JPH072278B2 - Device for detecting gear gap in laser processing - Google Patents

Device for detecting gear gap in laser processing

Info

Publication number
JPH072278B2
JPH072278B2 JP60299591A JP29959185A JPH072278B2 JP H072278 B2 JPH072278 B2 JP H072278B2 JP 60299591 A JP60299591 A JP 60299591A JP 29959185 A JP29959185 A JP 29959185A JP H072278 B2 JPH072278 B2 JP H072278B2
Authority
JP
Japan
Prior art keywords
cable
capacitance
electrode
same
bridge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299591A
Other languages
Japanese (ja)
Other versions
JPS62156090A (en
Inventor
喜久夫 小間
Original Assignee
株式会社日平トヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日平トヤマ filed Critical 株式会社日平トヤマ
Priority to JP60299591A priority Critical patent/JPH072278B2/en
Publication of JPS62156090A publication Critical patent/JPS62156090A/en
Publication of JPH072278B2 publication Critical patent/JPH072278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ加工において加工ノズル先端とワーク
間の静電容量を検出することによりそのギャップ量を検
出するギャップ量検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gap amount detection device that detects the gap amount by detecting the capacitance between the tip of a processing nozzle and a work in laser processing.

従来の技術 従来、この種の装置において、一般に第1図に示すよう
な交流ブリッジ回路1が用いられている。そして、この
ブリッジ回路1の一辺を測定すべき変位に対応して変化
する可変容量コンデンサ2とし、すなわち加工ノズル3
先端に設けた可動電極4を測定用ケーブル5を介して上
記ブリッジ回路1に接続することにより、ノズル3先端
とワークW間の静電容量変化を検出する方法がとられて
いた。
2. Description of the Related Art Conventionally, an AC bridge circuit 1 as shown in FIG. 1 is generally used in this type of device. Then, one side of the bridge circuit 1 is used as the variable capacitor 2 that changes in accordance with the displacement to be measured, that is, the processing nozzle 3
A method has been adopted in which the movable electrode 4 provided at the tip is connected to the bridge circuit 1 via a measurement cable 5 to detect a capacitance change between the tip of the nozzle 3 and the work W.

しかし、検出時上記可動電極4からの静電容量変化とは
無関係に、上記ケーブル5自体の温度変化や可動部にお
ける曲げやねじれ等によってケーブル5の静電容量に変
化が生じ、このケーブル5による容量変化が本来の測定
すべき可動電極4からの静電容量に影響を及ぼしていた
ため、ノズル3とワークW間の距離すなわちギャップ量
に対応した正確な静電容量変化が検出できなかった。
However, at the time of detection, the capacitance of the cable 5 changes due to the temperature change of the cable 5 itself or the bending or twisting of the movable portion regardless of the change in the capacitance from the movable electrode 4. Since the capacitance change affected the original capacitance to be measured from the movable electrode 4, an accurate capacitance change corresponding to the distance between the nozzle 3 and the work W, that is, the gap amount could not be detected.

このことは、以下の説明で明らかである。This will be clear from the description below.

第1図において、C1、C2は固定コンデンサ、Cはブリ
ッジのバランス用可変コンデンサ、C+ΔCは測定用
ケーブル5の静電容量、C+ΔCは可動電極4とワ
ークW間の静電容量である。
In FIG. 1, C 1 and C 2 are fixed capacitors, C v is a bridge balancing variable capacitor, C c + ΔC is the capacitance of the measurement cable 5, and C s + ΔC s is between the movable electrode 4 and the workpiece W. The capacitance.

ここで、可動電極4とワークW間の距離をD、ワークW
と対抗する可動電極4の面積をS、誘導率をεとする
と、Cは、 で表される。またΔは可動電極4とワークW間の距離
がΔDだけ変化したときの静電容量の変化分で で表される。
Here, the distance between the movable electrode 4 and the work W is D, and the work W is
If the area of the movable electrode 4 that opposes to S is S and the inductivity is ε, then C s is It is represented by. Further, Δ s is a change amount of capacitance when the distance between the movable electrode 4 and the work W changes by ΔD. It is represented by.

今、可動電極4とワークW間の距離がDであるとき、C1
=C2、C+C=CとなるようにCを調整する
と、ブリッジの出力e0は0Vとなる。
Now, when the distance between the movable electrode 4 and the work W is D, C 1
If C v is adjusted so that = C 2 , C s + C c = C v , the output e 0 of the bridge becomes 0V.

次に、可動電極4の距離がΔD、測定用ケーブル5の静
電容量がΔCだけ変化した場合を考えると、e0の値
は、 となり、C+C=C、C1=C2であるから、 となる。ここで、C+ΔC+ΔC<<C1の条件内
であれば、 となり、(1)式を(2)式に代入すれば、 となり、明らかにe0はケーブル5の静電容量変化ΔC
の影響を受けていることがわかる。
Next, considering the case where the distance of the movable electrode 4 changes by ΔD and the capacitance of the measurement cable 5 changes by ΔC c , the value of e 0 is And C s + C c = C v and C 1 = C 2 Becomes Here, within the condition of C v + ΔC s + ΔC c << C 1 , Then, by substituting equation (1) into equation (2), Therefore, obviously e 0 is the capacitance change ΔC c of the cable 5.
You can see that it is affected by.

発明の目的およびその解決手段 ここに、本発明の目的は、ノズル先端の電極とブリッジ
回路をつなぐケーブルの温度変化および曲げやねじれ等
による静電容量の変化の影響を取除き、上記電極とワー
ク間の正確なギャップ量変化の検出を可能としたことに
ある。
Object of the Invention and Solution Therefor An object of the present invention is to remove the influence of temperature change of a cable connecting an electrode at a nozzle tip and a bridge circuit and a change in capacitance due to bending, twisting, etc. It is possible to accurately detect the change in the gap amount.

そこで、本発明は、加工ノズル先端に設けた電極とブリ
ッジ回路間を接続している第1ケーブルとは別に、この
第1ケーブルと同一の静電容量を有する第2ケーブル
を、その静電容量の変化量も上記第1ケーブルと同一と
する条件のもとで配線し上記ブリッジ回路に接続したも
のである。
Therefore, in the present invention, in addition to the first cable connecting between the electrode provided at the tip of the processing nozzle and the bridge circuit, a second cable having the same capacitance as the first cable is provided. The amount of change in is also wired under the same condition as the first cable and connected to the bridge circuit.

発明の構成 以下、本発明装置の具体的構成を第2図により説明す
る。
Structure of the Invention Hereinafter, a specific structure of the device of the present invention will be described with reference to FIG.

本装置は、第2図で示すような交流ブリッジ回路6を構
成している。
This device constitutes an AC bridge circuit 6 as shown in FIG.

ここで、C1、C2は固定コンデンサ、Cはブリッジのバ
ランス用可変コンデンサ、7は加工ノズル10先端に設け
た電極、8はこの電極7とブリッジ回路6の一辺とをつ
なぐ第1ケーブル、9は後述する第2ケーブル、C
ΔCは両ケーブル8、9の静電容量、C+ΔC
上記電極7とワークW間の静電容量である。
Here, C 1 and C 2 are fixed capacitors, C v is a variable capacitor for balancing the bridge, 7 is an electrode provided at the tip of the processing nozzle 10, and 8 is a first cable connecting the electrode 7 and one side of the bridge circuit 6. , 9 is a second cable, which will be described later, C c +
ΔC c is the capacitance of both cables 8 and 9, and C s + ΔC s is the capacitance between the electrode 7 and the work W.

第2ケーブル9は上記第1ケーブル8と誘電率の温度特
性を同一とするため第1ケーブル8と同特性の材料で形
成し、かつケーブル9の寸法も第1ケーブル8と略同一
とする。さらに、第2ケーブル9の温度変化および曲げ
やねじれ等の条件においても第1ケーブル8と殆んど一
致するように第1ケーブル8と同一配線経路をとる。こ
れにより、両ケーブル8、9のもつ静電容量Cおよび
静電容量変化分ΔCはそれぞれ両ケーブル8、9とも
一致した値となり、したがって両者とも静電容量はC
+ΔCと検出される。
The second cable 9 is formed of a material having the same characteristic as the first cable 8 in order to have the same temperature characteristic of dielectric constant as the first cable 8, and the size of the cable 9 is also substantially the same as that of the first cable 8. Further, the same wiring route as that of the first cable 8 is set so that the second cable 9 is almost the same as the first cable 8 even under conditions such as temperature change and bending and twisting. As a result, the electrostatic capacitance C c and the electrostatic capacitance change ΔC c of both cables 8 and 9 have the same values for both cables 8 and 9, respectively, and therefore the electrostatic capacitances of both cables are C c.
+ ΔC c is detected.

上記第1ケーブル8の静電容量Cと上記電極7とワー
クW間の静電容量Cは、並列回路と等価であるので、
上記第2ケーブル9の一端すなわちノズル10側は開放
で、他端すなわちブリッジ回路6側はブリッジ回路6の
バランス用可変コンデンサCと並列に接続している。
Since the electrostatic capacitance C c of the first cable 8 and the electrostatic capacitance C s between the electrode 7 and the work W are equivalent to a parallel circuit,
One end of the second cable 9, that is, the nozzle 10 side is open, and the other end, that is, the bridge circuit 6 side is connected in parallel with the balancing variable capacitor C v of the bridge circuit 6.

今、電極7とワークW間の距離がDであるときC1=C2
+C=C+CとなるようにCを調整する
と、ブリッジの出力電圧e0は0Vである。
Now, when the distance between the electrode 7 and the work W is D, C 1 = C 2 ,
When C v is adjusted so that C s + C c = C v + C c , the output voltage e 0 of the bridge is 0V.

次に、電極7とワークW間の距離がΔD、ケーブル8、
9の静電容量がΔCだけ変化した場合を考えると、e0
の値は、 となり、C+C=C+C、C1=C2であるから、 となる。
Next, the distance between the electrode 7 and the workpiece W is ΔD, the cable 8,
Considering that the capacitance of 9 changes by ΔC c , e 0
The value of And C s + C c = C v + C c and C 1 = C 2 Becomes

ここで、C+C+ΔC+ΔC<<C1の条件内で
あれば、 となり、前述した(1)式を(3)式に代入すれば、 となり、ブリッジの出力電圧e0はケーブル8、9の静電
容量変化ΔCの影響はなく、測定すべきギャップ量の
変位ΔDに応じて変化することとなる。
Here, if the condition of C v + C c + ΔC s + ΔC c << C 1 is satisfied, Then, by substituting the equation (1) into the equation (3), Therefore, the output voltage e 0 of the bridge is not affected by the capacitance change ΔC c of the cables 8 and 9, and changes according to the displacement ΔD of the gap amount to be measured.

発明の効果 以上、説明したように、加工ノズル先端に1個の電極を
設け、この電極とブリッジ回路とをつなぐ第1ケーブル
とは別に、この第1ケーブルと同一の静電容量を有しか
つ誘電率の温度特性を上記第1ケーブルと同一とする第
2ケーブルを、その静電容量の変化量も上記第1ケーブ
ルと同一とする条件のもとで配線し、一端を開放した状
態で他端を上記ブリッジ回路のバランス用可変コンデン
サと並列に接続したことによって、上記第1ケーブル自
体の温度変化や曲げやねじれ等による静電容量変化を補
償し、測定すべき変位と無関係な上記第1ケーブル自体
の静電容量変化の影響を取り除き、加工ノズルとワーク
間のギャップ量変化に応じた正確な静電容量変化が検出
され、ブリッジ回路より正確な出力電圧が取り出され
る。
Effects of the Invention As described above, one electrode is provided at the tip of the processing nozzle, and the same capacitance as that of the first cable is provided, apart from the first cable connecting the electrode and the bridge circuit. The second cable having the same temperature characteristic of the permittivity as the first cable is wired under the condition that the amount of change in capacitance is also the same as that of the first cable, and the other end is opened. By connecting the end in parallel with the balancing variable capacitor of the bridge circuit, the first cable itself is compensated for the temperature change and the capacitance change due to bending, twisting, etc., and is independent of the displacement to be measured. By removing the influence of the capacitance change of the cable itself, the accurate capacitance change according to the change of the gap amount between the processing nozzle and the work is detected, and the accurate output voltage is taken out from the bridge circuit.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の装置を示す電気回路図、第2図は本発明
の装置を示す電気回路図である。 6……交流ブリッジ回路、7……電極、8……第1ケー
ブル、9……第2ケーブル、10……加工ノズル、W……
ワーク、C……バランス用可変コンデンサ。
FIG. 1 is an electric circuit diagram showing a conventional device, and FIG. 2 is an electric circuit diagram showing the device of the present invention. 6 ... AC bridge circuit, 7 ... Electrode, 8 ... First cable, 9 ... Second cable, 10 ... Machining nozzle, W ...
Work, C v ... Variable capacitor for balance.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加工ノズル先端に1個の電極を設け、この
電極を第1ケーブルを介してブリッジ回路に接続し、上
記電極とワーク間の静電容量を検出するものにおいて、
上記第1ケーブルと同一の静電容量を有しかつ誘電率の
温度特性を上記第1ケーブルと同一とする第2ケーブル
を、上記第1ケーブルと同一寸法、同一配線経路でその
静電容量の変化量も上記第1ケーブルと同一とする条件
のもとで配線し、一端を電気的に開放した状態で上記加
工ノズル先端に接続し、他端を上記ブリッジ回路のバラ
ンス用コンデンサと並列に接続したことを特徴とするレ
ーザ加工におけるギャップ量検出装置。
1. A method in which one electrode is provided at the tip of a processing nozzle, the electrode is connected to a bridge circuit via a first cable, and the electrostatic capacitance between the electrode and the work is detected,
A second cable having the same capacitance as that of the first cable and having the same temperature characteristic of dielectric constant as that of the first cable has the same dimensions and the same wiring route as those of the first cable. The amount of change is also set under the same conditions as the first cable, and is connected to the processing nozzle tip with one end electrically opened and the other end is connected in parallel with the balancing capacitor of the bridge circuit. A gap amount detection device in laser processing characterized by the above.
JP60299591A 1985-12-27 1985-12-27 Device for detecting gear gap in laser processing Expired - Lifetime JPH072278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299591A JPH072278B2 (en) 1985-12-27 1985-12-27 Device for detecting gear gap in laser processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299591A JPH072278B2 (en) 1985-12-27 1985-12-27 Device for detecting gear gap in laser processing

Publications (2)

Publication Number Publication Date
JPS62156090A JPS62156090A (en) 1987-07-11
JPH072278B2 true JPH072278B2 (en) 1995-01-18

Family

ID=17874615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299591A Expired - Lifetime JPH072278B2 (en) 1985-12-27 1985-12-27 Device for detecting gear gap in laser processing

Country Status (1)

Country Link
JP (1) JPH072278B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2597597B2 (en) * 1987-09-19 1997-04-09 株式会社日平トヤマ Sensor output sampling method in laser beam machine
GB8813315D0 (en) * 1988-06-06 1988-07-13 Serrano J P Beam delivery system
GB2377664A (en) 2001-06-22 2003-01-22 Nippei Toyama Corp Laser beam machining apparatus and laser beam machining method
JP5049056B2 (en) * 2007-06-05 2012-10-17 三菱電機株式会社 Status detection device and laser processing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3664277D1 (en) * 1985-02-08 1989-08-17 Elektroniktechnologie Get Measuring arrangement using a capacitive electrode and machine tool with integrated electrode

Also Published As

Publication number Publication date
JPS62156090A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
KR100379622B1 (en) Static capacitance-to-voltage converter and converting method
US3805150A (en) Environment immune high precision capacitive gauging system
EP0503032B1 (en) Capacitance sensing probe
JPH07191055A (en) Capacitive acceleration sensor
DE69203727D1 (en) Method for dynamic contactless measurement of a displacement or dielectric constant with the help of a capacitive sensor.
US5028875A (en) Linear rotary differential capacitance transducer
US4688141A (en) Device for electrostatically suspending a body or sample
JP2002350477A (en) Impedance detecting circuit
JP3474111B2 (en) Microcapacity measurement system and probing system
JPH072278B2 (en) Device for detecting gear gap in laser processing
JP2586406B2 (en) Capacitive acceleration sensor
JP3469586B2 (en) Impedance-voltage conversion device and conversion method
JP3815771B2 (en) Capacitance type gap sensor and signal detection method thereof
EP0230198B1 (en) Triaxial electrostatic accelerometer with dual electrical connection to its test weight
JP2655886B2 (en) Laser processing machine nozzle distance detection device
SU1525624A1 (en) Pick-up of electric field
JP3757226B2 (en) Carrier type 3-wire strain measurement system
JP2772495B2 (en) Capacity measuring device
SU1334271A1 (en) Electric machine stator
SU1205064A1 (en) Method of evaluating voltage ratio of high-voltage capacitor
SU974098A1 (en) Capacitive displacement pickup
SU1471152A1 (en) Method of determining charge density in dielectrics
JPH0355515A (en) Temperature compensating circuit for liquid crystal display device
JPS6367502A (en) Temperature correcting method for electrostatic capacity type stroke sensor
SU1739182A1 (en) Differential capacity transducer for linear displacements