JPH07211915A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPH07211915A
JPH07211915A JP1884094A JP1884094A JPH07211915A JP H07211915 A JPH07211915 A JP H07211915A JP 1884094 A JP1884094 A JP 1884094A JP 1884094 A JP1884094 A JP 1884094A JP H07211915 A JPH07211915 A JP H07211915A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
natural oxide
source
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1884094A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
広 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP1884094A priority Critical patent/JPH07211915A/en
Publication of JPH07211915A publication Critical patent/JPH07211915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the number of removing processes of natural oxide films formed on the surface of a semiconductor layer composed of amorphous silicon, etc. CONSTITUTION:After forming an impurity injection mask 15a on the upper surface of a semiconductor layer 14, a natural oxide film formed on the surface of the layer 14 in an area which is not coated with the mask 15a is removed by using the aqueous solution of 1% diluted hydrofluoric acid. The removal of the natural oxide film is performed to improve the ohmic contact between source and drain electrodes formed in the succeeding process and the semiconductor layer 14. After removal, a layer 16 for forming the source and drain electrodes composed of chromium is formed on the entire upper surface of the layer 14. Then ions of such an impurity as phosphor, etc., are implanted into the layer 14 through the layer 16 by using the mask 15a as a mask. When the ions are implanted, no natural oxide film is formed on the surface of the layer 14 after the layer 16 is formed. Therefore, the number of natural oxide film removing processes can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は薄膜トランジスタの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor.

【0002】[0002]

【従来の技術】従来の薄膜トランジスタの製造方法の一
例について図2を参照しながら説明する。まず、図2
(A)に示すように、ガラス基板1の上面にクロムから
なるゲート電極2を形成し、その全上面に窒化シリコン
からなるゲート絶縁膜3を形成し、その上面にアモルフ
ァスシリコンやポリシリコン等の非単結晶半導体からな
る半導体層4を形成し、その上面の所定の個所に窒化シ
リコンからなる不純物注入マスク5を形成する。次に、
不純物注入マスク5によって被われていない領域におけ
る半導体層4の表面に形成された自然酸化膜(図示せ
ず)を1%の希フッ酸水溶液を用いて除去する。これ
は、次工程における不純物注入の均一性や再現性を保持
するために行う。次に、図2(B)に示すように、不純
物注入マスク5をマスクとしてリンイオンやボロンイオ
ン等の不純物を注入し、不純物注入マスク5下以外の領
域における半導体層4にソース・ドレイン領域となる不
純物注入領域4aを形成する。次に、不純物注入領域4
aの表面に形成された自然酸化膜(図示せず)を同じく
1%の希フッ酸水溶液を用いて除去する。これは、次工
程において形成するソース・ドレイン電極と半導体層4
のソース・ドレイン領域となる不純物注入領域4aとの
オーミックコンタクトを良好にするために行う。以下、
図示していないが、素子分離等の所定の工程を経ると、
逆スタガ型の薄膜トランジスタが完成する。
2. Description of the Related Art An example of a conventional method of manufacturing a thin film transistor will be described with reference to FIG. First, FIG.
As shown in (A), a gate electrode 2 made of chromium is formed on the upper surface of a glass substrate 1, a gate insulating film 3 made of silicon nitride is formed on the entire upper surface thereof, and an amorphous silicon or polysilicon film is formed on the upper surface thereof. A semiconductor layer 4 made of a non-single crystal semiconductor is formed, and an impurity implantation mask 5 made of silicon nitride is formed at a predetermined portion on the upper surface thereof. next,
The natural oxide film (not shown) formed on the surface of the semiconductor layer 4 in the region not covered by the impurity implantation mask 5 is removed using a 1% dilute hydrofluoric acid aqueous solution. This is performed in order to maintain the uniformity and reproducibility of the impurity implantation in the next process. Next, as shown in FIG. 2B, impurities such as phosphorus ions and boron ions are implanted using the impurity implantation mask 5 as a mask to form source / drain regions in the semiconductor layer 4 in regions other than under the impurity implantation mask 5. The impurity implantation region 4a is formed. Next, the impurity implantation region 4
The natural oxide film (not shown) formed on the surface of a is similarly removed using a 1% dilute hydrofluoric acid aqueous solution. This is because the source / drain electrodes and the semiconductor layer 4 which will be formed in the next step.
This is performed to improve the ohmic contact with the impurity-implanted region 4a which will be the source / drain region. Less than,
Although not shown, after a predetermined process such as element isolation,
An inverted staggered thin film transistor is completed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
このような薄膜トランジスタの製造方法では、希フッ酸
水溶液を用いた自然酸化膜除去工程が2回あり、工程数
が多いという問題があった。この発明の目的は、工程数
を少なくすることのできる薄膜トランジスタの製造方法
を提供することにある。
However, the conventional method of manufacturing a thin film transistor as described above has a problem in that there are two natural oxide film removing steps using a dilute hydrofluoric acid aqueous solution, which is a large number of steps. An object of the present invention is to provide a method of manufacturing a thin film transistor that can reduce the number of steps.

【0004】[0004]

【課題を解決するための手段】この発明は、非単結晶半
導体層を成膜し、この半導体層表面上の自然酸化膜を除
去し、この後直ちに前記半導体層上に導電層を成膜し、
この導電層を介して前記半導体層のソース・ドレイン領
域となる領域に不純物を注入するようにしたものであ
る。
According to the present invention, a non-single crystal semiconductor layer is formed, a natural oxide film on the surface of the semiconductor layer is removed, and immediately thereafter, a conductive layer is formed on the semiconductor layer. ,
Impurities are implanted into the regions which will be the source / drain regions of the semiconductor layer through the conductive layer.

【0005】[0005]

【作用】この発明によれば、半導体層表面上の自然酸化
膜を除去した後直ちに半導体層上に導電層を成膜し、こ
の導電層を介して半導体層のソース・ドレイン領域とな
る領域に不純物を注入しているので、導電層を成膜した
後に半導体層の表面に自然酸化膜が形成されることがな
く、したがって自然酸化膜の除去を導電層を成膜する前
に1回行えばよく、工程数を少なくすることができる。
According to the present invention, the conductive layer is formed on the semiconductor layer immediately after the natural oxide film on the surface of the semiconductor layer is removed, and the conductive layer is formed through the conductive layer to form the source / drain regions of the semiconductor layer. Since the impurities are injected, a natural oxide film is not formed on the surface of the semiconductor layer after the conductive layer is formed. Therefore, if the natural oxide film is removed once before the conductive layer is formed. Well, the number of steps can be reduced.

【0006】[0006]

【実施例】図1(A)〜(E)はそれぞれこの発明の一
実施例における薄膜トランジスタの各製造工程を示した
ものである。そこで、これらの図を順に参照しながら、
この実施例の薄膜トランジスタの製造方法について説明
する。
1 (A) to 1 (E) show respective steps of manufacturing a thin film transistor according to an embodiment of the present invention. So, referring to these figures in order,
A method of manufacturing the thin film transistor of this example will be described.

【0007】まず、図1(A)に示すように、ガラス基
板11の上面にスパッタ等によりクロム、アルミニウム
等の導電材料からなるゲート電極12を成膜パターニン
グする。次に、ゲート電極12を含むガラス基板11の
上面全体にシリコンの酸化物や窒化物等からなるゲート
絶縁膜13をスパッタやプラズマCVD等により成膜す
る。次に、ゲート絶縁膜13の上面にアモルファスシリ
コンやポリシリコン等の非単結晶半導体からなる半導体
層14をプラズマCVD等により成膜する。次に、半導
体層14の上面にシリコンの酸化物や窒化物、金属材料
等からなる不純物注入マスク形成用層15をプラズマC
VD等により成膜する。ゲート絶縁膜13、半導体層1
4、不純物注入マスク形成用層15の成膜は、大気中に
曝すことなく連続的に行うと能率的である。次に、不純
物注入マスク形成用層15をパターニングし、図1
(B)に示すように、ゲート電極12に対応する部分に
おける半導体層14の上面に不純物注入マスク15aを
形成する。次に、不純物注入マスク15aによって被わ
れていない領域における半導体層14の表面に形成され
た自然酸化膜(図示せず)を1%の希フッ酸水溶液を用
いて除去する。これは、次工程において形成するソース
・ドレイン電極と半導体層14とのオーミックコンタク
トを良好にするために行う。
First, as shown in FIG. 1A, a gate electrode 12 made of a conductive material such as chromium or aluminum is formed and patterned on the upper surface of a glass substrate 11 by sputtering or the like. Next, a gate insulating film 13 made of silicon oxide or nitride is formed on the entire upper surface of the glass substrate 11 including the gate electrode 12 by sputtering, plasma CVD or the like. Next, a semiconductor layer 14 made of a non-single crystal semiconductor such as amorphous silicon or polysilicon is formed on the upper surface of the gate insulating film 13 by plasma CVD or the like. Next, an impurity implantation mask forming layer 15 made of silicon oxide or nitride, a metal material, or the like is formed on the upper surface of the semiconductor layer 14 by plasma C.
A film is formed by VD or the like. Gate insulating film 13, semiconductor layer 1
4. The film formation of the impurity implantation mask forming layer 15 is efficient if continuously performed without being exposed to the atmosphere. Next, the impurity implantation mask forming layer 15 is patterned, and the pattern shown in FIG.
As shown in (B), an impurity implantation mask 15a is formed on the upper surface of the semiconductor layer 14 in the portion corresponding to the gate electrode 12. Next, the natural oxide film (not shown) formed on the surface of the semiconductor layer 14 in the region not covered by the impurity implantation mask 15a is removed using a 1% dilute hydrofluoric acid aqueous solution. This is performed in order to improve the ohmic contact between the source / drain electrodes formed in the next step and the semiconductor layer 14.

【0008】この後、直ちに、図1(C)に示すよう
に、不純物注入マスク15aを含む半導体層14の上面
全体にソース・ドレイン電極形成用層(導電層)16を
スパツタやプラズマCVD等により100〜500Å程
度の膜厚に成膜する。この場合、自然酸化膜除去後2時
間以内望ましくは1時間程度以内に成膜するのがよい。
次に、図1(D)に示すように、不純物注入マスク15
aをマスクとしてリンイオンやボロンイオン等の不純物
をソース・ドレイン電極形成用層16を介して注入し、
不純物注入マスク15a下以外の領域における半導体層
14にソース・ドレイン領域となる不純物注入領域14
aを形成する。
Immediately thereafter, as shown in FIG. 1C, a source / drain electrode forming layer (conductive layer) 16 is formed on the entire upper surface of the semiconductor layer 14 including the impurity implantation mask 15a by sputtering or plasma CVD. The film is formed to a film thickness of about 100 to 500Å. In this case, it is preferable to form the film within 2 hours after removing the natural oxide film, preferably within about 1 hour.
Next, as shown in FIG. 1D, the impurity implantation mask 15
Impurities such as phosphorus ions and boron ions are implanted through the source / drain electrode forming layer 16 using a as a mask,
Impurity implantation regions 14 to be source / drain regions are formed in the semiconductor layer 14 in regions other than under the impurity implantation mask 15a
a is formed.

【0009】ここで、不純物注入の具体的な一例につい
て説明する。ゲート電極12を膜厚が1000Åのクロ
ム、ゲート絶縁膜13を膜厚が4000Åの窒化シリコ
ン、半導体層14を膜厚が500Åのポリシリコン、不
純物注入マスク15aを膜厚が2000Åの窒化シリコ
ン、ソース・ドレイン電極形成用層16を膜厚が250
Åのクロムで形成する。この場合、リンイオンの注入は
加速度エネルギ15〜50kV、ドーズ量1015〜17
/cm2で行うと、不純物注入領域14aに従来例とほ
ぼ同様にリンイオンが注入される。図2(B)に示す従
来例では、一般的に、リンイオンは加速度エネルギ10
kV、ドーズ量1015〜17個/cm2で注入するので、
加速度エネルギを従来よりも高くするだけでよいことが
判る。
A specific example of impurity implantation will be described here. The gate electrode 12 has a thickness of 1000 Å, the gate insulating film 13 has a thickness of 4000 Å, the semiconductor layer 14 has a thickness of 500 Å, and the impurity implantation mask 15a has a thickness of 2000 Å. -Drain electrode forming layer 16 has a film thickness of 250
Formed with Å chrome. In this case, if the implantation of phosphorus ions is carried out at an acceleration energy of 15 to 50 kV and a dose amount of 10 15 to 17 ions / cm 2 , phosphorus ions are implanted into the impurity implantation region 14a in substantially the same manner as in the conventional example. In the conventional example shown in FIG. 2B, generally, phosphorus ions have an acceleration energy of 10
Since the injection is performed at kV and a dose of 10 15 to 17 cells / cm 2 ,
It can be seen that it is only necessary to make the acceleration energy higher than before.

【0010】次に、ソース・ドレイン電極形成用層16
および半導体層14をパターニングすると、図1(E)
に示すように、真性領域からなるチャネル領域14bお
よび不純物注入領域からなるソース・ドレイン領域14
cを備えた半導体層14がデバイス領域に形成され、ま
たソース・ドレイン領域14c上にソース・ドレイン電
極16aが形成される。なお、注入不純物の活性化は、
200〜300℃程度の温度で1時間以上の熱処理によ
り行うか、あるいは図示はしないが、この後の工程でプ
ラズマCVDによりシリコンの酸化物や窒化物等からな
るオーバーコート膜を成膜する際に同時に行う。かくし
て、逆スタガ型の薄膜トランジスタが完成する。
Next, the source / drain electrode forming layer 16
When the semiconductor layer 14 is patterned, the pattern shown in FIG.
, The source / drain region 14 formed of the intrinsic region and the impurity-implanted region 14
The semiconductor layer 14 including c is formed in the device region, and the source / drain electrodes 16a are formed on the source / drain regions 14c. The activation of the implanted impurities is
Heat treatment is performed at a temperature of about 200 to 300 ° C. for 1 hour or more, or, though not shown, when an overcoat film made of silicon oxide or nitride is formed by plasma CVD in a subsequent step. Do at the same time. Thus, an inverted stagger type thin film transistor is completed.

【0011】このように、この薄膜トランジスタの製造
方法では、半導体層14表面上の自然酸化膜を除去した
後直ちに半導体層14上にソース・ドレイン電極形成用
層16を成膜しているので、ソース・ドレイン電極16
aと半導体層14のソース・ドレイン領域14cとのオ
ーミックコンタクトを良好とすることができる。また、
半導体層14上にソース・ドレイン電極形成用層16を
成膜した後このソース・ドレイン電極形成用層16を介
して半導体層14のソース・ドレイン領域14cとなる
領域に不純物を注入しているので、ソース・ドレイン電
極形成用層16を成膜した後に半導体層14の表面に自
然酸化膜が形成されることがなく、したがって自然酸化
膜の除去をソース・ドレイン電極形成用層16を成膜す
る前に1回行えばよく、工程数を少なくすることができ
る。
As described above, in this method of manufacturing a thin film transistor, the source / drain electrode forming layer 16 is formed on the semiconductor layer 14 immediately after the natural oxide film on the surface of the semiconductor layer 14 is removed.・ Drain electrode 16
The ohmic contact between a and the source / drain region 14c of the semiconductor layer 14 can be improved. Also,
Since the source / drain electrode forming layer 16 is formed on the semiconductor layer 14, impurities are injected into the region to be the source / drain region 14c of the semiconductor layer 14 through the source / drain electrode forming layer 16. A natural oxide film is not formed on the surface of the semiconductor layer 14 after the source / drain electrode forming layer 16 is formed. Therefore, the natural oxide film is removed to form the source / drain electrode forming layer 16. It may be performed once before, and the number of steps can be reduced.

【0012】なお、上述の実施例においては、ソース・
ドレイン電極16aが薄く形成されているが、必要に応
じて、再度同材料またはオーミックコンタクトとなる材
料を成膜して所望の膜厚としてもよい。また、ボトムゲ
ート型に限らず、トップゲート型の薄膜トランジスタ
等、種々、変形して適用することが可能である。
In the above embodiment, the source
Although the drain electrode 16a is formed thinly, the same material or a material to be an ohmic contact may be formed again to have a desired film thickness, if necessary. Further, the invention is not limited to the bottom gate type, and various modifications such as a top gate type thin film transistor can be applied.

【0013】[0013]

【発明の効果】以上説明したように、この発明によれ
ば、半導体層表面上の自然酸化膜を除去した後直ちに半
導体層上に導電層を成膜し、この導電層を介して半導体
層のソース・ドレイン領域となる領域に不純物を注入し
ているので、導電層を成膜した後に半導体層の表面に自
然酸化膜が形成されることがなく、したがって自然酸化
膜の除去を導電層を成膜する前に1回行えばよく、工程
数を少なくすることができる。
As described above, according to the present invention, a conductive layer is formed on the semiconductor layer immediately after the natural oxide film on the surface of the semiconductor layer is removed, and the conductive layer is formed through the conductive layer. Since the impurities are implanted into the source / drain regions, a natural oxide film is not formed on the surface of the semiconductor layer after the conductive layer is formed. The number of steps can be reduced by performing the process once before the film formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)〜(E)はそれぞれこの発明の一実施例
における薄膜トランジスタの各製造工程を示す断面図。
1A to 1E are cross-sectional views showing respective manufacturing steps of a thin film transistor according to an embodiment of the present invention.

【図2】(A)および(B)はそれぞれ従来の薄膜トラ
ンジスタの各製造工程を示す断面図。
2A and 2B are cross-sectional views showing respective manufacturing steps of a conventional thin film transistor.

【符号の説明】[Explanation of symbols]

14 半導体層 14c ソース・ドレイン領域 15a 不純物注入マスク 16 ソース・ドレイン電極形成用層(導電層) 16a ソース・ドレイン電極 14 semiconductor layer 14c source / drain region 15a impurity implantation mask 16 source / drain electrode formation layer (conductive layer) 16a source / drain electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 21/266 H01L 21/265 M H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/265 21/266 H01L 21/265 MH

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非単結晶半導体層を成膜し、この半導体
層表面上の自然酸化膜を除去し、この後直ちに前記半導
体層上に導電層を成膜し、この導電層を介して前記半導
体層のソース・ドレイン領域となる領域に不純物を注入
することを特徴とする薄膜トランジスタの製造方法。
1. A non-single crystal semiconductor layer is formed, a natural oxide film on the surface of the semiconductor layer is removed, and immediately thereafter, a conductive layer is formed on the semiconductor layer, and the conductive layer is formed through the conductive layer. A method of manufacturing a thin film transistor, which comprises implanting an impurity into a region to be a source / drain region of a semiconductor layer.
【請求項2】 前記不純物の注入後、前記導電層をパタ
ーニングしてソース・ドレイン電極を形成することを特
徴とする請求項1記載の薄膜トランジスタの製造方法。
2. The method of manufacturing a thin film transistor according to claim 1, wherein after the implantation of the impurities, the conductive layer is patterned to form source / drain electrodes.
JP1884094A 1994-01-20 1994-01-20 Manufacture of thin film transistor Pending JPH07211915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1884094A JPH07211915A (en) 1994-01-20 1994-01-20 Manufacture of thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1884094A JPH07211915A (en) 1994-01-20 1994-01-20 Manufacture of thin film transistor

Publications (1)

Publication Number Publication Date
JPH07211915A true JPH07211915A (en) 1995-08-11

Family

ID=11982763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1884094A Pending JPH07211915A (en) 1994-01-20 1994-01-20 Manufacture of thin film transistor

Country Status (1)

Country Link
JP (1) JPH07211915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911872A2 (en) * 1997-10-24 1999-04-28 Lüder, Ernst, Prof. Dr.-Ing. habil. Method of manufacturing thin film transistors
US6300181B1 (en) 1998-07-22 2001-10-09 Stmicroelectronics S.R.L. Process for manufacturing an electronic device including MOS transistors with salicided junctions and non-salicided resistors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911872A2 (en) * 1997-10-24 1999-04-28 Lüder, Ernst, Prof. Dr.-Ing. habil. Method of manufacturing thin film transistors
EP0911872A3 (en) * 1997-10-24 1999-11-17 Lüder, Ernst, Prof. Dr.-Ing. habil. Method of manufacturing thin film transistors
US6300181B1 (en) 1998-07-22 2001-10-09 Stmicroelectronics S.R.L. Process for manufacturing an electronic device including MOS transistors with salicided junctions and non-salicided resistors

Similar Documents

Publication Publication Date Title
JPH0583197B2 (en)
JPS6113670A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JPH07211915A (en) Manufacture of thin film transistor
JP2503656B2 (en) Thin film field effect transistor and method of manufacturing the same
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JPH05335578A (en) Manufacture of thin film transistor
JP2522364B2 (en) Method for manufacturing thin film field effect transistor
JPH0521463A (en) Manufacture of thin film transistor
KR100265824B1 (en) Method for fabricating transistor of ldd structure
JPH0555258A (en) Manufacture of thin film transistor
JP3166263B2 (en) Method for manufacturing thin film transistor
JPH05152328A (en) Manufacturing method of thin film transistor
JPH06209011A (en) Manufacture of thin film transistor
JPH0555261A (en) Manufacture of thin film transistor
JPH04230024A (en) Manufacture of semiconductor device
KR920009894B1 (en) Manufacturing method of high-voltage semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPH06260498A (en) Thin-film transistor and manufacture thereof
JPH0571193B2 (en)
JPH07183534A (en) Manufacture of thin film transistor
JPH04130734A (en) Polycrystalline semiconductor thin-film transistor and manufacture thereof
TW279259B (en) Making method of electrostatic discharge device
JPS61231765A (en) Manufacture of thin film semiconductor device
KR960035846A (en) Junction Formation Method Using Silicide
JPS6292371A (en) Thin-film transistor and manufacture thereof