Nucleate near or on carbides at grain boundaries,
grow up. In this state, the mechanical properties show almost no change. 2) Fischer growth period: Bubbles combine to form grain boundary fischer. 3) Saturated state: Fishers are connected and macro cracks occur.

【0003】これまで、超音波を使用して、例えば次の
ような非破壊検査が実施されてきた(特公平1−412
19号の記載から引用する)。 (1)超音波減衰法:水素侵食域には微細な割れが存在
する。それ故、水素侵食された部材中に超音波を伝播さ
せれば、上記割れの作用で超音波が散乱してその音圧が
減衰し、それに伴って反射波のエネルギーが減少する。
この方法は、上記音圧の減衰の程度に基づいて水素侵食
の有無を推定するものである。 (2)超音波垂直探傷法:水素侵食域に存在する微細な
割れによる超音波の反射エコーと底面反射エコーの発生
時間差に基づいて、上記水素侵食域の相厚(深さ方向寸
法)を計測する。
Up to now, the following non-destructive inspections have been carried out using ultrasonic waves (Japanese Patent Publication No. 1-412).
(Quoted from the description of No. 19). (1) Ultrasonic attenuation method: There are fine cracks in the hydrogen attack region. Therefore, when the ultrasonic wave is propagated through the member that has been eroded by hydrogen, the ultrasonic wave is scattered by the action of the cracks, the sound pressure is attenuated, and the energy of the reflected wave is reduced accordingly.
This method is to estimate the presence or absence of hydrogen attack based on the degree of attenuation of the sound pressure. (2) Ultrasonic vertical flaw detection method: The phase thickness (dimension in the depth direction) of the hydrogen erosion region is measured based on the time difference between the reflection echo of ultrasonic waves and the bottom reflection echo caused by minute cracks existing in the hydrogen erosion region. To do.

【0004】しかるに、上記(1)の方法は、健全な鋼
材でも超音波の減衰があり且つその減衰度が鋼材毎に異
なることから、的確な水素侵食域の評価を行うことがで
きないという欠点をもつ。上記(2)の方法は、通常の
超音波探傷に比して探傷器の感度を極端に大きく設定し
て探傷を行うので、水素侵食以外の他の欠陥、たとえば
材料中の介在物によっても反射が起り、そのため超音波
の反射が水素侵食に基づくものか、上記介在物に基づく
ものか区別できない場合がある。
However, the above method (1) has a drawback in that it is not possible to accurately evaluate the hydrogen erosion area because ultrasonic waves are attenuated even in sound steel materials and the attenuation degree varies from steel material to steel material. Hold. In the method of (2) above, the sensitivity of the flaw detector is set to be extremely large as compared with the usual ultrasonic flaw detection, so that flaw detection is performed, so that it is also reflected by other defects other than hydrogen erosion, such as inclusions in the material. Therefore, it may not be possible to distinguish whether the reflection of ultrasonic waves is based on hydrogen attack or the inclusions.

【0005】そうした点に鑑み、上記特公平1−412
19号の発明自体は、精度よく水素侵食の程度を評価し
うる方法として、縦波と横波の概念を導入して、鋼材の
厚み方向に超音波を伝播させ、該超音波の縦波の伝播時
間と横波の伝播時間を検出してそれらの比をとり、この
比の値に基づいて上記鋼材の厚さに対する水素侵食によ
るミクロ割れ発生域の割合を推定することを特徴とする
鋼材の水素侵食によるミクロ割れ発生域評価方法を提唱
している。即ち、被検体(例えば炭素鋼材)の厚さ方向
に超音波の縦波と横波とを伝搬させた場合における縦波
の伝播速度VLと横波の伝播速度VS の比VL /VS
被検体の厚さTに対する水素侵食域の深さTA の割合T
A /Tとの間に特有の線型関係があることに着目して、
送受信機より送信パルスが探触子に与えられた時点から
縦波及び横波の底面エコーが送受信機に受信されるまで
の縦波往復伝播時間tL 及び横波往復伝播時間tS を計
測し、VL /VS =tL /tS であることから、縦波の
伝播時間と横波の伝播時間を検出してそれらの比をと
り、この比の値に基づいて上記鋼材の厚さに対する水素
侵食によるミクロ割れ発生域の割合を推定するものであ
る。
In view of such a point, the above Japanese Patent Publication No. 1-412.
The invention of No. 19 itself introduces the concept of longitudinal wave and transverse wave to propagate the ultrasonic wave in the thickness direction of the steel material as a method for accurately evaluating the degree of hydrogen erosion, and propagates the longitudinal wave of the ultrasonic wave. Time and shear wave propagation time are detected, their ratio is taken, and based on the value of this ratio, the ratio of the micro-cracking zone due to hydrogen attack to the thickness of the steel is estimated, and the hydrogen attack of steel is characterized. We have proposed a method for evaluating the micro-cracking area based on. That is, the ratio V L / V S of the propagation velocity V L of the longitudinal wave and the propagation velocity V S of the transverse wave when the longitudinal wave and the transverse wave of the ultrasonic wave are propagated in the thickness direction of the subject (for example, carbon steel material). The ratio T of the depth T A of the hydrogen attack region to the thickness T of the subject
Focusing on the unique linear relationship with A / T,
The longitudinal wave round trip propagation time t L and the transverse wave round trip propagation time t S from the time when the transmission pulse is applied to the probe from the transceiver to the time when the bottom echo of the longitudinal wave and the transverse wave is received by the transceiver are measured, and V Since L / V S = t L / t S , the propagation time of the longitudinal wave and the propagation time of the transverse wave are detected and their ratio is taken. Based on the value of this ratio, hydrogen erosion with respect to the thickness of the steel material is carried out. It is intended to estimate the ratio of the micro-cracking occurrence area due to.

【0006】更に、この技術と関連して、計測された縦
波及び横波の伝播時間内に接触媒質等に起因した固定時
間遅れ分を排除するために、特開昭62−82347号
は、縦波及び横波について第1(B1)及び第2(B
2)底面反射波(エコー)を検出し、第1底面反射波の
検出時点から第2底面反射波の検出時点に至る時間を縦
波及び横波の伝播時間として計測することを提唱してい
る。
Further, in connection with this technique, in order to eliminate the fixed time delay caused by the couplant and the like within the propagation time of the measured longitudinal wave and transverse wave, Japanese Patent Laid-Open No. 62-82347 discloses Waves and transverse waves 1st (B1) and 2nd (B
2) It is proposed that the bottom surface reflected wave (echo) is detected and the time from the detection time point of the first bottom surface reflected wave to the detection time point of the second bottom surface reflected wave is measured as the propagation time of the longitudinal wave and the transverse wave.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来からの方法は、水素侵食域を構成するキャビテ
ィーの全体的な存在の程度についての大まかな情報を与
えはするが、最大限の探傷感度で行っても、材料の劣化
がかなり進んだ状態、例えば材料の靱性が初期値の約5
0%程度になった状態からである。個々のキャビティー
の寸法及び分布密度についてまでの情報を提供しない。
昨今の設備の大型化と運転環境の過酷化に伴い、装置材
料に対する安全保障への要求は益々高まっており、今後
の各種設備の水素侵食による経年損傷を非破壊的に一層
的確に評価するためには、従来より一層定量的なそして
詳しい、侵食状態に関しての情報が早期の段階から必要
とされる。本発明の課題は、水素侵食に関する、従来よ
り詳しいそして定量的な情報を提供することのできる新
規な超音波非破壊評価方法を確立することである。
However, such conventional methods, while providing rough information on the extent of the overall presence of the cavities that make up the hydrogen attack region, do not allow for maximum flaw detection. Even if sensitivity is used, deterioration of the material has progressed considerably, for example, the toughness of the material is about 5% of the initial value.
This is from the state of 0%. It does not provide information on the dimensions and distribution density of individual cavities.
With the recent increase in the size of equipment and the harsh operating environment, the demand for security of equipment materials is increasing more and more, and in order to more accurately and non-destructively evaluate aged damage due to hydrogen attack of various equipment in the future. Requires more quantitative and detailed information on erosion status from the earlier stage. It is an object of the present invention to establish a new ultrasonic nondestructive evaluation method that can provide more detailed and quantitative information regarding hydrogen attack.

【0008】[0008]

【課題を解決するための手段】従来の超音波探傷法で
は、使用する超音波の周波数は或る特定の周波数を中心
としたバンド幅の狭い(ナローバンド)探触子を用いて
いた。ナローバンド探触子は例えば、5MHzに出力の
ピークを持ち、出力の幅が±0.5MHzの範囲に入る
ようにされているものである。本発明者は、周波数をパ
ラメータとして導入することにより従来より詳細な水素
侵食情報を早期の段階で得られるのではないかと考え、
多数の周波数を同時に用いて水素侵食情報を得るべく研
究を重ねた結果、多周波同時計測法が水素侵食によるキ
ャビティ発生評価方法として極めて有効であることを確
認した。即ち、ブロードバンド探触子を用いてもしくは
シングルバンド探触子の共振周波数を用いて多周波同時
計測を行うことにより、パワースペクトラム手法を用い
て波動方程式をキャビテーションの散乱に対して解くこ
とにより誘導されたキャビティの数並びにキャビティの
径に関しての関係式を解析することによりキャビティの
数とキャビティの径を求めることができ、更にはピーク
周波数とシャルピー試験結果の関係といった多くの情報
を得ることができることを斯界で始めて確認した。
In the conventional ultrasonic flaw detection method, a probe having a narrow band width (narrow band) centering around a specific frequency is used. The narrow band probe has, for example, an output peak at 5 MHz and an output width within a range of ± 0.5 MHz. The present inventor believes that by introducing frequency as a parameter, more detailed hydrogen erosion information than before can be obtained at an early stage,
As a result of repeated studies to obtain hydrogen erosion information by using a large number of frequencies at the same time, it was confirmed that the multi-frequency simultaneous measurement method is extremely effective as a method for evaluating cavity generation due to hydrogen erosion. That is, by conducting simultaneous multi-frequency measurements using a broadband probe or using the resonance frequency of a single band probe, the power equation method is used to solve the wave equation for cavitation scattering. It is possible to obtain the number of cavities and the diameter of the cavities by analyzing the relational expressions relating to the number of cavities and the diameter of the cavities, and to obtain much information such as the relationship between the peak frequency and the Charpy test result. First confirmed in the field.

【0009】こうした知見に基づいて、本発明は、
(1)超音波を使用する水素侵食によるキャビティ発生
状態の評価方法において、多数の周波数を用いての同時
計測により周波数をパラメータとするキャビティ情報を
得ることを特徴とする水素侵食によるキャビティ発生評
価方法、(2)ブロードバンド探触子を用いてもしくは
シングルバンド探触子の共振周波数を用いて多周波同時
計測を行うことを特徴とする(1)項の水素侵食による
キャビティ発生評価方法、(3)B1 反射波及びB2
射波の波形を多周波同時計測し、連続的にA/D変換し
てメモリに記憶し、この波形の先頭から一定長のデータ
をとり出し、窓関数を乗じてFFTを行い、次にΔtだ
けずらした点から同じ長さのデータをとり出し、同様に
窓関数を乗じてFFTを次々と行うことにより得られた
結果をパワースペクトラムに変換し、特定周波数の経時
変化から該特定周波数のB1 反射波及びB2 反射波の存
在する時刻での2つのピーク値から周波数対音速並びに
周波数対減衰量の関係を求めることを特徴とする(1)
項の水素侵食によるキャビティ発生評価方法、(4)波
動方程式をキャビテーションの散乱に対して解くことに
より誘導されたキャビティの数並びにキャビティの径に
関しての関係式に基づいてキャビティの数とキャビティ
の径とを求めることを特徴とする(3)項の水素侵食に
よるキャビティ発生評価方法、及び(5)対象とする材
料についてB1 反射波のピーク値が測定周波数の中で最
も高くなるピーク周波数とシャルピー試験結果との関係
を求め、ピーク周波数を測定して水素侵食状態を決定す
ることを特徴とする(1)項の水素侵食によるキャビテ
ィ発生評価方法を提供する。
Based on these findings, the present invention provides
(1) In a method of evaluating a state of cavity generation due to hydrogen erosion using ultrasonic waves, a method of evaluating cavity generation due to hydrogen erosion, characterized in that cavity information having frequency as a parameter is obtained by simultaneous measurement using a large number of frequencies. , (2) Multi-frequency simultaneous measurement using a broadband probe or using the resonance frequency of a single band probe, (1) Method for evaluating cavity generation due to hydrogen attack, (3) The waveforms of the B 1 reflected wave and the B 2 reflected wave are simultaneously measured at multiple frequencies, continuously A / D converted and stored in a memory, and a fixed length of data is extracted from the beginning of this waveform and multiplied by a window function. Perform the FFT, then take out the data of the same length from the point shifted by Δt, multiply by the window function in the same way, and perform the FFT one after another. Into a ram, characterized by obtaining the two relationship between the frequency versus sound velocity and frequency versus attenuation from the peak value in the present time of the B 1 reflected wave and B 2 reflected wave of the specific frequency from the change over time of a particular frequency (1)
(4) The number of cavities and the diameter of the cavities based on the relational expression regarding the number of cavities and the diameter of the cavity induced by solving the wave equation for scattering of cavitation (3) The method for evaluating the generation of cavities due to hydrogen attack in (3), and (5) for the target material, the peak value of the B 1 reflected wave is the highest among the measurement frequencies and the Charpy test. A method for evaluating the occurrence of cavities due to hydrogen erosion according to item (1) is provided, in which the relationship with the result is obtained and the peak frequency is measured to determine the hydrogen erosion state.

【0010】[0010]

【作用】物質中を伝播してきた音波は、その物質に関す
る情報媒体として捕らえることができる。トランスジュ
ーサを介して物質に導入されたパルスは、物質中を伝播
する間に、その物質を構成する素因子(結晶粒、不純物
原子、析出物、キャヤビティー、転位等の格子欠陥)と
の相互作用によってコンタミネーション(contaminatio
n)を受ける。コンタミネーションの程度、モードは各素
因子に固有のものであり、このコンタミネーションを解
析することによって物質を評価することができる。多周
波同時測定による超音波探傷法は、ブロードバンド探触
子を用いてもしくはシングルバンド探触子の共振周波数
を用いて周波数をパラメータとするキャビティ情報を得
るものである。従来から用いられたナローバンド探触子
は例えば、5MHzに出力のピークを持ち、出力の幅が
±0.5MHzの範囲に入るようにされているのに対し
て、ブロードバンド探触子は例えば5MHzから40M
Hzの範囲で出力がフラットになるようになされたもの
である。ブロードバンド探触子は一度の測定で多くの周
波数での音速や減衰量等を測定することができる。別様
には、シングルバンド探触子の共振周波数を用いること
ができる。例えば、5MHzを用いても、10、15、
20、25等の整数倍の共振周波数を得ることができ
る。しかし、ブロードバンド探触子を用いることが好ま
しい。ブロードバンド探触子を用いると、窓関数で任意
の周波数の値を得ることができる。周波数による音速や
減衰量の変化から求まる情報(一例としてキャビティの
数と直径)を一回の測定で得られ、中心周波数の異なる
ナローバンド探触子を用いて複数回測定する必要がなく
なる。周波数ドメインと称される解析項目(一例として
B1(第1反射波)のピーク周波数)を一回の測定で得
られる。この項目は鋼材の厚さに無関係であり、実機で
の測定に有効な解析項目である。超音波スペクトロスコ
ピーから得られる周波数に対する超音波の強度分布は、
度数分布を表す統計量とみなすことができる。
[Function] The sound wave propagating through the substance can be captured as an information medium regarding the substance. The pulse introduced into a substance through a transducer is caused by interaction with the elementary factors (grains, impurity atoms, precipitates, cavitities, dislocations and other lattice defects) that compose the substance while propagating in the substance. Contamination (contaminatio
n) receive. The degree and mode of contamination are unique to each elementary factor, and a substance can be evaluated by analyzing this contamination. The ultrasonic flaw detection method by multi-frequency simultaneous measurement obtains cavity information with a frequency as a parameter using a broadband probe or using a resonance frequency of a single band probe. The narrow band probe used conventionally has an output peak at 5 MHz and the width of the output is set within a range of ± 0.5 MHz, while the broadband probe has a range of 5 MHz. 40M
The output is flat in the range of Hz. A broadband probe can measure sound velocity and attenuation at many frequencies with one measurement. Alternatively, the resonant frequency of a single band probe can be used. For example, using 5MHz, 10, 15,
It is possible to obtain a resonance frequency that is an integral multiple of 20, 25, or the like. However, it is preferable to use a broadband probe. With a broadband probe, it is possible to obtain a value at any frequency with a window function. Information (for example, the number and diameter of cavities) obtained from changes in sound velocity and attenuation depending on frequency can be obtained by one measurement, and it is not necessary to perform multiple measurements using narrow band probes with different center frequencies. An analysis item called a frequency domain (a peak frequency of B1 (first reflected wave) as an example) can be obtained by one measurement. This item has no relation to the thickness of the steel material, and is an effective analysis item for actual measurement. The intensity distribution of ultrasonic waves with respect to the frequency obtained from ultrasonic spectroscopy is
It can be regarded as a statistic representing the frequency distribution.

【0011】J. Phys. D: Appl. Phys. 14(1981)413-20
頁並びにWAVE MOTION 7(1985)95-104C頁に記載されるよ
うに、C.M.Sayersによれば、水素侵食により生じたキャ
ビティの評価、特にその径と数(分布密度)の評価に応
用しうる多重散乱理論は、次の波動方程式の複素解φか
ら得られる。
J. Phys. D: Appl. Phys. 14 (1981) 413-20
As described in the page and WAVE MOTION 7 (1985) 95-104C, according to CM Sayers, multiple scattering that can be applied to the evaluation of cavities caused by hydrogen attack, especially the evaluation of their diameter and number (distribution density). The theory is derived from the complex solution φ of the wave equation

【0012】[0012]

【数1】 [Equation 1]

【0013】(1) 式の Rayleigh 領域(ka<1,a:
キャビティの径(m) )でのキャビテーションの散乱に対
するSayersの解は次の通りである。
Rayleigh region of equation (1) (ka <1, a:
Sayers' solution for cavitation scattering at cavity diameter (m) is

【0014】[0014]

【数2】 [Equation 2]

【0015】ここで、K/k=VL /VT となり、縦波
と横波の音速の比をとることにより求まり、定数A、
B、Cは得られる。因みに、その値は次の通りである。 VL =5900 m/sec VT =3230 m/sec K/k=(5900/3230)=1.8266 A=−1.2708 B=−1.8399 C=3.4577
[0015] Here, approximated by the taking the speed of sound ratio K / k = V L / V T , and the transverse wave, the constant A,
B and C are obtained. Incidentally, the value is as follows. V L = 5900 m / sec V T = 3230 m / sec K / k = (5900/3230) = 1.8266 A = -1.2708 B = -1.8399 C = 3.4577

【0016】ここで、β=k+iαであるから、(β/
k)2 =1−(α/k)2 +2(α/k)iとなり、こ
れより、(2)式の虚数部と対応させると、2(α/
k)=(4/3) πa3o Ck33 となり、従って、α
は次の通り表される。
Since β = k + iα, (β /
k) 2 = 1− (α / k) 2 +2 (α / k) i, and from this, 2 (α /
k) = (4/3) πa 3 n o Ck 3 a 3 next, thus, alpha
Is represented as follows.

【0017】[0017]

【数3】 [Equation 3]

【0018】また、キャビティ濃度が低い場合は次の式
が成り立つ。(Sayers)
When the cavity concentration is low, the following equation holds. (Sayers)

【0019】[0019]

【数4】 [Equation 4]

【0020】先に計算したA=−1.2708、B=−
1.8399及びC=3.4577の数値をそれぞれ数
式3及び数式4に代入すると、次の関係が得られる。即
ち、吸収係数α、縦波の波数k、キャビティがない場合
の縦波の音速VL 及びキャビティがある場合の縦波の音
速VL ’、キャビティの数nO 並びにキャビティの径a
の間での次の数式5及び6により示される関係式(1)
及び(2)が誘導される。
A = -1.2708 and B =-calculated above
Substituting the numerical values of 1.8399 and C = 3.4577 into Equation 3 and Equation 4, respectively, the following relationship is obtained: That is, the absorption coefficient α, the wave number k of the longitudinal wave, the sound velocity VL of the longitudinal wave without the cavity and the sound velocity VL 'of the longitudinal wave with the cavity, the number n O of the cavities and the diameter a of the cavity.
Relational expression (1) shown by the following equations 5 and 6 between
And (2) are induced.

【0021】[0021]

【数5】 [Equation 5]

【0022】[0022]

【数6】 [Equation 6]

【0023】そこで、α、k(=ω/VL )、(VL
/VL )は各周波数毎に測定値が得られるので、縦軸に
αそして横軸に7.2418k4 をプロットして、その
傾きからnO6 が得られ、他方縦軸に1−(VL ’/
L )そして横軸にk2 をプロットして、その切片2.
6616nO3 からnO3 が得られ、こうしてキャ
ビティの数nO とキャビティの径aとを求めることがで
きる。
Therefore, α, k (= ω / V L ), (V L '
/ V L ), a measured value is obtained for each frequency, so α is plotted on the vertical axis and 7.2418 k 4 is plotted on the horizontal axis, and n O a 6 is obtained from the slope, while 1-axis is plotted on the vertical axis. ( VL '/
VL ) and plotting k 2 on the horizontal axis, and the intercept 2.
6616n O a 3 n O a 3 are obtained from, thus it is possible to obtain a diameter a few n O and the cavity of the cavity.

【0024】各周波数における吸収係数α(dB/m)
は例えば次のようにして求めることができる。パルサレ
シーバ及びウエーブメモリを使用してB1、B2反射波
を多周波同時計測し、連続的にA/D変換し、メモリに
記憶する。この波形の先頭から一定長のデータをとり出
し、窓関数を乗じてFFT(ファースト・フーリエ変
換)を行う。次にΔtだけずらした点から同じ長さのデ
ータをとり出し、同様に窓関数を乗じてFFTを行う。
このようにしてΔtだけずらしてFFTを行い、得られ
た結果をパワースペクトラムに変換する。こうしたパワ
ースペクトラムの作成例を図4に示す。こうして得られ
たパワースペクトラムの或る周波数f1 に着目してΔt
毎の変化をプロットすると図5に示すようにその特定周
波数f1 の経時変化が得られる。このグラフは通常B1
反射波とB2反射波の存在する時刻でピーク値を持つの
で、2つのピーク値間の時間差を求めればf1 の成分の
縦波の音速VL 、VL ’を求めることができそしてそれ
らの振幅比を求めれば吸収係数αを求めることができ
る。
Absorption coefficient α (dB / m) at each frequency
Can be obtained as follows, for example. The B1 and B2 reflected waves are simultaneously measured at multiple frequencies using a pulsar receiver and a wave memory, continuously A / D converted, and stored in the memory. A fixed length of data is taken out from the beginning of this waveform, multiplied by a window function, and FFT (Fast Fourier Transform) is performed. Next, the data of the same length is taken out from the point shifted by Δt, and similarly, the window function is multiplied to perform the FFT.
In this way, FFT is performed by shifting by Δt, and the obtained result is converted into a power spectrum. An example of creating such a power spectrum is shown in FIG. Paying attention to a certain frequency f 1 of the power spectrum thus obtained, Δt
When each change is plotted, the change over time of the specific frequency f 1 is obtained as shown in FIG. This graph is usually B1
Since there is a peak value at the time when the reflected wave and the B2 reflected wave exist, the sound velocities V L and V L 'of the longitudinal wave of the component of f 1 can be found by finding the time difference between the two peak values, and If the amplitude ratio is obtained, the absorption coefficient α can be obtained.

【0025】こうして、水素侵食により生じたキャビテ
ィーの評価には、波動方程式φ=exp[i(βx+ω
t)]を Rayleigh 領域でのキャビテーションの散乱に
対してSayersの解に基づいて誘導された、吸収係数α、
縦波の波数k、キャビティがない場合の縦波の音速VL
及びキャビティがある場合の縦波の音速VL ’、キャビ
ティの数nO 並びにキャビティの径aの間での関係式
(1)α=7.2418nOa6k4と、関係式(2)1−(VL'/VL)
=2.6616noa3+3.8535nOa5k2 とに基づいて、各周波数毎
に測定した吸収係数α、縦波の波数k、キャビティがあ
る場合の縦波の音速VL ’/キャビティがない場合の縦
波の音速VL を得て、縦軸にαそして横軸に7.241
8k4 をプロットして、その傾きからnO6 を、他方
縦軸に1−(VL ’/VL )そして横軸にk2 をプロッ
トして、その切片2.6616nO3 からnO3
得、それによりキャビティの数nO とキャビティの径a
とを求めることができる。
Thus, the wave equation φ = exp [i (βx + ω) is used to evaluate the cavity generated by hydrogen attack.
t)] is an absorption coefficient α, derived based on the Sayers solution for scattering of cavitation in the Rayleigh region,
Wavenumber k of longitudinal wave, sound velocity V L of longitudinal wave without cavity
, And the relational expression (1) α = 7.2418 n O a 6 k 4 between the sound velocity V L ′ of the longitudinal wave in the case where there is a cavity, the number n O of cavities, and the diameter a of the cavity, and the relational expression (2) 1 − (V L '/ V L )
= 2.6616n o a 3 + 3.8535n O a 5 k 2 , the absorption coefficient α measured at each frequency, the wavenumber k of the longitudinal wave, and the sound velocity V L '/ cavity of the longitudinal wave in the presence of the cavity are The sound velocity V L of the longitudinal wave in the absence of the wave is obtained, and α is plotted on the vertical axis and 7.241 on the horizontal axis.
8 k 4 is plotted, and n O a 6 is plotted from the slope thereof, while 1- (V L '/ V L ) is plotted on the vertical axis and k 2 is plotted on the horizontal axis, and the intercept 2.6616 n O a 3 is plotted. n O a 3 is obtained, whereby the number of cavities n O and the diameter of the cavities a
And can be asked.

【0026】更に、例えば、周波数ドメインと称される
解析項目を一回の測定で得られる。この項目は鋼材の厚
さに無関係であり、実機での測定に有効な解析項目であ
る。その例として、シャルピーVノッチ試験の上部棚段
エネルギーをジュール(J)とB1(第1反射波)のピ
ーク値が測定周波数の中で最も高くなる周波数との関係
に基づいて、このようなグラフを対象とする鋼材につい
て一旦作製しておくことでその鋼材を用いた反応容器等
の損傷状態をピーク周波数を測定するという非破壊探傷
法で測定することができる。
Further, for example, an analysis item called a frequency domain can be obtained by one measurement. This item has no relation to the thickness of the steel material, and is an effective analysis item for actual measurement. As an example, based on the relationship between the upper shelf energy of the Charpy V-notch test and the frequency at which the peak value of Joule (J) and B1 (first reflected wave) is the highest among the measured frequencies, such a graph By once preparing the steel material targeted for (1), the damage state of the reaction vessel or the like using the steel material can be measured by the nondestructive flaw detection method in which the peak frequency is measured.

【0027】[0027]

【実施例】【Example】

(実施例1:キャビティの数と径)0.5Mo鋼につい
て水素侵食を施されていないサンプル、100時間の水
素侵食を施したサンプル及び500時間の水素侵食を施
したサンプルについて音速VL と各周波数と吸収係数α
の周波数依存性を調査した。図1(a)及び(b)はこ
うして得られた結果を示す。
(Example 1: Number and diameter of cavities) Sound velocity V L and each of 0.5 Mo steel not subjected to hydrogen erosion, 100 hours of hydrogen erosion and 500 hours of hydrogen erosion. Frequency and absorption coefficient α
The frequency dependence of was investigated. 1 (a) and 1 (b) show the results thus obtained.

【0028】図1(a)及び(b)を基礎として、水素
侵食時間とキャビティ直径及び数の関係を求めた。その
結果を図2のグラフに示す。
Based on FIGS. 1A and 1B, the relationship between the hydrogen attack time and the cavity diameter and number was determined. The results are shown in the graph of FIG.

【0029】(実施例2:損傷状態のピーク周波数によ
る測定)図3のグラフでは、横軸にシャルピーVノッチ
試験の上部棚段エネルギーをジュール(J)でとりそし
て縦軸にB1(第1反射波)のピーク値が測定周波数の
中で最も高くなる周波数をとっている。対象の鋼材とし
て水素への曝露時間が500Hrまでの5種類につい
て、各試験片の2500箇所でのピーク周波数の平均値
とその試験片のシャルピーVノッチ試験した結果とをプ
ロットしたものである。このようなグラフを対象とする
鋼材について一旦作製しておくことでその鋼材を用いた
反応容器等の損傷状態をピーク周波数を測定するという
非破壊探傷法で測定することができる。
(Example 2: Measurement of damage state by peak frequency) In the graph of FIG. 3, the abscissa represents the upper shelf energy of the Charpy V-notch test in Joule (J) and the ordinate represents B1 (first reflection). Wave) has the highest peak value among the measured frequencies. It is a plot of the average value of the peak frequency at 2500 points of each test piece and the result of the Charpy V-notch test of the test piece for five types of steel materials of interest up to 500 hours. By once preparing a steel material targeted for such a graph, a damage state of a reaction vessel or the like using the steel material can be measured by a nondestructive flaw detection method in which a peak frequency is measured.

【0030】[0030]

【発明の効果】水素侵食域を構成するキャビティーの全
体的な存在の程度についての従来からの大まかな情報と
は異なり、一層詳細なキャビティーの情報を提供する。
多周波同時計測を行うことにより、パワースペクトラム
手法を用いて波動方程式をキャビテーションの散乱に対
して解くことにより誘導されたキャビティの数並びにキ
ャビティの径に関しての関係式を解析することによりキ
ャビティの数とキャビティの径を求めることができまた
ピーク周波数とシャルピー試験結果の関係といった多く
の情報を得ることができる。
The present invention provides more detailed cavity information, which is different from the conventional rough information on the degree of the general existence of the cavities constituting the hydrogen attack region.
By performing multi-frequency simultaneous measurement, the number of cavities induced by solving the wave equation for the cavitation scattering using the power spectrum method and the relational expression with respect to the diameter of the cavity are analyzed. It is possible to obtain the diameter of the cavity and obtain a lot of information such as the relationship between the peak frequency and the Charpy test result.

【図面の簡単な説明】[Brief description of drawings]

【図1】0.5Mo鋼の水素侵食を施されていないサン
プル、100時間の水素侵食を施したサンプル及び50
0時間の水素侵食を施したサンプルについて(a)は音
速VL の周波数依存性を示すグラフでありそして(b)
は吸収係数αの周波数依存性を示すグラフである。
BRIEF DESCRIPTION OF THE FIGURES Figure 1: 0.5 Mo steel non-hydrogen eroded sample, 100 h hydrogen eroded sample and 50
(A) is a graph showing the frequency dependence of the sound velocity V L for a sample subjected to 0 hour hydrogen attack and (b)
Is a graph showing the frequency dependence of the absorption coefficient α.

【図2】水素侵食時間とキャビティ直径及び数の関係を
表すグラフである。
FIG. 2 is a graph showing the relationship between hydrogen erosion time and cavity diameter and number.

【図3】横軸にシャルピーVノッチ試験の上部棚段エネ
ルギーをジュール(J)でとりそして縦軸にB1(第1
反射波)のピーク値が測定周波数の中で最も高くなるピ
ーク周波数とった場合の両者の関係を示すグラフであ
る。
FIG. 3 shows the upper plate energy of the Charpy V-notch test on the horizontal axis in Joule (J) and the vertical axis on B1 (first
It is a graph which shows both relations when the peak value of the reflected wave is the highest peak frequency among the measurement frequencies.

【図4】パワースペクトラムの作成例を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an example of creating a power spectrum.

【図5】パワースペクトラムのある周波数のΔt毎の変
化をプロットすることによりその経時変化を得る説明図
である。
FIG. 5 is an explanatory diagram for obtaining a change with time by plotting a change in a frequency of a power spectrum for each Δt.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 徹 東京都港区虎ノ門二丁目10番1号株式会社 ジャパンエナジー内 (72)発明者 清水 勇芳 神奈川県川崎市高津区坂戸3丁目2番1号 株式会社エヌエフ回路設計ブロック内 (72)発明者 今中 拓一 大阪府大阪市阿倍野区天王寺町北3丁目18 番22−1301号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Nomura 2-10-1 Toranomon, Minato-ku, Tokyo, Japan Energy Co., Ltd. (72) Inventor Yuho Shimizu 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa No. NF Co., Ltd. In the circuit design block (72) Inventor Takuichi Imanaka 3-18-18-22 Kita, Tennoji-cho, Abeno-ku, Osaka-shi, Osaka

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超音波を使用する水素侵食によるキャビ
ティ発生状態の評価方法において、多数の周波数を用い
ての同時計測により周波数をパラメータとするキャビテ
ィ情報を得ることを特徴とする水素侵食によるキャビテ
ィ発生評価方法。
1. A method of evaluating a cavity generation state due to hydrogen erosion using ultrasonic waves, wherein cavity information having a frequency as a parameter is obtained by simultaneous measurement using a large number of frequencies. Evaluation methods.
【請求項2】 ブロードバンド探触子を用いてもしくは
シングルバンド探触子の共振周波数を用いて多周波同時
計測を行うことを特徴とする請求項1の水素侵食による
キャビティ発生評価方法。
2. The method for evaluating the generation of cavities due to hydrogen attack according to claim 1, wherein multi-frequency simultaneous measurement is performed using a broadband probe or using a resonance frequency of a single band probe.
【請求項3】 B1 反射波及びB2 反射波の波形を多周
波同時計測し、連続的にA/D変換してメモリに記憶
し、この波形の先頭から一定長のデータをとり出し、窓
関数を乗じてFFTを行い、次にΔtだけずらした点か
ら同じ長さのデータをとり出し、同様に窓関数を乗じて
FFTを次々と行うことにより得られた結果をパワース
ペクトラムに変換し、特定周波数の経時変化から該特定
周波数のB1 反射波及びB2 反射波の存在する時刻での
2つのピーク値から周波数対音速並びに周波数対減衰量
の関係を求めることを特徴とする請求項1の水素侵食に
よるキャビティ発生評価方法。
3. The waveforms of the B 1 reflected wave and the B 2 reflected wave are simultaneously measured at multiple frequencies, continuously A / D converted and stored in a memory, and a fixed length of data is extracted from the beginning of the waveform, Multiply the window function to perform FFT, then take out the data of the same length from the point shifted by Δt, and similarly multiply by the window function to perform FFT one after another to convert the result obtained into the power spectrum. The frequency-to-sound velocity and the frequency-attenuation relationship are determined from two peak values at the times when the B 1 reflected wave and the B 2 reflected wave of the specific frequency exist from the change with time of the specific frequency. Cavity generation evaluation method by hydrogen attack of 1.
【請求項4】 波動方程式をキャビテーションの散乱に
対して解くことにより誘導されたキャビティの数並びに
キャビティの径に関しての関係式に基づいてキャビティ
の数とキャビティの径とを求めることを特徴とする請求
項3の水素侵食によるキャビティ発生評価方法。
4. The number of cavities and the diameter of the cavities are obtained based on a relational expression regarding the number of cavities and the diameter of the cavities induced by solving the wave equation for scattering of cavitation. Item 3. A method for evaluating cavity generation due to hydrogen attack according to item 3.
【請求項5】 対象とする材料についてB1 反射波のピ
ーク値が測定周波数の中で最も高くなるピーク周波数と
シャルピー試験結果との関係を求め、ピーク周波数を測
定して水素侵食状態を決定することを特徴とする請求項
1の水素侵食によるキャビティ発生評価方法。
5. The relationship between the peak frequency at which the peak value of the B 1 reflected wave becomes the highest among the measurement frequencies and the Charpy test result is obtained for the target material, and the peak frequency is measured to determine the hydrogen erosion state. The method for evaluating the generation of cavities due to hydrogen attack according to claim 1.
JP6047951A 1994-02-23 1994-02-23 Cavity generation evaluation method by hydrogen erosion Expired - Fee Related JP2799824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6047951A JP2799824B2 (en) 1994-02-23 1994-02-23 Cavity generation evaluation method by hydrogen erosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6047951A JP2799824B2 (en) 1994-02-23 1994-02-23 Cavity generation evaluation method by hydrogen erosion

Publications (2)

Publication Number Publication Date
JPH07234207A true JPH07234207A (en) 1995-09-05
JP2799824B2 JP2799824B2 (en) 1998-09-21

Family

ID=12789672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6047951A Expired - Fee Related JP2799824B2 (en) 1994-02-23 1994-02-23 Cavity generation evaluation method by hydrogen erosion

Country Status (1)

Country Link
JP (1) JP2799824B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102380A (en) * 2010-11-11 2012-05-31 Ulvac Japan Ltd Method for inspecting target material for sputtering, and method for producing sputtering target
CN102507905A (en) * 2011-11-15 2012-06-20 重庆大学 Test method for detecting interlayer-containing salt cavity expansion process by using ultrasound wave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102380A (en) * 2010-11-11 2012-05-31 Ulvac Japan Ltd Method for inspecting target material for sputtering, and method for producing sputtering target
CN102507905A (en) * 2011-11-15 2012-06-20 重庆大学 Test method for detecting interlayer-containing salt cavity expansion process by using ultrasound wave
CN102507905B (en) * 2011-11-15 2014-06-11 重庆大学 Test method for detecting interlayer-containing salt cavity expansion process by using ultrasound wave

Also Published As

Publication number Publication date
JP2799824B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
Saniie et al. Quantitative grain size evaluation using ultrasonic backscattered echoes
Ohara et al. Nonlinear surface-acoustic-wave phased array with fixed-voltage fundamental wave amplitude difference for imaging closed cracks
Willems et al. Characterization of microstructure by backscattered ultrasonic waves
Sampath et al. Evaluation of material degradation using phased array ultrasonic technique with full matrix capture
Huang et al. Enhanced ultrasonic detection of near-surface flaws using transverse-wave backscatter
Sarris et al. Ultrasonic methods for the detection of near surface fatigue damage
Karaojiuzt et al. Defect detection in concrete using split spectrum processing
Panetta et al. Use of electron backscatter diffraction in understanding texture and the mechanisms of backscattered noise generation in titanium alloys
Du Characterization of microstructural anisotropy using the mode-converted ultrasonic scattering in titanium alloy
Kupperman et al. Effect of shear-wave polarization on defect detection in stainless steel weld metal
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP2799824B2 (en) Cavity generation evaluation method by hydrogen erosion
Margetan et al. The practical application of grain noise models in titanium billets and forgings
Hesse et al. A single probe spatial averaging technique for guided waves and its application to surface wave rail inspection
Bunget et al. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms
Bunget et al. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components
JPH07248317A (en) Ultrasonic flaw detecting method
Gao et al. A Data-Driven Method for Average Grain Size Assessment using Ultrasonic Guided Wave
CN116908304B (en) Polycrystalline material grain size assessment method based on ultrasonic wake average power attenuation
Ramuhalli et al. In-situ Characterization of Cast Stainless Steel Microstructures
JP2001343366A (en) Crystal grain measuring method and device for metal sheet
Bunget et al. Imaging fatigue damage precursors based on nonlinear phased array ultrasonic measurements of diffuse field
Dourado et al. Evaluating of the ultrasonic transducers’ diameter on velocity measurement in nondestructive testing
Mohamed et al. Low frequency coded waveform for the inspection of concrete structures
Willems et al. Ultrasonic attenuation measurement using backscattering technique

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

LAPS Cancellation because of no payment of annual fees