JPH07233491A - Water electrolytic device using high molecular electrolyte membrane - Google Patents

Water electrolytic device using high molecular electrolyte membrane

Info

Publication number
JPH07233491A
JPH07233491A JP6046438A JP4643894A JPH07233491A JP H07233491 A JPH07233491 A JP H07233491A JP 6046438 A JP6046438 A JP 6046438A JP 4643894 A JP4643894 A JP 4643894A JP H07233491 A JPH07233491 A JP H07233491A
Authority
JP
Japan
Prior art keywords
water
oxygen
cell
hydrogen
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6046438A
Other languages
Japanese (ja)
Other versions
JP2772385B2 (en
Inventor
Moritaka Kato
守孝 加藤
Shoji Maezawa
彰二 前澤
Hiroaki Mori
浩章 森
Hirotaka Takenaka
啓恭 竹中
Keisuke Oguro
啓介 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU, CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Agency of Industrial Science and Technology filed Critical CHIKYU KANKYO SANGYO GIJUTSU
Priority to JP6046438A priority Critical patent/JP2772385B2/en
Publication of JPH07233491A publication Critical patent/JPH07233491A/en
Application granted granted Critical
Publication of JP2772385B2 publication Critical patent/JP2772385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the equipment and to eliminate the need for an electrolytic cell clamping pressure fixing device by arranging a multiple electrolytic cell and a plate heat exchanger on the same plane in a water electrolytic device, clamping and integrating the cell and the heat exchanger with a common bolt. CONSTITUTION:A heat exchanger 12, a gaseous oxygen cooler 13 and a gaseous hydrogen cooler 14 on the opposite side are put side by side on one side of a multiple electrolytic cell 11 provided with a high molecular electrolyte membrane, clamped by plural through bolts and integrated as a composite 10. A DC voltage is impressed between the anode and cathode of the cell 11 from a DC power source 40 to electrolyze the water in the cell 11 into oxygen and hydrogen. The oxygen generated on the anode and the unreacted water are separated by a separator 30 into oxygen and water, and the high-temp. oxygen is supplied to the cooler 13, cooled by water and discharged outside the system through a valve 70. The hydrogen generated on the cathode and the entrained water are cooled with the cooler 14, and the hydrogen is discharged outside the system through a valve 80. The cell 11, the exchanger 12, the gaseous oxygen cooler and the gaseous hydrogen cooler 14 are clamped together by the common bolt at a specified pressure in this way, and consequently the whole device is miniaturized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子電解質膜を用い
る水素及び酸素製造のための水電解装置に関するもので
ある。
FIELD OF THE INVENTION The present invention relates to a water electrolysis apparatus for producing hydrogen and oxygen using a polymer electrolyte membrane.

【0002】[0002]

【従来の技術】従来の水電解により水素及び酸素を製造
するための装置は、図7のプロセスフロー図に示すよう
に、それぞれ独立した水電解槽1、熱交換器2、O2
液分離器3、O2ガス冷却器4、O2K.O.ドラム5、
2気液分離器6、H2ガス冷却器7、H2K.O.ドラ
ム8、及び循環ポンプ9から構成されており、それぞれ
の間を配管で結合されている。電解槽で電解される水
は、循環ポンプ9により熱交換器2で冷却されて、水電
解槽1に供給される。電解槽の陽極側では酸素が発生
し、発生した酸素と未反応の水は、電解槽頂部からO2
気液分離器3に導かれここで、酸素と水が分離される。
分離された高温の酸素は、O2ガス冷却器4で冷却さ
れ、O2K.O.ドラム5で、酸素中の凝縮した水分が
取り除かれ系外に排出される。電解槽の陰極側で発生し
た水素と同伴する水は、電解槽上部からH2気液分離器
6に導かれここで、水素と水が分離される。分離された
高温の水素は、H2ガス冷却器7で冷却され、H2K.
O.ドラム8で、水素中の凝縮した水分が取り除かれ系
外に排出される。
2. Description of the Related Art As shown in the process flow diagram of FIG. 7, a conventional apparatus for producing hydrogen and oxygen by water electrolysis has an independent water electrolysis tank 1, heat exchanger 2, O 2 gas-liquid separation. 3, O 2 gas cooler 4, O 2 K.K. O. Drum 5,
H 2 gas-liquid separator 6, H 2 gas cooler 7, H 2 K. O. It is composed of a drum 8 and a circulation pump 9, and the respective parts are connected by piping. The water electrolyzed in the electrolyzer is cooled in the heat exchanger 2 by the circulation pump 9 and supplied to the water electrolyzer 1. Oxygen is generated on the anode side of the electrolytic cell, and the generated oxygen and unreacted water are separated from the top of the electrolytic cell by O 2
It is guided to the gas-liquid separator 3 where oxygen and water are separated.
The separated high-temperature oxygen is cooled by the O 2 gas cooler 4 to obtain O 2 K.K. O. Condensed water in oxygen is removed by the drum 5 and discharged out of the system. Water accompanying hydrogen generated on the cathode side of the electrolytic cell is introduced from the upper part of the electrolytic cell to the H 2 gas-liquid separator 6 where hydrogen and water are separated. The separated high-temperature hydrogen is cooled by the H 2 gas cooler 7 and is cooled to H 2 K.
O. The condensed water in the hydrogen is removed by the drum 8 and discharged to the outside of the system.

【0003】従来の複極式(フィルタープレス式とも呼
ばれる)電解槽の構造は図1中に示される電解セル部1
1のようになっており、陽極側主電極11、陰極側主電
極114、複極板113、電極接合体膜112、陽極給
電体及び陰極給電体から構成されている。セルの性能
は、主にセル電圧によって決定され、セル電圧を下げる
努力がなされている。セル電圧に影響を与える要素とし
ては、水の分解反応に要する理論分解電圧、触媒電極の
過電圧及びセルの電気抵抗によるオーム損による電圧が
ある。このうち、セルの電気抵抗は各部材特有の電気抵
抗ばかりではなく、各部材間の接触抵抗に大きく影響さ
れる。接触抵抗の低下は、セルの両端をボルト等で締め
付けることによってなされている。
The structure of a conventional bipolar electrode (also called filter press type) electrolytic cell is shown in FIG.
1 and is composed of an anode side main electrode 11, a cathode side main electrode 114, a bipolar plate 113, an electrode assembly film 112, an anode power feed body and a cathode power feed body. Cell performance is largely determined by the cell voltage, and efforts are being made to reduce the cell voltage. Factors that affect the cell voltage include the theoretical decomposition voltage required for the water decomposition reaction, the overvoltage of the catalyst electrode, and the voltage due to ohmic loss due to the electric resistance of the cell. Among these, the electric resistance of the cell is greatly affected not only by the electric resistance peculiar to each member but also by the contact resistance between each member. The contact resistance is reduced by fastening both ends of the cell with bolts or the like.

【0004】[0004]

【発明が解決しようとする課題】従来のシステムは、各
構成機器を配管でつないだものであり、システムとして
は、次のような問題がある。 (1)各独立した機器の集合体であるため、設置面積が
大きくなる。 (2)機器を配管でつなぐため、その分だけ漏洩の箇所
が大きくなる。 (3)コストが高い。また、電解槽の問題点としては、 (4)セルの締め付け圧力を運転中のあらゆる条件で最
適に保つことは難しい。一定に保つためには、油圧装置
等を設けて、締め付け圧力を制御することが必要であ
る。
The conventional system is one in which each component is connected by piping, and the system has the following problems. (1) Since it is a collection of independent devices, the installation area is large. (2) Since the equipment is connected by piping, the location of leakage becomes larger accordingly. (3) Cost is high. Further, as problems of the electrolytic cell, (4) it is difficult to keep the tightening pressure of the cell optimum under all conditions during operation. In order to keep it constant, it is necessary to provide a hydraulic device or the like to control the tightening pressure.

【0005】本発明は、上記のような問題点を解決する
ためになされたもので、設備をコンパクトにするととも
に、セルの締め付け圧力を一定にするための油圧締付装
置等を設置しないでも済む水電解装置を提供すること
を、その目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the equipment can be made compact, and it is not necessary to install a hydraulic tightening device or the like for keeping the tightening pressure of cells constant. It is an object of the present invention to provide a water electrolysis device.

【0006】[0006]

【課題を解決するための手段】本発明者らは、鋭意検討
した結果、複極式電解槽とプレート式熱交換器とを同一
平面上に配置し、これらを共通のボルトによって締め付
け一体化することによって上記課題が解決されることを
知見し、本発明を完成するに至った。
As a result of intensive studies, the inventors of the present invention have arranged a bipolar electrode electrolytic cell and a plate type heat exchanger on the same plane, and fasten them integrally with a common bolt. As a result, they have found that the above problems can be solved, and have completed the present invention.

【0007】即ち、本発明によれば、高分子電解質膜を
用いる複極式電解槽で水を電解し、陽極に酸素、陰極に
水素を発生させ、複数の熱交換器及び分離器により発生
したガスを冷却し、循環する水を熱交換させることによ
り常温の酸素及び水素を製造する水電解装置において、
前記の電解槽と複数の熱交換器とを同一平面上に配置
し、且つ共通の流路を内部に設け、これらを共通のボル
トで締め付けることにより一体化してなる電解槽熱交換
器複合体としたことを特徴とする水電解装置が提供さ
れ、特に前記電解槽熱交換器複合体が、酸素ガス冷却
部、熱交換器部、電解セル部及び水素ガス冷却部からな
ることを特徴とする水電解装置が提供される。
That is, according to the present invention, water is electrolyzed in a bipolar electrolytic cell using a polymer electrolyte membrane to generate oxygen in the anode and hydrogen in the cathode, which are generated by a plurality of heat exchangers and separators. In a water electrolysis apparatus that produces oxygen and hydrogen at room temperature by cooling gas and heat-exchanging circulating water,
An electrolytic cell heat exchanger composite body in which the electrolytic cell and a plurality of heat exchangers are arranged on the same plane, and a common flow path is provided inside, and these are integrated by tightening them with a common bolt. There is provided a water electrolysis device characterized in that, in particular, the electrolytic cell heat exchanger complex, water characterized in that it comprises an oxygen gas cooling unit, a heat exchanger unit, an electrolytic cell unit and a hydrogen gas cooling unit. An electrolysis device is provided.

【0008】また、本発明によれば、前記電解セル部に
設けられた陽極側主電極及び陰極側主電極の一方又は両
方の外部に接するところに、圧力調整部を設けたことを
特徴とする水電解装置が提供される。
Further, according to the present invention, a pressure adjusting portion is provided in contact with the outside of one or both of the anode side main electrode and the cathode side main electrode provided in the electrolytic cell section. A water electrolysis device is provided.

【0009】本発明により、従来、独立した水電解槽
1、熱交換器2、O2気液分離器3、O2ガス冷却器4、
2K.O.ドラム5、H2気液分離器6、H2ガス冷却
器7、H2K.O.ドラム8、及び循環ポンプ9で構成
されていた装置が、電解槽と熱交換器を一体としたため
に、電解槽熱交換器複合体、O2気液分離器、及び循環
ポンプだけで構成されるようになるとともに、熱交換器
の冷却水の圧力を制御することにより、セルの締め付け
圧力を一定にするための油圧締付装置等の設置の必要性
がなくなる。
According to the present invention, conventionally, an independent water electrolysis cell 1, heat exchanger 2, O 2 gas-liquid separator 3, O 2 gas cooler 4,
O 2 K. O. Drum 5, H 2 gas-liquid separator 6, H 2 gas cooler 7, H 2 K.K. O. Since the device composed of the drum 8 and the circulation pump 9 integrates the electrolytic cell and the heat exchanger, it is composed only of the electrolytic cell heat exchanger complex, the O 2 gas-liquid separator, and the circulation pump. In addition, by controlling the pressure of the cooling water of the heat exchanger, it is not necessary to install a hydraulic tightening device or the like for keeping the tightening pressure of the cell constant.

【0010】[0010]

【実施例】以下、本発明の実施例を図面により説明す
る。 実施例1 図1に最も代表的な本発明の実施例における電解槽熱交
換器複合体(以下単に複合体と記すことがある)10の
分解構造図を示す。複合体10は、図の左側から、O2
ガス冷却部13、熱交換器部12、電解セル部11及び
2ガス冷却部14より構成されている。実際には、こ
れらを複数(この図では4本)の通しボルトで締め付け
ることにより一体構造としている。なお、図1におい
て、101はO2側フランジ、102はH2側フランジ、
111は陽極側主電極、112は電極接合体膜、113
は複極板、114は陰極側主電極、121は熱交換器ノ
ズルプレート、131はO2ガス冷却器ノズルプレート
及び141はH2ガス冷却器ノズルプレートを、それぞ
れ示す。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 FIG. 1 shows an exploded structural view of an electrolytic cell heat exchanger complex (hereinafter sometimes simply referred to as a complex) 10 in an example of the most representative present invention. Composite 10 from the left side of FIG, O 2
The gas cooling unit 13, the heat exchanger unit 12, the electrolytic cell unit 11, and the H 2 gas cooling unit 14 are included. In practice, these are tightened with a plurality of (four in this figure) through bolts to form an integrated structure. In FIG. 1, 101 is an O 2 side flange, 102 is an H 2 side flange,
111 is an anode side main electrode, 112 is an electrode assembly film, 113
Is a bipolar plate, 114 is a cathode-side main electrode, 121 is a heat exchanger nozzle plate, 131 is an O 2 gas cooler nozzle plate, and 141 is an H 2 gas cooler nozzle plate.

【0011】図2にこの場合のプロセスフローを示す。
循環ポンプ20により供給水は複合体10の熱交換器部
12に供給される。供給水はここで冷却水又は廃熱回収
用の熱媒体と熱交換し、所定の温度まで冷却され、内部
チャンネルを通って電解セル部11に供給される。電解
セル陽極で酸素が発生し、酸素と未反応の水は電解セル
部の上部に集められ、陽極側主電極上部ノズルから排出
される。排出された酸素及び未反応の水は、外部に設け
られたO2気液分離器30で、酸素と水に分離される。
分離された高温の酸素は、複合体O2ガス冷却部13の
下部に戻される。ここで冷却水により冷却され、酸素中
の水分は凝縮して下部に設けられた気液分離スペースに
溜まり、熱交換器ノズルプレートを経てO2気液分離器
30に戻される。冷却された酸素は、O2ガス冷却器ノ
ズルプレートを経て系外に排出される。電解セル陰極で
は水素が発生し、水素と水素に同伴する水は電解セル部
の下部に集められ、内部チャンネルを通ってH2ガス冷
却部14に供給される。ここで冷却水により冷却され、
水素中の水分は凝縮して下部に設けられた気液分離スペ
ースに溜まり、H2ガス冷却器ノズルプレートを経てO2
気液分離器30に戻される。冷却された水素は、H2
ス冷却器ノズルプレートを経て系外に排出される。
FIG. 2 shows a process flow in this case.
The supply water is supplied to the heat exchanger portion 12 of the composite body 10 by the circulation pump 20. The supply water exchanges heat with cooling water or a heat medium for waste heat recovery, is cooled to a predetermined temperature, and is supplied to the electrolysis cell section 11 through the internal channel. Oxygen is generated in the electrolytic cell anode, and water that has not reacted with oxygen is collected in the upper portion of the electrolytic cell portion and discharged from the anode side main electrode upper nozzle. The discharged oxygen and unreacted water are separated into oxygen and water by an O 2 gas-liquid separator 30 provided outside.
The separated high-temperature oxygen is returned to the lower part of the complex O 2 gas cooling unit 13. Here, it is cooled by cooling water, and the water content in oxygen is condensed and collected in the gas-liquid separation space provided in the lower part, and returned to the O 2 gas-liquid separator 30 via the heat exchanger nozzle plate. The cooled oxygen is discharged out of the system through the O 2 gas cooler nozzle plate. Hydrogen is generated at the electrolysis cell cathode, and hydrogen and water accompanying the hydrogen are collected in the lower part of the electrolysis cell section and supplied to the H 2 gas cooling section 14 through the internal channel. Here it is cooled by cooling water,
Moisture in hydrogen condenses and collects in the gas-liquid separation space provided at the bottom, and passes through the H 2 gas cooler nozzle plate to O 2 gas.
It is returned to the gas-liquid separator 30. The cooled hydrogen is discharged out of the system through the H 2 gas cooler nozzle plate.

【0012】電解セルの締め付け圧力の調整は、冷却水
戻りラインに設けられた圧力コントロールバルブ50に
よって行なわれる。この場合、冷却水の圧力を調整する
ことによって、電解セル部11の締め付け圧力を一定に
保つことができる。なお、図2中、40は直流電源を、
60は補給純水ラインに設けられたO2気液分離器30
の液面コントロールバルブを、70はO2ガス排出ライ
ンに設けられた圧力コントロールバルブを、80はH2
ガス排出ラインに設けられた圧力コントロールバルブ
を、それぞれ示す。
The tightening pressure of the electrolysis cell is adjusted by the pressure control valve 50 provided in the cooling water return line. In this case, the tightening pressure of the electrolysis cell unit 11 can be kept constant by adjusting the pressure of the cooling water. In FIG. 2, 40 is a DC power supply,
Reference numeral 60 is an O 2 gas-liquid separator 30 provided in the makeup pure water line
Liquid level control valve, 70 is a pressure control valve installed in the O 2 gas discharge line, and 80 is H 2
The pressure control valves provided in the gas exhaust line are shown respectively.

【0013】実施例2 図3にもう1つの実施例における電解槽熱交換器複合体
10の分解構造図を示す。この場合は、O2ガス冷却部
13、熱交換器部12、電解セル部11、H2ガス冷却
部14に、セル11の締め付け圧力を調整するための独
立した圧力調整部15が設けられている。独立した締め
付け圧力調整部15を設けることにより、冷却水の圧力
を制御するために余分にかかる電力のロスを低減するこ
とができる。この場合のプロセスフローは図4で示さ
れ、冷却水戻りラインに圧力コントロールバルブ50が
ないこと以外は、図2と同様である。
Example 2 FIG. 3 shows an exploded structural view of an electrolytic cell heat exchanger complex 10 in another example. In this case, the O 2 gas cooling unit 13, the heat exchanger unit 12, the electrolytic cell unit 11, and the H 2 gas cooling unit 14 are provided with independent pressure adjusting units 15 for adjusting the tightening pressure of the cells 11. There is. By providing the independent tightening pressure adjusting unit 15, it is possible to reduce the loss of electric power that is extraly applied to control the pressure of the cooling water. The process flow in this case is shown in FIG. 4 and is the same as FIG. 2 except that there is no pressure control valve 50 in the cooling water return line.

【0014】図4において、循環ポンプ20により供給
水は電解槽熱交換器複合体10の熱交換器部12に供給
される。供給水はここで冷却水又は廃熱回収用の熱媒体
と熱交換し、所定の温度まで冷却され、内部チャンネル
を通って電解セル部11に供給される。電解セル陽極で
酸素が発生し、酸素と未反応の水は電解セル部の上部に
集められ、陽極側主電極上部ノズルから排出される。排
出された酸素及び未反応の水は、外部に設けられたO2
気液分離器30で、酸素と水に分離される。分離された
高温の酸素は、複合体O2ガス冷却部13の下部に戻さ
れる。ここで冷却水により冷却され、酸素中の水分は凝
縮して下部に設けられた気液分離スペースに溜まり、熱
交換器ノズルプレートを経てO2気液分離器30に戻さ
れる。冷却された酸素は、O2ガス冷却器ノズルプレー
トを経て系外に排出される。電解セル陰極では水素が発
生し、水素と水素に同伴する水は電解セル部の下部に集
められ、内部チャンネルを通ってH2ガス冷却部14に
供給される。ここで冷却水により冷却され、水素中の水
分は凝縮して下部に設けられた気液分離スペースに溜ま
り、H2ガス冷却ノズルプレートを経てO2気液分離器3
0に戻される。冷却された水素は、H2ガス冷却器ノズ
ルプレートを経て系外に排出される。
In FIG. 4, the supply water is supplied to the heat exchanger section 12 of the electrolytic cell heat exchanger complex 10 by the circulation pump 20. The supply water exchanges heat with cooling water or a heat medium for waste heat recovery, is cooled to a predetermined temperature, and is supplied to the electrolysis cell section 11 through the internal channel. Oxygen is generated in the electrolytic cell anode, and water that has not reacted with oxygen is collected in the upper portion of the electrolytic cell portion and discharged from the anode side main electrode upper nozzle. The discharged oxygen and unreacted water are separated by O 2 provided outside.
The gas-liquid separator 30 separates oxygen and water. The separated high-temperature oxygen is returned to the lower part of the complex O 2 gas cooling unit 13. Here, the water is cooled by cooling water, the water content in oxygen is condensed and collected in the gas-liquid separation space provided at the lower part, and returned to the O 2 gas-liquid separator 30 via the heat exchanger nozzle plate. The cooled oxygen is discharged out of the system through the O 2 gas cooler nozzle plate. Hydrogen is generated at the electrolysis cell cathode, and hydrogen and water accompanying the hydrogen are collected in the lower part of the electrolysis cell section and supplied to the H 2 gas cooling section 14 through the internal channel. Here, the water is cooled by cooling water, and the water content in the hydrogen is condensed and collected in the gas-liquid separation space provided in the lower part, and is passed through the H 2 gas cooling nozzle plate to form the O 2 gas-liquid separator 3.
It is set back to 0. The cooled hydrogen is discharged out of the system through the H 2 gas cooler nozzle plate.

【0015】電解セルの締め付け圧力の調整は、圧力調
整部15に供給される水又は油(圧力媒体)の圧力を調
整する圧力コントロールバルブ90によって行なわれ
る。圧力調整部15は、陽極側主電極、陰極側主電極の
一方又は両方の外側に接するところに設ける。これによ
って、電解セル部11の締め付け圧力を一定に保つこと
ができる。
The tightening pressure of the electrolysis cell is adjusted by a pressure control valve 90 which adjusts the pressure of water or oil (pressure medium) supplied to the pressure adjusting section 15. The pressure adjusting unit 15 is provided in contact with the outside of one or both of the anode-side main electrode and the cathode-side main electrode. Thereby, the tightening pressure of the electrolysis cell unit 11 can be kept constant.

【0016】実施例3 図5に、設備を宇宙空間のような重力式分離ができない
場所に設置した場合の実施例における複合体10の分解
構造図を示す。複合体10は、図の左側から、O2ガス
冷却部13、熱交換器部12、電解セル部11及びH2
ガス冷却部14より構成されている。実際には、これら
を複数(この図では4本)の通しボルトで締め付けるこ
とにより一体構造となっている。
Embodiment 3 FIG. 5 shows an exploded structural view of the composite body 10 in an embodiment in which the equipment is installed in a place such as outer space where gravity separation is not possible. From the left side of the figure, the composite 10 includes an O 2 gas cooling unit 13, a heat exchanger unit 12, an electrolysis cell unit 11 and H 2 gas.
It is composed of a gas cooling unit 14. In practice, these are integrated by tightening them with a plurality of (four in this figure) through bolts.

【0017】図6に、この場合のプロセスフローを示
す。循環ポンプ20により、供給水は複合体10の熱交
換器部12に供給される。供給水はここで電解セル部1
1で発生した酸素及び未反応の水と熱交換して所定の温
度まで昇温され、内部チャンネルを通って電解セル部1
1に供給される。電解セル陽極で酸素が発生し、酸素と
未反応の水は電解セル部の上部に集められ、陽極側主電
極上部ノズルから排出される。排出された酸素及び未反
応の水は、複合体10の熱交換器部12に供給され、こ
こで供給水と熱交換し、いくぶん温度が下がり、内部チ
ャンネルを通ってO2ガス冷却部13に供給される。こ
こで冷却水により所定の温度まで冷却され、外部に設け
られたO2気液分離器30に導かれ、ここで酸素と水に
分離される。電解セル陰極では水素が発生し、水素と水
素に同伴する水は電解セル部の下部に集められ、内部チ
ャンネルを通ってH2ガス冷却部14に供給される。こ
こで冷却水により冷却され、外部に設けられたH2気液
分離器40に導かれる。ここで気液分離され、分離され
た水素は系外に排出される。
FIG. 6 shows a process flow in this case. The supply water is supplied to the heat exchanger portion 12 of the composite body 10 by the circulation pump 20. Supply water here is the electrolysis cell section 1
1 and the unreacted water are heat-exchanged to raise the temperature to a predetermined temperature, and the electrolysis cell section 1 passes through the internal channel.
1 is supplied. Oxygen is generated in the electrolytic cell anode, and water that has not reacted with oxygen is collected in the upper portion of the electrolytic cell portion and discharged from the anode side main electrode upper nozzle. The discharged oxygen and unreacted water are supplied to the heat exchanger section 12 of the composite body 10, where they exchange heat with the supplied water, the temperature of the water is somewhat lowered, and the oxygen and unreacted water pass through the internal channels to the O 2 gas cooling section 13. Supplied. Here, it is cooled to a predetermined temperature by cooling water, guided to an O 2 gas-liquid separator 30 provided outside, and separated into oxygen and water there. Hydrogen is generated at the electrolysis cell cathode, and hydrogen and water accompanying the hydrogen are collected in the lower part of the electrolysis cell section and supplied to the H 2 gas cooling section 14 through the internal channel. Here, it is cooled by cooling water and guided to an H 2 gas-liquid separator 40 provided outside. Here, gas and liquid are separated, and the separated hydrogen is discharged out of the system.

【0018】電解セルの締め付け圧力の調整は、冷却水
戻りラインに設けられた圧力コントロールバルブ50に
よって行なわれる。この場合、冷却水の圧力を調整する
ことによって、電解セル部11の締め付け圧力を一定に
保つことができる。
The tightening pressure of the electrolysis cell is adjusted by a pressure control valve 50 provided in the cooling water return line. In this case, the tightening pressure of the electrolysis cell unit 11 can be kept constant by adjusting the pressure of the cooling water.

【0019】[0019]

【発明の効果】以上のように、本発明の水電解装置によ
れば、電解槽と複数の熱交換器とを一体構造にしたた
め、設備がコンパクトになり、装置が安価にでき、更に
セルの締め付け圧力を調整するための油圧締付装置等を
省くことができる。
As described above, according to the water electrolysis apparatus of the present invention, since the electrolysis cell and the plurality of heat exchangers are integrally structured, the equipment can be made compact, the apparatus can be made inexpensive, and the cell A hydraulic tightening device or the like for adjusting the tightening pressure can be omitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における電解槽熱交換器複合
体の分解構造図である。
FIG. 1 is an exploded structural view of an electrolytic cell heat exchanger complex in Example 1 of the present invention.

【図2】本発明の実施例1におけるプロセスフローを示
す図である。
FIG. 2 is a diagram showing a process flow in Example 1 of the present invention.

【図3】本発明の実施例2における電解槽熱交換器複合
体の分解構造図である。
FIG. 3 is an exploded structural diagram of an electrolytic cell heat exchanger complex in Example 2 of the present invention.

【図4】本発明の実施例2におけるプロセスフローを示
す図である。
FIG. 4 is a diagram showing a process flow in Example 2 of the present invention.

【図5】本発明の実施例3における電解槽熱交換器複合
体の分解構造図である。
FIG. 5 is an exploded structural view of an electrolytic cell heat exchanger complex according to a third embodiment of the present invention.

【図6】本発明の実施例3におけるプロセスフローを示
す図である。
FIG. 6 is a diagram showing a process flow in Example 3 of the present invention.

【図7】水電解による水素及び酸素の製造に関する従来
法のプロセスフローを示す図である。
FIG. 7 is a diagram showing a process flow of a conventional method for producing hydrogen and oxygen by water electrolysis.

【符号の説明】[Explanation of symbols]

1、水電解槽 2、熱交換器 3、O2気液分離器 4、O2ガス冷却器 5、O2K.O.ドラム 6、H2気液分離器 7、H2ガス冷却器 8、H2K.O.ドラム 9、循環ポンプ 10、電解槽熱交換器複合体 11、電解セル部 12、熱交換器部 13、O2ガス冷却部 14、H2ガス冷却部 15、圧力調整部 20、循環ポンプ 30、O2気液分離器 40、直流電源 50、圧力コントロールバルブ 60、液面コントロールバルブ 70、圧力コントロールバルブ 80、圧力コントロールバルブ 90、圧力コントロールバルブ 101、O2側フランジ 102、H2側フランジ 111、陽極側主電極 112、電極接合体膜 113、複極板 114、陰極側主電極 121、熱交換器ノズルプレート 131、O2ガス冷却器ノズルプレート 141、H2ガス冷却器ノズルプレート1, water electrolysis tank 2, heat exchanger 3, O 2 gas-liquid separator 4, O 2 gas cooler 5, O 2 K.K. O. Drum 6, H 2 gas-liquid separator 7, H 2 gas cooler 8, H 2 K.K. O. Drum 9, circulation pump 10, electrolytic cell heat exchanger complex 11, electrolysis cell section 12, heat exchanger section 13, O 2 gas cooling section 14, H 2 gas cooling section 15, pressure adjusting section 20, circulation pump 30, O 2 gas-liquid separator 40, DC power supply 50, pressure control valve 60, liquid level control valve 70, pressure control valve 80, pressure control valve 90, pressure control valve 101, O 2 side flange 102, H 2 side flange 111, Anode side main electrode 112, electrode assembly film 113, bipolar plate 114, cathode side main electrode 121, heat exchanger nozzle plate 131, O 2 gas cooler nozzle plate 141, H 2 gas cooler nozzle plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前澤 彰二 東京都港区西新橋2−8−11 第7東洋海 事ビル8階 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 森 浩章 東京都港区西新橋2−8−11 第7東洋海 事ビル8階 財団法人地球環境産業技術研 究機構 CO2固定化等プロジェクト室内 (72)発明者 竹中 啓恭 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 小黒 啓介 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoji Maesawa 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Toyo Kaijuku Building 8th Floor CO2 Immobilization Project Office (72) ) Inventor Hiroaki Mori 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 8th floor, 7th Toyo Kaiji Building, Research Institute for Global Environmental Science and Technology, CO2 immobilization project room (72) Inventor Keiyasu Takenaka Ikeda, Osaka 1-831 Midorigaoka, Osaka City Industrial Technology Institute, Osaka Institute of Technology (72) Inventor Keisuke Oguro 1-831 Midorigaoka, Ikeda City, Osaka Prefecture Industrial Technology Institute, Osaka Institute of Industrial Technology

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜を用いる複極式電解槽で
水を電解し、陽極に酸素、陰極に水素を発生させ、複数
の熱交換器及び分離器により発生したガスを冷却し、循
環する水を熱交換させることにより常温の酸素及び水素
を製造する水電解装置において、前記の電解槽と複数の
熱交換器とを同一平面上に配置し、且つ共通の流路を内
部に設け、これらを共通のボルトで締め付けることによ
り一体化してなる電解槽熱交換器複合体としたことを特
徴とする水電解装置。
1. Water is electrolyzed in a bipolar electrode cell using a polymer electrolyte membrane to generate oxygen in the anode and hydrogen in the cathode, and cool and circulate the gas generated by a plurality of heat exchangers and separators. In a water electrolysis apparatus for producing room temperature oxygen and hydrogen by heat exchange of water, the electrolyzer and a plurality of heat exchangers are arranged on the same plane, and a common flow path is provided inside, A water electrolysis device characterized in that an electrolytic cell heat exchanger composite body is obtained by integrating them by tightening them with a common bolt.
【請求項2】 前記電解槽熱交換器複合体が、酸素ガス
冷却部、熱交換器部、電解セル部及び水素ガス冷却部か
らなることを特徴とする請求項1記載の水電解装置。
2. The water electrolysis apparatus according to claim 1, wherein the electrolytic cell heat exchanger complex comprises an oxygen gas cooling section, a heat exchanger section, an electrolysis cell section and a hydrogen gas cooling section.
【請求項3】 前記電解セル部に設けられた陽極側主電
極及び陰極側主電極の一方又は両方の外部に接するとこ
ろに、圧力調整部を設けたことを特徴とする請求項2記
載の水電解装置。
3. The water according to claim 2, wherein a pressure adjusting portion is provided in contact with the outside of one or both of the anode-side main electrode and the cathode-side main electrode provided in the electrolytic cell section. Electrolysis device.
JP6046438A 1994-02-21 1994-02-21 Water electrolysis device using polymer electrolyte membrane Expired - Lifetime JP2772385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6046438A JP2772385B2 (en) 1994-02-21 1994-02-21 Water electrolysis device using polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6046438A JP2772385B2 (en) 1994-02-21 1994-02-21 Water electrolysis device using polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JPH07233491A true JPH07233491A (en) 1995-09-05
JP2772385B2 JP2772385B2 (en) 1998-07-02

Family

ID=12747172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6046438A Expired - Lifetime JP2772385B2 (en) 1994-02-21 1994-02-21 Water electrolysis device using polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP2772385B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010084747A (en) * 2000-02-29 2001-09-06 손정수 Apparatus for generating an oxygen gas and hydrogen gas
KR20020017734A (en) * 2000-08-31 2002-03-07 손정수 Apparatus for generating a hydrogen gas and oxygen gas
US6698389B2 (en) * 1996-07-16 2004-03-02 Lynntech, Inc. Electrolyzer for internal combustion engine
JP2011021212A (en) * 2009-07-13 2011-02-03 Honda Motor Co Ltd Water electrolysis system
CN102965689A (en) * 2012-11-19 2013-03-13 扬州中电制氢设备有限公司 Ultrathin polar plate electrolytic cell
CN103114299A (en) * 2013-02-08 2013-05-22 大连交通大学 Electrolytic device and method for preparing boric acid by using borax
JP2015501386A (en) * 2011-10-28 2015-01-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High temperature or fuel cell electrochemical system with improved thermal management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254684A (en) * 1975-10-30 1977-05-04 Linde Ag Electrolysis apparatus for pressed liquid
JPS5477284A (en) * 1977-12-02 1979-06-20 Asahi Glass Co Ltd Ion exchange membrane electrolyzer
JPS55125284A (en) * 1979-03-02 1980-09-26 Uhde Gmbh Hydrogen chloride * electrolysis partitioned chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254684A (en) * 1975-10-30 1977-05-04 Linde Ag Electrolysis apparatus for pressed liquid
JPS5477284A (en) * 1977-12-02 1979-06-20 Asahi Glass Co Ltd Ion exchange membrane electrolyzer
JPS55125284A (en) * 1979-03-02 1980-09-26 Uhde Gmbh Hydrogen chloride * electrolysis partitioned chamber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698389B2 (en) * 1996-07-16 2004-03-02 Lynntech, Inc. Electrolyzer for internal combustion engine
KR20010084747A (en) * 2000-02-29 2001-09-06 손정수 Apparatus for generating an oxygen gas and hydrogen gas
KR20020017734A (en) * 2000-08-31 2002-03-07 손정수 Apparatus for generating a hydrogen gas and oxygen gas
JP2011021212A (en) * 2009-07-13 2011-02-03 Honda Motor Co Ltd Water electrolysis system
JP2015501386A (en) * 2011-10-28 2015-01-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ High temperature or fuel cell electrochemical system with improved thermal management
US10218011B2 (en) 2011-10-28 2019-02-26 Commissariat à l'énergie atomique et aux énergies alternatives High-temperature or fuel-cell electrochemical system having improved thermal management
CN102965689A (en) * 2012-11-19 2013-03-13 扬州中电制氢设备有限公司 Ultrathin polar plate electrolytic cell
CN103114299A (en) * 2013-02-08 2013-05-22 大连交通大学 Electrolytic device and method for preparing boric acid by using borax

Also Published As

Publication number Publication date
JP2772385B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US6833207B2 (en) Unitized regenerative fuel cell with bifunctional fuel cell humidifier and water electrolyzer
US6582844B2 (en) Method of cooling a fuel cell
EP0806498B1 (en) An apparatus for producing hydrogen and oxygen
US8999135B2 (en) PEM water electrolyser module
US5879826A (en) Proton exchange membrane fuel cell
AU716927B2 (en) Integrated reactant and coolant fluid flow field layer for fuel cell with membrane electrode assembly
US6124051A (en) Fuel cell stack with novel cooling and gas distribution systems
US5846668A (en) Fuel cell, electrolytic cell and process of cooling and/or dehumidifying same
CA2392319C (en) Water electrolyzing device
CA2225728A1 (en) Water management system for solid polymer electrolyte fuel cell power plants
US7588851B2 (en) Fuel cell stack structure
US20160079624A1 (en) Flow cell stack with single plate cells
JPH07233491A (en) Water electrolytic device using high molecular electrolyte membrane
JP3522769B2 (en) Operating method of fuel cell plant and fuel cell plant
JP2893238B2 (en) Water electrolyzer using polymer electrolyte membrane
US6187155B1 (en) Electrolytic cell separator assembly
US20050211567A1 (en) Apparatus and method for integrated hypochlorite and hydrogen fuel production and electrochemical power generation
JP2001076751A (en) Fuel cell system
JP3766893B2 (en) Hydrogen supply device using solid polymer water electrolyzer
JP3991146B2 (en) Solid polymer water electrolyzer
JPH0620713A (en) Fuel cell
US20080020260A1 (en) Apparatus, system, and method for manifolded integration of a humidification chamber for input gas for a proton exchange membrane fuel cell
US20240011164A1 (en) Gas-liquid separation device, gas-liquid separation method, electrolysis device, and electrolysis method
JP2003157861A (en) Fuel cell having water electrolyzing function
JPH09316676A (en) Cylindrical electrolytic cell and hydrogen and oxygen generator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090424

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100424

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110424

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 15

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term