JPH07194967A - 流動床中の固体粒子の被覆方法及び表面処理の方法 - Google Patents

流動床中の固体粒子の被覆方法及び表面処理の方法

Info

Publication number
JPH07194967A
JPH07194967A JP6286922A JP28692294A JPH07194967A JP H07194967 A JPH07194967 A JP H07194967A JP 6286922 A JP6286922 A JP 6286922A JP 28692294 A JP28692294 A JP 28692294A JP H07194967 A JPH07194967 A JP H07194967A
Authority
JP
Japan
Prior art keywords
fluidized bed
plasma
coating
solid particles
mbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6286922A
Other languages
English (en)
Other versions
JP3594667B2 (ja
Inventor
Klaus Harth
ハルト クラウス
Hartmut Hibst
ヒプスト ハルトムート
Wolfgang Mattmann
マットマン ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JPH07194967A publication Critical patent/JPH07194967A/ja
Application granted granted Critical
Publication of JP3594667B2 publication Critical patent/JP3594667B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Glanulating (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】 【目的】 流動床中の固体粒子の被覆方法及び表面処理
の方法。 【構成】 プラズマを流動床の外部で圧力0.01〜5
00ミリバールで発生させ、かつプラズマ活性化された
ガスを、圧力0.1〜500ミリバールで運転される流
動床中に導入し、この場合、プラズマをガス状被覆剤の
全体量及び場合によっては他のガスから発生させるか又
は、ガス状被覆剤の部分量及び場合によっては他のガス
から発生させかつ被覆剤残量を直接流動床中に導入する
か或いは、プラズマを他のガスから発生させかつガス状
被覆剤の全体量を直接流動床中に導入する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、プラズマからのガス状
被覆剤ないしは処理剤の塗布ないしは作用による、流動
床中の固体粒子の被覆及び表面処理の改善された方法に
関する。
【0002】
【従来の技術】固体粒子の被覆には、より高い耐食性を
達成するために、例えば金属磁性顔料が推奨される。こ
のために金属固体粒子は、薄い炭素含有層で被覆され
る。作用物質の被覆は、同様に典型的な使用分野であ
る。従って、例えば、作用物質の遅延された遊離及び改
善された取り扱い性が、達成されることができる。
【0003】固体粒子の表面処理によって、例えば該固
体粒子の湿潤可能性は、影響を及ぼされる。従って有色
顔料の表面は、酸素の作用によって粗面化することがで
き、このことによって有色顔料の分散は簡易化される。
【0004】上記方法は、一定の要求を満たさなければ
ならず、この場合、固体粒子の均一な被覆ないしは表面
処理が第一に挙げられる。この場合には通常、僅かな変
動幅のみが許容され、かつこの目標設定及びこれに近い
目標設定をできるだけ経済的な方法で工業的作業で維持
するためには、装置及び処理技術についての出費は相応
して高い。
【0005】公知方法の場合にはアルミニウム粒子は、
プラズマトーチが内部に突出している流動床中で炭素含
有層で被覆される(T. Kojima他、Journal De Physique
IV,Colloque C2 (1991), "Development of A Plasma J
etting Fluidized Bed Reactor"、429〜436頁)。
この場合には、キャリアーガスとしてアルゴン及び被覆
剤としてメタンと水素との混合物が使用されている(4
30頁)。プラズマは、直流電圧で運転されるプラズマ
トーチによって発生し、このプラズマトーチは直接流動
床中に突出している。プラズマ発生によってメタンから
ラジカルが生じ、このラジカルは、より大きな有機分子
を得るためのラジカル連鎖反応を生じさせ、この分子
は、最後は架橋された有機層をアルミニウム粒子上に形
成する。しかしながら、流動床へのプラズマトーチの直
接の作用によって、この方法の場合には著しく高い被覆
温度が生じ、その結果、専ら温度安定性物質、例えば金
属−もしくはセラミック粉末しか被覆することができな
い。
【0006】さらに、固体粒子を低圧方法で、直流電圧
で運転されるカスケード型アーク芯を用いて被覆する方
法が公知である(米国特許第4948485号明細
書)。この場合には被覆は、粒子流をアーク芯の付近を
導通することによって行なわれる(第6段、第8〜27
行)。圧力を約0.1バール以下の値に下げること(第
2段、第54〜66行)によって確かに被覆温度の減少
を達成することができるが、しかし、粒子は、短時間し
かアーク芯の作用にさらされることができず、このこと
によって、この方法の使用可能性は、著しく制限され
る。さらにこの方法の場合には、粒子の均一な被覆が形
成されることは、著しく困難である。
【0007】ドイツ連邦共和国特許出願公開第3617
428号明細書には、建築材料の被覆を常圧で運転され
る流動床で行なう方法が記載されており、この場合、場
合によっては水素は、プラズマトーチを用いて予熱され
る。
【0008】
【発明が解決しようとする課題】従って本発明の課題
は、上記欠点を除去しかつ、温度に敏感な固体粒子の均
一な被覆ないしは表面処理を可能にし、この場合、活性
化されたプロセスガス中での固体粒子の十分に長い滞留
時間を可能にする、改善された方法を見出すことであっ
た。
【0009】
【課題を解決するための手段】従って、プラズマを流動
床の外部で圧力0.01〜500ミリバールで発生さ
せ、かつプラズマ活性化されたガスを、圧力0.1〜5
00ミリバールで運転される流動床中に導入し、この場
合、 a. プラズマをガス状被覆剤の全体量及び場合によっ
ては他のガスから発生させるか、 b. プラズマをガス状被覆剤の部分量及び場合によっ
ては他のガスから発生させ、かつ残りの量を直接流動床
中に導入するか又は、 c. プラズマを他のガスから発生させ、かつガス状被
覆剤の全体量を直接流動床中に導入すること を特徴とする、プラズマからのガス状被覆剤の塗布によ
る、流動床中の固体粒子の被覆方法が見出された。
【0010】さらに本発明は、固体粒子の表面処理の方
法に関する。
【0011】
【作用】プラズマ発生によってラジカル及びラジカル分
解生成物の形成に必要なエネルギーが導入され、このラ
ジカル及びラジカル分解生成物は、例えば被覆の場合に
は最後は固体粒子上に、架橋された層を形成する。この
場合には被覆過程は、プラズマ発生と分離された流動床
中で行なわれ、この場合、固体粒子は有利に比較的低い
温度にのみさらされる。
【0012】プラズマ発生の際の温度は、通常著しく高
く、該温度は、約1000℃の値になることがある。流
動床をプラズマ発生から分離すること及び圧力を下げる
ことによって、該流動床中に含有されている固体粒子は
明らかに低い温度にさらされる。この作用は、有利な実
施態様の場合には流動床中で約0.01〜100ミリバ
ールに圧力を下げることによって、かつプラズマ発生の
場合には約0.1〜100ミリバールに圧力を下げるこ
とによって、さらに強化することができる。このように
して被覆は、流動床中で既に約20℃からの温度で実施
することができる。この方法のための有利な温度範囲
は、約20〜250℃、特に40〜200℃である。さ
らに該方法は、プラズマによって促進される公知の被覆
方法の場合に生じるより高い温度での使用にも好適であ
る。プラズマ発生は、ガス状被覆剤の部分量もしくは全
体量の範囲内で行なうことができる。さらにプラズマを
他のガス中で発生させることは可能であり、このガス
は、引き続き、被覆剤と分離して流動床中に導入され、
かつラジカルを被覆剤に移転する。
【0013】固体粒子の表面処理の場合には、意味的に
は同じことが適用され、この場合には、処理ガス、例え
ば酸素の存在下で、固体粒子の表面性質の意図された変
化が達成される。
【0014】次に、固体粒子の被覆の方法は、図に従っ
て詳説される。
【0015】この方法に必要なプラズマは、市販の装置
(1)を用いて形成され、この場合、活性化すべきガス
は導管(2)によって供給される。プラズマは、通常、
電磁波による励起によって発生する。
【0016】有利な実施態様の場合にはプラズマ発生
は、例えばマグネトロンによって0.5〜5GHzの周波
数範囲内で、特に2.45GHzで行なわれる。特に有効
でありかつ安定した励起は、後接続された導波管中で公
知方法で定在波が形成される場合に達成される。別の有
利な装置の場合には、プラズマ発生は、コイル内の誘導
的結合によって行なうできる。この場合には、殊に5kH
z〜50MHzの周波数が推奨される。
【0017】活性化されたガスは、被覆剤からなってい
てもよいし、他のガスからなっていてもよく、かつ導管
(3)によって流動床反応器(4)中に到達する。導管
(5)によって流動床反応器に別のガス、例えば不活性
キャリヤーガス又は被覆剤は、供給することができる。
未処理の固体粒子添加は、導管(6)によって行なわれ
る。流動床反応器(4)の内部で、ディフューザー
(7)の上部に、主として、装入された固体粒子からな
る流動床(8)が存在する。公知の構造的措置、例えば
流動床反応器を円錐形にすることによって、場合によっ
てはディフューザーを省略することができる。プラズマ
によって生じた、被覆剤からの分解生成物は、固体粒子
上に沈積し、かつ被覆された粒子は、導管(9)によっ
て流動床反応器から取り出される。
【0018】ガス流は、ポンプ(11)を用いて導管
(10)を通して流動床反応器から導出される。
【0019】プラズマの安定性、粒子の温度負荷並びに
被覆の均一性及び品質は、プラズマ内及び流動床中での
圧力挙動及びガス流挙動に影響される。方法の有利な実
施態様の場合には、プラズマ発生の際の圧力は、約0.
01〜100ミリバール、特に1〜20ミリバールであ
る。この場合には、流動床中の圧力約0.1〜100ミ
リバール、特に1〜20ミリバールが推奨される。より
大きな圧力は、プラズマ源で、かつ後に流動床中の被覆
材料で激しい温度上昇を生じさせる可能性がある。
【0020】さらなる温度低下を達成するために、ガス
がプラズマ発生の際に冷却されることは推奨される。こ
のために、例えば、適当なガス状もしくは液状の冷媒に
よって作用を受ける、石英からなる二重管を使用するこ
とができる。適当な媒体の選択の際には、前記の温度挙
動の他にさらに、電磁波に対して僅かな吸収能を有する
ことに注意しなければならない。冷媒として、例えば空
気は適当である。
【0021】流動床反応器には、より多くの活性化もし
くは未活性化ガスを供給することができる。この場合に
は、被覆剤を流動床反応器中で初めて、他の活性化ガス
の添加によってプラズマ状態に変換することは可能であ
る。
【0022】流動床反応器中へのガスの供給は、種々で
あることができ、供給は、上、側面及び下から可能であ
る。この場合には制御の簡易化には、複数の供給が推奨
されうる。しかしながら、流動床の構造のため、相応し
て測定されたガス流は、下から供給されなければならな
い。
【0023】新規の方法は、大きな温度範囲にわたって
使用することができる。特に有利にこの方法は、その品
質の保護のために極端に高い温度にさらされてはならな
い温度に敏感な生成物の場合に使用される。
【0024】新規の方法のための有利な使用分野は、支
持体、例えば熱可塑性もしくは熱硬化性ポリマーからな
る粒状物もしくは繊維、顔料又は有機着色剤からなる粒
状物並びに作用物質からなる粒状物の被覆である。比較
的温度安定性である支持体の被覆の場合にもこの新規の
方法は、有利であることが判明しており、それというの
も低い温度及び圧力によって、より高い経済性及び加工
安全性を達成することができるからである。適当な使用
分野は、例えば金属材料もしくはセラミック材料からな
る粉末、無機有色顔料及び磁性顔料、無機充填剤、ガラ
スもしくは炭素からなる繊維、肥料粒子又は触媒担持剤
の被覆である。
【0025】この方法の使用は、固体粒子の表面性質
を、その後加工を簡易化する程度に変化させるために推
奨することができ、このことは、例えば、プラスチック
用充填剤の場合に該当しうる。同様に作用層での固体粒
子の被覆は、典型的な使用分野であり、このことによっ
て、例えば光学的性質、磁性もしくは触媒性質に影響を
及ぼすことができる。
【0026】適当な被覆剤は、所望される被覆の種類に
よって決定される。被覆剤として原理的に、反応条件下
でガス状である全ての有機化合物が適当であり、これら
の中でも、C原子8個までを有する飽和及び不飽和の炭
化水素、例えばメタン、エタン、プロパン、ブタン、イ
ソブタン、ヘキサン、シクロヘキサン、オクタン、エチ
レン、プロピレン、ブト−1−エン、ブト−2−エン及
びブタジエンが特に適当である。さらに、例えばC1
4−アルカノール基、珪化水素、硅素有機化合物、例
えばヘキサメチルジシロキサン及び有機金属化合物、例
えば金属カルボニル、金属アルキル並びにチタンアミド
が使用され、かつこれら化合物と別の化合物との混合物
が使用される。
【0027】プラズマ発生の際にガス状被覆剤は、ラジ
カルを形成し、このラジカルは、被覆過程の際に流動床
中でラジカル連鎖反応を開始させる。ラジカルから最後
は、被覆すべき粒子の表面上に密着架橋層が生じる。3
つの実施態様(a)〜(c)に従って、被覆剤の全体量
は、プラズマ発生装置を介して流動床に供給することが
でき、この場合、他のガス、例えば窒素、酸素又は希ガ
ス、例えばネオンもしくはアルゴンを共用することもで
きる。しかし最後は、プラズマ中で任意の原子もしくは
分子の一定数のラジカルが発生し、さらにこのラジカル
が流動床に達しかつ、流動床中に直接導入することがで
きる被覆剤の残量もしくは全体量との連鎖反応を開始さ
せることのみが重要である。
【0028】固体粒子の表面処理の方法については、意
味的には同じことが適用されるが、しかしながらこの場
合には通常、他のガス例えば酸素、窒素及び/又は希ガ
スが使用される。さらに、酸素及び/又は窒素を結合し
た形で含有しているガスは、適当であると判明してい
る。酸素の作用によって、例えば固体粒子表面の粗面化
を生じさせることができ、このことによって後での他の
材料との湿潤を簡易化することができる。
【0029】有利な実施態様の場合には圧力は、プラズ
マ発生の際には約0.01〜100ミリバールに減少さ
れ、かつ流動床中では約0.1〜100ミリバールの値
に減少される。従って表面処理は、既に約20℃からの
温度で行なうことができる。
【0030】本発明による、固体粒子の被覆もしくは表
面処理の方法は、プラズマ発生と流動床とが分離されて
いるため、低い温度で実施することができる。従って、
この方法の場合には比較的温度に敏感な支持体を使用す
ることもできる。
【0031】温度安定性の支持体の場合にも新規の方法
は、有利であると判明しており、それというのも低い温
度によってより高い経済性及び加工安全性を達成するこ
とができるからである。
【0032】固体粒子の被覆が流動床中で行なわれるた
め、固体粒子の滞留時間は、広い範囲にわたって調整可
能であり、かつさらに、入念な処理が保証されている。
【0033】
【実施例】
ベラパミル(Verapamil)−遅延調剤の製造 高さ約200mm及び直径10〜26mmの円錐形実験
室用反応器中に医薬品作用物質ベラパミル(α−イソプ
ロピル−α−((N−メチル−N−ホモベラトリル)−
γ−アミノプロピル)−3,4−ジメトキシフェニルア
セトニトリル−ヒドロクロリド)からなる大きさ約1m
mの固体粒子を装入した。全体として約3gの固体粒子
を添加した。
【0034】反応器を温度約80℃及び圧力約2〜3ミ
リバールで運転した。下部から反応器中に、マイクロ波
で励起されたプラズマ活性化アルゴンを導入し、かつ上
部からエチレンを添加した。この場合には流量は、標準
条件下でアルゴン約730ml/分及びエチレン165
0ml/分であった。試験時間は、30分間であった。
【0035】固体粒子を試験中にポリマー層で被覆し
た。遅延作用の測定のために遊離率をUSP XXII(United
States Pharmacopoeia)によるパドル−モデル(paddle
-models)を用いて測定した。この方法の本質は、本発明
による方法によって得られた固体粒子を酸性溶液中に撹
拌下で溶解することにある。採取された試料中での濃度
測定によって、溶解した作用物質の時間に応じた含量が
測定される。この試験では、次の値が得られた:
【図面の簡単な説明】
【図1】本発明による流動床中の固体粒子の被覆及び表
面処理の方法を実施するための装置のフローチャート図
である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ヴォルフガング マットマン ドイツ連邦共和国 リムブルガーホーフ アルベルト−シュヴァイツァー−シュトラ ーセ 29

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 流動床中の固体粒子を、プラズマからの
    ガス状被覆剤の塗布によって被覆する方法において、プ
    ラズマを流動床の外部で圧力0.01〜500ミリバー
    ルで発生させ、かつプラズマ活性化されたガスを、圧力
    0.1〜500ミリバールで運転される流動床中に導入
    し、この場合、 a. プラズマをガス状被覆剤の全体量及び場合によっ
    ては他のガスから発生させるか、 b. プラズマをガス状被覆剤の部分量及び場合によっ
    ては他のガスから発生させ、かつ残りの量を直接流動床
    中に導入するか又は、 c. プラズマを他のガスから発生させ、かつガス状被
    覆剤の全体量を直接流動床中に導入すること を特徴とする、流動床中の固体粒子の被覆方法。
  2. 【請求項2】 流動床中の固体粒子を、プラズマからの
    ガス状被覆剤の作用によって表面処理する方法におい
    て、プラズマを流動床の外部で圧力0.01〜500ミ
    リバールで発生させ、かつプラズマ活性化されたガス
    を、圧力0.1〜500ミリバールで運転される流動床
    中に導入し、この場合、 a. プラズマをガス状被覆剤の全体量及び場合によっ
    ては他のガスから発生させるか、 b. プラズマをガス状被覆剤の部分量及び場合によっ
    ては他のガスから発生させ、かつ残りの量を直接流動床
    中に導入するか又は、 c. プラズマを他のガスから発生させ、かつガス状被
    覆剤の全体量を直接流動床中に導入すること を特徴とする、流動床中の固体粒子の表面処理方法。
JP28692294A 1993-11-27 1994-11-21 流動床中の固体粒子の被覆方法及び表面処理の方法 Expired - Fee Related JP3594667B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4340480.4 1993-11-27
DE4340480 1993-11-27

Publications (2)

Publication Number Publication Date
JPH07194967A true JPH07194967A (ja) 1995-08-01
JP3594667B2 JP3594667B2 (ja) 2004-12-02

Family

ID=6503614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28692294A Expired - Fee Related JP3594667B2 (ja) 1993-11-27 1994-11-21 流動床中の固体粒子の被覆方法及び表面処理の方法

Country Status (6)

Country Link
US (1) US5620743A (ja)
EP (1) EP0655516B1 (ja)
JP (1) JP3594667B2 (ja)
AT (1) ATE145675T1 (ja)
DE (1) DE59401158D1 (ja)
ES (1) ES2095118T3 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508923A (ja) * 2003-10-15 2007-04-12 ダウ・コーニング・アイルランド・リミテッド 樹脂の製造
JP2009510259A (ja) * 2005-09-27 2009-03-12 エーテーハー チューリヒ 基材粒子にナノ粒子を付着させる方法
WO2016075750A1 (ja) * 2014-11-11 2016-05-19 富士機械製造株式会社 大気圧プラズマ処理装置、およびプラズマ処理方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532645A1 (de) * 1995-09-05 1997-03-06 Basf Ag Verfahren zur selektiven Hydrierung von Vinyloxiran zu Butylenoxid
DE60209515T2 (de) * 2001-08-23 2006-09-28 E.I. Dupont De Nemours And Co., Wilmington Verfahren zur herstellung stabilisierter organischer farbpartikel und gerät dafür
US6537610B1 (en) 2001-09-17 2003-03-25 Springco Metal Coating, Inc. Method for providing a dual-layer coating on an automotive suspension product
FR2834298B1 (fr) * 2001-12-27 2006-12-29 Univ Lille Sciences Tech Revetement total ou partiel de particules d'une poudre dans une post decharge non ionique d'azote
DE10164309A1 (de) * 2001-12-28 2003-07-10 Fraunhofer Ges Forschung Verbesserte strukturiert-funktionale Bindematrices für Biomoleküle
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
TW200409669A (en) * 2002-04-10 2004-06-16 Dow Corning Ireland Ltd Protective coating composition
GB0323295D0 (en) * 2003-10-04 2003-11-05 Dow Corning Deposition of thin films
US7758928B2 (en) 2003-10-15 2010-07-20 Dow Corning Corporation Functionalisation of particles
US8012374B2 (en) * 2004-11-04 2011-09-06 The University Of Cincinnati Slow-release inhibitor for corrosion control of metals
EP2154937A2 (en) * 2004-11-05 2010-02-17 Dow Corning Ireland Limited Plasma system
DE102005009321A1 (de) * 2005-03-01 2006-09-07 Degussa Ag Suspension
GB0509648D0 (en) * 2005-05-12 2005-06-15 Dow Corning Ireland Ltd Plasma system to deposit adhesion primer layers
DE102005037336A1 (de) * 2005-08-04 2007-02-08 Degussa Ag Kohlenstoffmaterial
US7603963B2 (en) * 2006-05-02 2009-10-20 Babcock & Wilcox Technical Services Y-12, Llc Controlled zone microwave plasma system
US8465809B2 (en) * 2006-05-04 2013-06-18 Sri International Multiarc discharge moving bed reactor system
US20080026151A1 (en) * 2006-07-31 2008-01-31 Danqing Zhu Addition of silanes to coating compositions
DE102006037079A1 (de) 2006-08-07 2008-02-14 Evonik Degussa Gmbh Ruß, Verfahren zur Herstellung von Ruß und Vorrichtung zur Durchführung des Verfahrens
DE102007049635A1 (de) 2007-10-17 2009-04-23 Willert-Porada, Monika, Prof. Dr. Verfahren zur Beschichtung von Partikeln in einem Mikrowellen-Plasma-Wirbelschichtreaktor
DE102007060307A1 (de) 2007-12-12 2009-06-18 Evonik Degussa Gmbh Verfahren zur Nachbehandlung von Ruß
US7972659B2 (en) * 2008-03-14 2011-07-05 Ecosil Technologies Llc Method of applying silanes to metal in an oil bath containing a controlled amount of water
DE102008026894A1 (de) * 2008-06-05 2009-12-10 Evonik Degussa Gmbh Ink Jet Tinte
US8343583B2 (en) * 2008-07-10 2013-01-01 Asm International N.V. Method for vaporizing non-gaseous precursor in a fluidized bed
US20110180750A1 (en) * 2008-10-27 2011-07-28 Basf Se Method for preparing a suspension of nanoparticulate metal borides
DE102008044116A1 (de) 2008-11-27 2010-06-02 Evonik Degussa Gmbh Pigmentgranulat, Verfahren zu dessen Herstellung und Verwendung
ATE516330T1 (de) 2008-12-12 2011-07-15 Evonik Carbon Black Gmbh Ink jet tinte
NL2002590C2 (en) * 2009-03-04 2010-09-07 Univ Delft Technology Apparatus and process for atomic or molecular layer deposition onto particles during pneumatic transport.
DE102010002244A1 (de) 2010-02-23 2011-08-25 Evonik Carbon Black GmbH, 63457 Ruß, Verfahren zu seiner Herstellung und seine Verwendung
EP2424336A1 (en) 2010-08-26 2012-02-29 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Plasma powder processing apparatus and method
US8936831B2 (en) * 2012-02-03 2015-01-20 Uchicago Argonne, Llc Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles
WO2016091957A1 (en) * 2014-12-10 2016-06-16 Basf Se Process for producing an electrode containing silicon particles coated with carbon
US11433369B1 (en) 2022-05-09 2022-09-06 Lyten, Inc. Fluidized bed reactors for post-processing powdered carbon
CN115806746A (zh) * 2022-08-18 2023-03-17 杭州应星新材料有限公司 一种等离子体原位聚合硅油改性二氧化硅的方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223437A (ja) * 1982-06-18 1983-12-26 Tdk Corp 分散性を改良した無機粉末
JPS6169874A (ja) * 1984-09-14 1986-04-10 Nippon Paint Co Ltd 粉体表面処理法
DE3617428A1 (de) * 1986-05-23 1987-11-26 Krupp Gmbh Verfahren und vorrichtung zur herstellung elektrisch leitender feuerfester baustoffe und verwendung dieser baustoffe
US4948485A (en) * 1988-11-23 1990-08-14 Plasmacarb Inc. Cascade arc plasma torch and a process for plasma polymerization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508923A (ja) * 2003-10-15 2007-04-12 ダウ・コーニング・アイルランド・リミテッド 樹脂の製造
JP2009510259A (ja) * 2005-09-27 2009-03-12 エーテーハー チューリヒ 基材粒子にナノ粒子を付着させる方法
WO2016075750A1 (ja) * 2014-11-11 2016-05-19 富士機械製造株式会社 大気圧プラズマ処理装置、およびプラズマ処理方法
JPWO2016075750A1 (ja) * 2014-11-11 2017-09-07 富士機械製造株式会社 大気圧プラズマ処理装置、およびプラズマ処理方法

Also Published As

Publication number Publication date
ES2095118T3 (es) 1997-02-01
DE59401158D1 (de) 1997-01-09
ATE145675T1 (de) 1996-12-15
US5620743A (en) 1997-04-15
JP3594667B2 (ja) 2004-12-02
EP0655516B1 (de) 1996-11-27
EP0655516A1 (de) 1995-05-31

Similar Documents

Publication Publication Date Title
JP3594667B2 (ja) 流動床中の固体粒子の被覆方法及び表面処理の方法
Bretagnol et al. Surface modification of polyethylene powder by nitrogen and ammonia low pressure plasma in a fluidized bed reactor
US5234723A (en) Continous plasma activated species treatment process for particulate
Oehr et al. Plasma grafting—a method to obtain monofunctional surfaces
US4810524A (en) Inorganic powders with improved dispersibility
CA2659298C (en) Plasma surface treatment using dielectric barrier discharges
Arpagaus et al. Plasma treatment of polymer powders–from laboratory research to industrial application
US7678429B2 (en) Protective coating composition
CA2119561C (en) Apparatus for rapid plasma treatments and method
TWI262748B (en) Method of treatment with a microwave plasma
US20120261391A1 (en) Atmospheric pressure plasma method for producing surface-modified particles and coatings
JP2001295051A (ja) 材料の表面処理または被覆方法
US20020071911A1 (en) Plasma enhanced chemical deposition of conjugated polymer
Hegemann et al. Influence of non‐polymerizable gases added during plasma polymerization
KR20140096994A (ko) 미립자 분말 생성물의 기능화를 위한 장치 및 방법
JPH0673545A (ja) 表面を金属被覆する方法
EP3992330A1 (en) Powder coating method
US20010050056A1 (en) Apparatus and process for plasma treatment of particulate matter
JPH0215171A (ja) 大気圧プラズマ反応方法
Hähnel et al. Diagnostics of SiOx‐Containing Layers Deposited on Powder Particles by Dielectric Barrier Discharge
JPH03241739A (ja) 大気圧プラズマ反応方法
JPS60231494A (ja) ダイヤモンド超微粉の製造法
JPH04269721A (ja) 表面が改質されたポリマービーズ及びその製造方法
Chen et al. Grafting of N‐moieties onto octa‐methyl polyhedral oligomeric silsesquioxane microstructures by sequential continuous wave and pulsed plasma
Vacková et al. Plasma Treatment of Powders and Fibers

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees