JPH07232510A - Pneumatic radial tire for heavy load - Google Patents

Pneumatic radial tire for heavy load

Info

Publication number
JPH07232510A
JPH07232510A JP6026445A JP2644594A JPH07232510A JP H07232510 A JPH07232510 A JP H07232510A JP 6026445 A JP6026445 A JP 6026445A JP 2644594 A JP2644594 A JP 2644594A JP H07232510 A JPH07232510 A JP H07232510A
Authority
JP
Japan
Prior art keywords
belt
tire
cord
layer
carcass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6026445A
Other languages
Japanese (ja)
Inventor
Yasutoshi Aoki
康年 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP6026445A priority Critical patent/JPH07232510A/en
Publication of JPH07232510A publication Critical patent/JPH07232510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To improve a cut resistant property of a tread part without lowering anti-shock burst performance by integrating an angle forming a tire equatorial surface of a cord of a first belt and a second belt nearest to a carcass layer between the tread part and the carcass layer of a radial tire and the extending direction. CONSTITUTION:This is a pneumatic radial tire laminating a belt layer 3 formed in a ring shape by way of aligning a plural number of steel cords between a tread part 1 and a carcass layer 2 in four layers, and when the belt layer at a position nearest to the carcass layer 2 to the belt layer at a position nearest to a tread rubber 4 are called as first to fourth belt, the extending direction and an angle of the cord of each of the belt layers are integral as R20-R20-L20-L20 from the first belt. 1 (Alphabets show right or left extending direction against a tire equatorial surface of the belt cord.) Generally, cut resistant performance is improved after anti-shock burst performance is maintained as a tire for a good road.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トラック、又はバスに
装着されて特に非舗装路や砂利道などの悪路走行を含む
使用条件で使用される重荷重用ラジアルタイヤにおい
て、タイヤトレッド部の耐カット性能の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heavy-duty radial tire mounted on a truck or a bus and used particularly under rough roads such as unpaved roads and gravel roads. Regarding improvement of cutting performance.

【0002】[0002]

【従来の技術】カ−カス層を構成するコ−ドの延在方向
がタイヤの赤道面に対して約90度方向(ラジアル方
向)であり、このカ−カス層の上に剛性の高いベルト層
をリング状に配置するラジアルタイヤにおいては、走行
時に路面上の異物、石等を踏み込むことによってトレッ
ド部に亀裂損傷(いわゆる、カット)を本質的に受けや
すい傾向がある。この為特に悪路走行に供する重荷重車
両用のラジアルタイヤにおいては、従来耐カット性を向
上する手段としてはベルト部の曲げ剛性を低下させるこ
とが試みられている。例えば、従来から一般に採用され
来た良路用のベルト構造、R50−R20−L20−L
20(アルファベットはベルトコ−ドのタイヤ赤道面に
対する右又は左の延在方向を示し、数字はコ−ドのタイ
ヤ赤道面になす角度を示す)が耐カット性に不十分であ
ることを改良する為に、次のような耐カット性改良ベル
ト構造が採用されていた。 従来の耐カット性改良ベルト構造例; (1)R20−L20−L20 (2)R50(狭幅ベルトをトレッド部両端に配置)−
R20−L20−L20 (1)は、上記の良路用のベルト構造から第一ベルトを
除いて曲げ剛性の低下を狙ったものである。(2)は、
路面上の異物などの突起をタイヤが乗り越える時、タイ
ヤが突起から受ける衝撃力の多寡を表す代表特性である
EP性能を向上する為にタイヤトレッド部の中央部の剛
性を低下させることを狙ったものである。
2. Description of the Related Art The extension direction of a cord forming a carcass layer is approximately 90 degrees (radial direction) with respect to the equatorial plane of a tire, and a belt having high rigidity is provided on the carcass layer. In a radial tire in which the layers are arranged in a ring shape, there is a tendency that the tread portion is essentially susceptible to crack damage (so-called cut) by stepping on foreign matter, stones, etc. on the road surface during traveling. For this reason, in radial tires for heavy-duty vehicles, which are especially used for running on rough roads, it has been attempted to reduce the bending rigidity of the belt portion as a means for improving the cut resistance. For example, R50-R20-L20-L, which is a belt structure for good roads that has been generally adopted in the past.
20 (alphabet indicates the extending direction to the right or left of the belt cord relative to the equatorial plane of the belt, and the number indicates the angle to the tire equatorial plane of the code) to improve insufficient cut resistance. Therefore, the following cut resistant belt structure has been adopted. Conventional cut resistance improved belt structure example; (1) R20-L20-L20 (2) R50 (narrow belts are arranged at both ends of the tread)-
R20-L20-L20 (1) is intended to reduce bending rigidity by removing the first belt from the above-described good road belt structure. (2) is
When the tire gets over bumps such as foreign matter on the road surface, we aimed to reduce the rigidity of the central part of the tire tread to improve EP performance, which is a typical characteristic that represents the amount of impact force that the tire receives from the bumps. It is a thing.

【0003】[0003]

【発明が解決しようとする課題】しかるに、上記従来の
耐カット性改良ベルト構造にあっては、確かにベルトの
曲げ剛性が低下して上記EP特性が向上しカットが起こ
り難くなっているが、一方でベルト中央部の引張り剛性
が低下している為に、異物等の突起から受けるトレッド
部およびベルト部の大きな変形によって各ベルト層のベ
ルトコ−ドが切断することに起因するトレッド部のショ
ックバ−スト(衝撃によるタイヤの破壊)に対して耐久
性が低下するという問題点があった。
However, in the above-mentioned conventional belt structure having improved cut resistance, the bending rigidity of the belt is certainly lowered, the EP characteristics are improved, and the cutting is less likely to occur. On the other hand, since the tensile rigidity of the central portion of the belt is lowered, the tread portion is shock-barred due to the belt cord of each belt layer being cut due to the large deformation of the tread portion and the belt portion that receive from projections such as foreign matters. There is a problem that durability is deteriorated against a strike (a tire is damaged by an impact).

【0004】本発明は、悪路走行を含む走行条件におい
て、耐ショックバ−スト性能を低下させずにトレッド部
の耐カット性を改良するベルト構造を備えた重荷重用空
気入りラジアルタイヤを提供することを目的としてい
る。
The present invention provides a heavy-duty pneumatic radial tire having a belt structure which improves the cut resistance of the tread portion without deteriorating the shock burst resistance under running conditions including rough road running. It is an object.

【0005】[0005]

【課題を解決するための手段】上記目的を達成する為
に、本発明の重荷重用空気入りラジアルタイヤにおいて
は、請求項1に記載の如く、円環体のタイヤのトレッド
部とカ−カス層との間にゴム被覆したコ−ドを複数配列
してリング状に配列したベルト層を少なくとも4層積層
して成るベルト構造において、カ−カス層側に最も近い
第一ベルトのコ−ドのタイヤ赤道面となす角度が、第一
ベルトに隣接する第二ベルトのコ−ドのタイヤ赤道面と
なす角度と実質的に同一であり、且つ第一ベルトのコ−
ドの延在方向が第二ベルトのコ−ドの延在方向と同一で
あることを特徴としている。尚、第一ベルトと第二ベル
トとが成す交錯角度は、タイヤが路面上で遭遇するあら
ゆる形状の突起状異物を想定し、又発明者のタイヤ実地
使用上の過去の多くの経験から5度以内が好ましい。こ
の交錯角度が5度以上になると、各方向に対するベルト
の曲げ剛性が増加傾向となり、タイヤが突起異物乗り上
げ時カットを受け易くなる。従って、この交錯角度が5
度以内の場合に、第一ベルトのコ−ドのタイヤ赤道面と
なす角度が、前記第二ベルトのコ−ドのタイヤ赤道面と
なす角度と実質的に同一としている。
In order to achieve the above object, in a heavy duty pneumatic radial tire of the present invention, as described in claim 1, a tread portion and a carcass layer of a toroidal tire. In a belt structure in which at least four belt layers in which a plurality of rubber-coated cords are arranged in a ring shape are laminated between and, the cord of the first belt closest to the carcass layer side is formed. The angle formed with the tire equatorial plane is substantially the same as the angle formed with the tire equatorial plane of the cord of the second belt adjacent to the first belt, and the cord of the first belt is
The extension direction of the cord is the same as the extension direction of the cord of the second belt. The crossing angle formed by the first belt and the second belt is assumed to be a projection foreign matter of any shape that the tire encounters on the road surface, and is 5 degrees from the inventor's many past experiences in practical use of the tire. It is preferably within. When the intersecting angle is 5 degrees or more, the bending rigidity of the belt in each direction tends to increase, and the tire is likely to be cut when riding on projection foreign matter. Therefore, this intersection angle is 5
Within the range, the angle formed by the code of the first belt and the tire equatorial plane is substantially the same as the angle formed by the code of the second belt and the tire equatorial plane.

【0006】[0006]

【作用】本発明のベルト構造では、悪路走行での路面か
らの大きな衝撃入力に耐えるべく少なくとも4層以上の
ベルト層を備えると共に、第一ベルトのコ−ド角度を、
第二ベルトのコ−ド角度と実質的に同一で、同方向とし
ているので、トレッド部に突起が押し込められた場合に
最も大きな曲げ応力を受けるタイヤ内面側(カ−カス
側)に於いて、第一ベルトと第二ベルトがほとんど交錯
せずに配置されておりその結果曲げ剛性が小さく各種の
形状の突起や異物に対して十分な柔軟性を発揮出来る。
従って、タイヤが突起や異物に乗り上げた場合にこれら
の突起や異物をタイヤトレッドゴムとベルトが一体とな
って包み込む様な変形を生じて突起や異物からの衝撃力
(突起反力)を低減する。この結果、トレッドゴムが受
ける局部的な張力が減少しカットが発生し難くなる。一
方、従来のタイヤでは、第一ベルトと第二ベルト間の交
錯角度が大きい為にタイヤ内面側に位置するベルト層の
曲げ剛性が大きく路面上の突起や異物を包み込む様な能
力に欠け、タイヤは上方向に跳ね上げられて大きな衝撃
力(突起反力)を受け、比較的柔らかいトレッドゴムが
剛なベルトと堅い路面との間で前記衝撃力に基ずく大き
な局部張力を受けて亀裂損傷が発生し易くなる。
In the belt structure of the present invention, at least four or more belt layers are provided to withstand a large impact input from the road surface on rough roads, and the code angle of the first belt is
Since the cord angle is substantially the same as the cord angle of the second belt and is in the same direction, on the tire inner surface side (carcass side) that receives the largest bending stress when the protrusion is pushed into the tread portion, The first belt and the second belt are arranged so as not to intersect with each other, and as a result, the bending rigidity is small and sufficient flexibility can be exhibited against protrusions of various shapes and foreign matter.
Therefore, when the tire rides on the protrusions or foreign substances, deformation occurs such that the tire tread rubber and the belt integrally wrap these protrusions or foreign substances to reduce the impact force (projection reaction force) from the protrusions or foreign substances. . As a result, the local tension applied to the tread rubber is reduced, and the cut is less likely to occur. On the other hand, in the conventional tire, since the crossing angle between the first belt and the second belt is large, the flexural rigidity of the belt layer located on the tire inner surface side is large and the tire lacks the ability to wrap projections or foreign matter on the road surface. Is flipped up and receives a large impact force (projection reaction force), and the relatively soft tread rubber receives a large local tension between the rigid belt and the hard road surface based on the impact force, causing crack damage. It tends to occur.

【0007】更に、前記従来のカット改良技術によるベ
ルト構造即ち、R20−L20−L20、又はR50
(狭幅)−R20−L20−L20の場合では、悪路走
行によって万一最外層のベルトコ−ドが切断されると,
残りのベルト層の内タイヤの充填内圧と路面からの外力
に対抗する事の出来るベルト層は、タイヤセンタ−部で
はR20−L20のコ−ド交錯層2層のみとなり、しか
もこの交錯層が、突起や異物がトレッド部に押し込めら
れた場合には最も曲げ応力が大きくなるタイヤの内面側
に最も近く位置する為に、大きな引張り応力状態(言わ
ば、糸の緊張状態)となりタイヤ転動時の衝撃的な動的
応力を受けるとコ−ドが破断し易い状態となる。一方,
本発明のベルト構造では、充填内圧と路面からの外力に
対抗してタイヤの形状を保持する所の交錯層(R20−
L20)は常に第二ベルトと第三ベルトとで構成され
て、しかも突起や異物がトレッド部に押し込められた場
合に最も曲げ応力が大きくなるタイヤの内面側に最も近
い位置には第二ベルトとの交錯角度を±5度以下とした
実質的に交錯層とならない第一ベルト層が配置されて前
記交錯層(R20−L20)は配置されないので、前記
交錯層は大きな引張り応力状態(言わば、糸の緊張状
態)とならずタイヤ転動時の衝撃的な動的応力を受けて
もタイヤのショックバ−ストが起こり難い構造となって
いる。
Further, the belt structure according to the conventional cutting improvement technique, that is, R20-L20-L20 or R50.
In the case of (narrow width) -R20-L20-L20, if the outermost belt cord is cut due to running on a rough road,
The remaining belt layers can resist the tire internal pressure and the external force from the road surface. In the tire center part, there are only two R20-L20 cord crossing layers, and this crossing layer is When a protrusion or foreign matter is pushed into the tread, the bending stress becomes the largest, and it is located closest to the inner surface of the tire, resulting in a large tensile stress state (in other words, a tension state of the thread) and the impact during tire rolling. When subjected to specific dynamic stress, the cord is in a state of being easily broken. on the other hand,
In the belt structure of the present invention, the intersecting layer (R20-) that holds the shape of the tire against the filling internal pressure and the external force from the road surface.
L20) is always composed of a second belt and a third belt, and the second belt is located at a position closest to the inner surface side of the tire where the bending stress is greatest when protrusions or foreign matter are pushed into the tread portion. The crossing layer (R20-L20) is not arranged because the first belt layer having the crossing angle of ± 5 degrees or less and which does not substantially become the crossing layer is arranged, so that the crossing layer has a large tensile stress state (so to speak, a yarn). The structure is such that the shock burst of the tire is unlikely to occur even if it receives a shocking dynamic stress when the tire rolls.

【0008】[0008]

【実施例】本発明を実施例によって以下に具体的に説明
する。タイヤサイズ1000R20、14RPにて実施
例のタイヤを試作した。実施例のベルト構造は、図1に
模式的に示す如くタイヤのトレッド部(1)とカ−カス
層(2)との間に、スチ−ルコ−ドを複数配列してリン
グ状としたベルト層(3)を4層積層したものである。
ここで、カ−カス層に最も近い位置のベルト層を第一ベ
ルトとして以下順番に呼称しトレッドゴム(4)に最も
近い位置のベルト層を第四ベルトと呼称する。又、各ベ
ルト層のコ−ドの延在方向と角度とは本発明に従って第
一ベルトから順にR20−R20−L20−L20とし
ている。更に、本実施例のタイヤと後述する比較試験を
実施する為に、従来の技術による比較例のタイヤを試作
した。比較例(1)のベルト構造は前述した様に良路用
タイヤに主に用いられているものであって、図2(a)
に模式的に示す如く図1の実施例のタイヤとベルト層の
断面形状、コ−ド種及び被覆ゴムの材質、積層数を同じ
とするが、各ベルト層のコ−ドの延在方向と角度とが本
発明と異なり、第一ベルトから順にR50−R20−L
20−L20としている。更に、比較例(2)のベルト
構造は従来技術に成る耐カット性改良ベルト構造であっ
て、図2(b)に模式的に示す如く,実施例のタイヤと
ベルト層のコ−ド種及び被覆ゴムの材質を同じとする
が、ベルト積層数を3層とし、各ベルト層のコ−ドの延
在方向と角度をR20−L20−L20としている。尚
又、これらの比較例のタイヤでは、、ベルト構造以外の
タイヤ構成部材は全て実施例のタイヤと同一の仕様、材
料としている。
EXAMPLES The present invention will be specifically described below with reference to examples. The tire of the example was experimentally manufactured with a tire size of 1000R20, 14RP. The belt structure of the embodiment has a ring-shaped belt in which a plurality of steel cords are arranged between the tread portion (1) and the carcass layer (2) of the tire as schematically shown in FIG. It is a laminate of four layers (3).
Here, the belt layer closest to the carcass layer will be referred to as the first belt in the following order, and the belt layer closest to the tread rubber (4) will be referred to as the fourth belt. Further, the cord extending direction and the angle of each belt layer are R20-R20-L20-L20 in order from the first belt according to the present invention. Further, in order to carry out a comparative test to be described later with the tire of this example, a tire of a comparative example according to a conventional technique was prototyped. The belt structure of Comparative Example (1) is mainly used for good road tires as described above.
As shown schematically in FIG. 1, the tire of the embodiment of FIG. 1 and the belt layer have the same cross-sectional shape, the type of cord and the material of the covering rubber, and the number of laminated layers are the same. Unlike the present invention, the angle is R50-R20-L in order from the first belt.
20-L20. Further, the belt structure of Comparative Example (2) is a conventional cut resistance improved belt structure, and as shown schematically in FIG. Although the material of the covering rubber is the same, the number of laminated belts is three, and the extending direction and the angle of the cord of each belt layer are R20-L20-L20. Further, in the tires of these comparative examples, all the tire constituent members other than the belt structure have the same specifications and materials as the tires of the examples.

【0009】次に、本発明のベルト構造の効果を検証す
る為に、上記実施例と比較例のタイヤを用いて比較試験
を実施した。先ず、タイヤトレッドゴムの耐カット性能
を確認する為に、タイヤを半球状の鋼製突起に押し付
け、突起が受ける荷重(突起反力)の多寡によってタイ
ヤの衝撃吸収能力(耐カット性)を評価した。具体的に
は、アムスラ−圧縮試験機にJIS規格正規内圧を充填
したタイヤ1000R20,14PRを取り付け、一方
でアムスラ−試験機の昇降テ−ブル上に所定半径の鋼鉄
製半球の突起を固定し、上記タイヤのトレッド部中央部
を突起に押し付けて突起が受ける荷重を突起反力として
測定し、突起反力の値が小さいものをタイヤの衝撃吸収
能力が大きく耐カット性に有利とする。図3に示す結果
より、各種の突起半径に対して実施例のベルト構造のタ
イヤと比較例(2)のタイヤでは受ける突起反力が小さ
く、この為にこれら両者のタイヤではトレッド部のカッ
トの発生が十分に抑制出来ることが分かる。更に、実際
の車両にタイヤを装着して悪路を走行させ、タイヤトレ
ッドゴムを貫通してベルト迄到達するカットの数量を実
施例タイヤと比較例(1)タイヤで測定比較した。図4
に示す如く、タイヤサイズ1000R20,14PR,
内圧9kg/cm2 ,荷重JIS規格比250%、ダン
プ車後輪2軸全位置に装着の条件にて悪路を3万キロ走
行した後において、実施例のタイヤは比較例(1)のタ
イヤに比べ、ベルトに到達したカット数が各段に少なく
非常に優れていることが判明した。
Next, in order to verify the effect of the belt structure of the present invention, a comparative test was carried out using the tires of the above-mentioned examples and comparative examples. First, in order to confirm the cut resistance of the tire tread rubber, the tire is pressed against a hemispherical steel projection, and the impact absorption capacity (cut resistance) of the tire is evaluated by the amount of load (projection reaction force) received by the projection. did. Specifically, tires 1000R20, 14PR filled with JIS standard normal internal pressure are attached to the Amsler compression tester, while a hemispherical projection made of steel having a predetermined radius is fixed on the lifting table of the Amsler tester, The central portion of the tread portion of the tire is pressed against the protrusion, and the load received by the protrusion is measured as the protrusion reaction force. A tire having a small protrusion reaction force has a large impact absorption capacity and is advantageous in cut resistance. From the results shown in FIG. 3, the protrusion reaction force received by the tire of the belt structure of the example and the tire of the comparative example (2) is small for various protrusion radii, and therefore the tread portion of the tires of these two tires is not cut. It can be seen that the generation can be sufficiently suppressed. Further, the number of cuts that penetrated the tire tread rubber and reached the belt was measured and compared between the example tire and the comparative example (1) tire by mounting the tire on an actual vehicle and running on a bad road. Figure 4
As shown in, tire size 1000R20,14PR,
After running 30,000 km on a rough road under the conditions of an internal pressure of 9 kg / cm 2 , a load of 250% in accordance with JIS standard, and a dump truck mounted on all positions of two rear wheels, the tire of the example is the tire of the comparative example (1). It was found that the number of cuts that reached the belt was extremely small compared to the above, and it was very excellent.

【0010】次に、タイヤの耐ショックバ−スト性能を
確認する為に、アムスラ−タイヤ圧縮試験機にタイヤを
取り付け、タイヤの下面の床面上に直径19mmの丸棒
を起立固定させて、その上にタイヤトレッド部中央を押
し当てトレッドゴム及びベルトを貫通する迄のタイヤ軸
にかける荷重とタイヤ軸の移動距離から破壊エネルギ−
(いわゆるプランジャ−エネルギ−)を測定した。結果
は図5に示す如く、本発明の実施例のタイヤは前記比較
例(1)の良路用タイヤと同等の破壊エネルギ−を維持
していることが分かる。一方比較例(2)の従来技術に
成る耐カット性改良構造のタイヤでは破壊エネルギ−が
20%も低下しておりタイヤショックバ−ストに不利で
あることが分かる。
Next, in order to confirm the shock burst resistance of the tire, the tire was attached to an Amsler tire compression tester, and a round bar having a diameter of 19 mm was erected and fixed on the floor surface of the lower surface of the tire. Destruction energy from the load applied to the tire shaft and the moving distance of the tire shaft until the center of the tire tread is pressed to the top and the tread rubber and belt are penetrated.
(So-called plunger energy) was measured. As shown in FIG. 5, the results show that the tires of the examples of the present invention maintain the same breaking energy as the tires for good roads of the comparative example (1). On the other hand, the breaking energy of the tire of Comparative Example (2) having the improved cut resistance structure according to the prior art is reduced by 20%, which is disadvantageous to the tire shock burst.

【0011】以上の試験結果を総合すると、比較例
(1)の良路用タイヤでは耐カット性の点で悪路走行が
無理であり、又、比較例(2)の従来技術に成る耐カッ
ト性改良構造のタイヤでは耐カット性能の点では好結果
を得る事が出来るが耐ショックバ−ストに不利であって
矢張り悪路走行には適さないが、一方実施例のタイヤで
は、耐ショックバ−スト性能を良路用タイヤ並みに維持
した上で耐カット性能が各段に向上されており悪路走行
に十分耐えることが確認された。
[0011] In summary of the above test results, the good road tire of Comparative Example (1) is not capable of running on bad roads in terms of cut resistance, and the conventional example of Comparative Example (2) has the same cut resistance. In the tire having the improved structure, good results can be obtained in terms of cut resistance, but it is disadvantageous in shock burst resistance and is not suitable for running on rough roads. It was confirmed that while maintaining the same strike performance as that of a tire for good roads, the cut resistance was further improved and it was able to withstand running on bad roads.

【0012】尚、耐ショックバ−スト性能が悪路走行程
重視されない条件、例えば路面からの衝撃荷重が比較的
マイルドな準良路走行の場合では、前記実施例の第一ベ
ルトのタイヤ中央部を除いた図6に模式的にその断面を
示すベルト構造を本発明の範疇として用いることも出来
る。この場合、耐ショックバ−スト性能は前記[従来の
技術]で述べた従来の耐カット性改良構造のタイヤと上
記実施例のタイヤとの中間に位置ずけられ、耐カット性
能は上記実施例と同等となる。
Under the condition that shock burst resistance is not so important as running on bad roads, for example, on running on a semi-good road where the impact load from the road surface is relatively mild, the central portion of the tire of the first belt in the above embodiment is set. A belt structure whose cross section is schematically shown in FIG. 6 that has been omitted can also be used as the category of the present invention. In this case, the shock burst resistance performance is located midway between the tire having the conventional cut resistance improvement structure described in [Prior Art] and the tire of the above embodiment, and the cut resistance performance is the same as that of the above embodiment. Will be equivalent.

【0013】[0013]

【発明の効果】本発明のベルト構造によって、耐ショッ
クバ−スト性能のレベルをこの点で実績のある良路用タ
イヤのベルト構造並みに維持した上で、悪路走行での耐
カット性能に極めて優れる重荷重用ラジアルタイヤを得
る事が出来る。
With the belt structure of the present invention, the level of shock burst resistance performance is maintained at the same level as the belt structure for tires for good roads, which has a proven track record in this respect, and at the same time, it has extremely excellent cut resistance performance on rough roads. It is possible to obtain an excellent radial tire for heavy loads.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のベルト構造の断面模式図である。FIG. 1 is a schematic sectional view of a belt structure of the present invention.

【図2(a)】従来技術による比較例(1)のベルト構
造の断面模式図である。
FIG. 2 (a) is a schematic sectional view of a belt structure of Comparative Example (1) according to a conventional technique.

【図2(b)】従来技術による比較例(2)のベルト構
造の断面模式図である。
FIG. 2 (b) is a schematic sectional view of a belt structure of Comparative Example (2) according to a conventional technique.

【図3】各ベルト構造の突起反力を比較した図である。FIG. 3 is a diagram comparing projection reaction forces of belt structures.

【図4】実車走行によるトレッドカットの発生状況を比
較した図である。
FIG. 4 is a diagram comparing the occurrence states of tread cuts caused by actual vehicle running.

【図5】各ベルト構造の破壊エネルギ−を比較した図で
ある。
FIG. 5 is a diagram comparing the breaking energy of each belt structure.

【図6】本発明の別の実施例を示す断面模式図である。FIG. 6 is a schematic sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 トレッド部 2 カ−カス層 3 ベルト層 4 トレッドゴム 1 tread part 2 carcass layer 3 belt layer 4 tread rubber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 円環体のタイヤのトレッド部とカ−カス
層との間にゴム被覆したコ−ドを複数並列してリング状
に配置したベルト層を少なくとも4層積層して成るベル
ト構造において、カ−カス層側に最も近い第一ベルトの
コ−ドのタイヤ赤道面となす角度が、第一ベルトに隣接
する第二ベルトのコ−ドのタイヤ赤道面となす角度と実
質的に同一であり、且つ第一ベルトのコ−ドの延在方向
が第二ベルトのコ−ドの延在方向と同一であることを特
徴とするベルト構造を備えた重荷重用空気入りラジアル
タイヤ。
1. A belt structure formed by laminating at least four belt layers in which a plurality of rubber-coated cords are arranged in parallel in a ring shape between a tread portion and a carcass layer of an annular tire. In, the angle formed with the tire equatorial plane of the code of the first belt closest to the carcass layer side is substantially the same as the angle formed with the tire equatorial plane of the code of the second belt adjacent to the first belt. A heavy-duty pneumatic radial tire having a belt structure, which is the same and in which the extending direction of the cord of the first belt is the same as the extending direction of the cord of the second belt.
JP6026445A 1994-02-24 1994-02-24 Pneumatic radial tire for heavy load Pending JPH07232510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6026445A JPH07232510A (en) 1994-02-24 1994-02-24 Pneumatic radial tire for heavy load

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026445A JPH07232510A (en) 1994-02-24 1994-02-24 Pneumatic radial tire for heavy load

Publications (1)

Publication Number Publication Date
JPH07232510A true JPH07232510A (en) 1995-09-05

Family

ID=12193712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026445A Pending JPH07232510A (en) 1994-02-24 1994-02-24 Pneumatic radial tire for heavy load

Country Status (1)

Country Link
JP (1) JPH07232510A (en)

Similar Documents

Publication Publication Date Title
EP1787825B1 (en) Heavy duty radial tire, the tire having in particular a low aspect ratio
RU2169672C2 (en) Pneumatic tyre
EP1726458B1 (en) Pneumatic tire
EP2113398B1 (en) Pneumatic radial tire
US7677287B2 (en) Heavy load radial tire
EP2676812B1 (en) Pneumatic tire
WO2007010672A1 (en) Pneumatic tire for heavy load
EP1829711B1 (en) Pneumatic tire and tire/rim assembly
JPH04193614A (en) Pneumatic tire
EP1405736B1 (en) Pneumatic tire
US8091600B2 (en) Heavy duty pneumatic tire with wide-width belt layer convex portion
JP4112079B2 (en) Pneumatic radial tire
JPH0740706A (en) High performance flat pneumatic radial tire
RU2219067C2 (en) Pneumatic tire rib reinforcement
JP3419830B2 (en) Pneumatic radial tire
JP4073081B2 (en) Pneumatic radial tire
EP0791486A1 (en) Pneumatic radial tire
JP4298330B2 (en) Pneumatic tire
EP0698513B1 (en) Pneumatic radial tires
JP4353788B2 (en) Pneumatic tire
JP3021451B1 (en) Radial tires for heavy loads
JP3578554B2 (en) Pneumatic radial tire for heavy load for driving on rough terrain
JP2000229504A (en) Pneumatic radial tire for heavy load
JPH07232510A (en) Pneumatic radial tire for heavy load
JP4132330B2 (en) Heavy duty pneumatic tire