JPH0719400B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH0719400B2
JPH0719400B2 JP59151495A JP15149584A JPH0719400B2 JP H0719400 B2 JPH0719400 B2 JP H0719400B2 JP 59151495 A JP59151495 A JP 59151495A JP 15149584 A JP15149584 A JP 15149584A JP H0719400 B2 JPH0719400 B2 JP H0719400B2
Authority
JP
Japan
Prior art keywords
recording medium
magneto
optical recording
hexagonal
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59151495A
Other languages
Japanese (ja)
Other versions
JPS6129415A (en
Inventor
元 町田
均 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP59151495A priority Critical patent/JPH0719400B2/en
Publication of JPS6129415A publication Critical patent/JPS6129415A/en
Publication of JPH0719400B2 publication Critical patent/JPH0719400B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 技術分野 本発明はハードデイスク、フロツピーデイスタ、光磁気
メモリ等に使用される光磁気記録媒体に関する。
TECHNICAL FIELD The present invention relates to a magneto-optical recording medium used in hard disks, floppy disks, magneto-optical memories and the like.

従来技術 従来、磁気記録媒体の磁性体として六方晶型酸化物を用
いたものが知られている。これら六方晶型酸化物磁性体
を用いた磁気記録媒体は、例えばBaフエライトの六角板
状の粉末粒子をバインダー中に分散してこれを支持体上
に塗布し、磁場配向して垂直磁化配向膜を作成してい
た。この場合に得られる記録媒体の記録密度は76KBI程
度であり、これ以上の高密度記録を行うためにはBaフエ
ライト六角板状の粉末の粒子径をより小さくする必要が
ある。しかし、この粒子径が小さくなると、面方向と層
方向の軸比が小さくなり、磁場配向が困難となる。ま
た、配向した六角板状のすき間に非磁性体のバインダー
があるので、この領域の分だけ記録密度が減じることに
なる。本発明はバインダーを用いることなしに基板上に
直接六方晶W型酸化物磁性体薄膜をスパツタリング、蒸
着法、イオンプレーテイング法によつて作成し、非磁性
領域の無い高密度光磁気記録媒体とする。六方晶W型酸
化物磁性体はキュリー温度が高く、半導体レーザーで記
録できない。そこでFeの1部を他の金属で置換してキュ
リー温度を下げて光磁気記録媒体に適用した。
2. Description of the Related Art Conventionally, a magnetic recording medium using a hexagonal oxide is known as a magnetic material. Magnetic recording media using these hexagonal oxide magnetic materials include, for example, hexagonal plate-like powder particles of Ba ferrite dispersed in a binder and applied on a support, and magnetic field orientation is performed to form a perpendicular magnetization orientation film. Was being created. The recording density of the recording medium obtained in this case is about 76 KBI, and it is necessary to make the particle size of the Ba ferrite hexagonal plate-like powder smaller in order to perform higher density recording. However, when the particle size becomes small, the axial ratio between the plane direction and the layer direction becomes small, and it becomes difficult to orient the magnetic field. In addition, since there is a non-magnetic binder in the oriented hexagonal plate-shaped gap, the recording density is reduced by this area. According to the present invention, a hexagonal W-type oxide magnetic thin film is directly formed on a substrate by a sputtering method, a vapor deposition method, or an ion plating method without using a binder to obtain a high-density magneto-optical recording medium having no nonmagnetic region. To do. The hexagonal W-type oxide magnetic material has a high Curie temperature and cannot be recorded by a semiconductor laser. Therefore, a part of Fe was replaced with another metal to lower the Curie temperature and applied to a magneto-optical recording medium.

目的 本発明は上記した従来の六方晶型酸化物磁性体を用いた
場合の問題点を解消し、高密度記録可能な磁気記録媒
体、構成によつては光磁気記録媒体を提供することを目
的とするものである。
An object of the present invention is to provide a magnetic recording medium capable of high-density recording, and a magneto-optical recording medium having a constitution which solves the above problems when the conventional hexagonal oxide magnetic material is used. It is what

構成 本発明は一般式▲AMe2+ 2▼〔MxFe16-x〕O27(但しAはB
a,Sr,Pb,Caの1種、Me2+はFe,Zn,Ni,Mg,Co,Cuの1種又
は2種、MはAl,Ga,Cr,In,Tiの1種又は2種、O<X≦
5)で示される六方晶W型酸化物磁性体の垂直磁化膜を
有する光磁気記録媒体である。本発明の六方晶W型酸化
物磁性体はマグネツトプランバイト型と似た構造、O2-
によつて稠密に充填された六方晶型で陽イオンはO2-
間隙に介在する。マクネツトプランバイト型と比べて飽
和磁化が10%大きく、膜面に対して垂直方向の磁気異方
性を有し、光磁気記録媒体に適した垂直磁化磁性体であ
る。
Structure The present invention has the general formula ▲ A Me 2+ 2 ▼ [MxFe 16- x] O 27 (where A is B
a, Sr, Pb, Ca 1 type, Me 2+ is Fe, Zn, Ni, Mg, Co, Cu 1 or 2 types, M is Al, Ga, Cr, In, Ti 1 or 2 types , O <X ≦
5) A magneto-optical recording medium having a perpendicular magnetization film of a hexagonal W-type oxide magnetic material. The hexagonal W-type oxide magnetic material of the present invention has a structure similar to the magnetoplumbite type, O 2−
The hexagonal type cations are densely packed with cations, and the cations intervene in the O 2 − interstices. It is a perpendicular magnetized magnetic material suitable for magneto-optical recording media because it has a saturation magnetization 10% larger than that of the McNett Plumbite type and has magnetic anisotropy perpendicular to the film surface.

具体例としては次の如きものが挙げられる。Specific examples include the following.

▲SrFe2+ 2▼〔▲Al3+ 4▼Fe12〕O27,SrCo2+Fe2+〔▲Al3+
2▼▲Fe3+ 14▼〕O27,SrZn2+Fe2+〔▲Al3+ 3▼▲Fe
3+ 13▼〕O27, ▲BaZn2+ 2▼〔▲Al3+ 2▼▲Fe3+ 14▼〕O27,▲SrZn2+ 2
〔▲Al3+ 4▼▲Fe3+ 12▼〕O27, ▲PbZn2+ 2▼〔Sc3+▲Fe3+ 15▼〕O27,▲BaZn2+ 2▼〔▲Ga
3+ 3▼▲Fe3+ 13▼〕O27, ▲BaZn2+ 2▼〔In3+▲Fe3+ 15▼〕O27,▲SrZn2+ 2▼〔▲Ga
3+ 3▼▲Fe3+ 13▼〕O27, ▲BaCu2+ 2▼〔▲Al3+ 3▼▲Fe3+ 13▼〕O27, BaNi2+Cu2+〔▲Ga3+ 3▼▲Fe3+ 13▼〕O27, ▲SrCu2+ 2▼〔▲Al3+ 3▼In3+▲Fe3+ 13▼〕O27, ▲BaFe2+ 2▼〔▲Al3+ 3▼▲Fe3+ 13▼〕O27, BaZn2+Fe2+〔▲Ga3+ 2▼In3+▲Fe3+ 13▼〕O27, ▲SrFe2+ 2▼〔▲Ga3+ 3▼▲Fe3+ 12▼〕O27, ▲PbFe2+ 2▼〔▲Ga3+ 3▼In3+▲Fe3+ 12▼〕O27, ▲SrCo2+ 2▼〔▲Co2+ 3▼Ti3/2▲Fe3+ 12▼〕O27, ▲PbFe2+ 2▼〔▲Al3+ 2▼▲Fe3+ 14▼〕O27, ▲BaCo2+ 2▼〔Co2+Ti4+▲Fe3+ 13▼〕O27, ▲BaMg2+ 2▼〔▲Al3+ 4▼▲Fe3+ 12▼〕O27, ▲SrZn2+ 2▼〔▲Zn2+ 2▼Sn4+▲Fe3+ 13▼〕O27, BiNi2+Fe2+〔▲Al3+ 3▼▲Fe3+ 13▼〕O27,▲BaFe2+ 2
〔▲Cr3+ 4▼▲Fe3+ 12▼〕O27, ▲BaZn2+ 2▼〔▲Zn2+ 2▼Ta4+▲Fe3+ 13▼〕O27,▲BaFe2+
2▼〔▲Bi3+ 3▼▲Fe3+ 13▼〕O27, BaCo2+Fe3+〔▲Ga2+ 2▼▲Fe3+ 14▼〕O27 上記のような本発明に係る六方晶W型酸化物磁性体は予
めターゲツトとされ、このターゲツトを用いて支持体上
にスパツタリング、イオンプレーテイング、イオン化ク
ラスタービーム法等の手段で支持体温度200〜650℃に維
持して膜厚1000〜30000Åの垂直磁化膜を得る。
▲ SrFe 2+ 2 ▼ 〔▲ Al 3+ 4 ▼ Fe 12 〕 O 27 , SrCo 2+ Fe 2+ 〔▲ Al 3+
2 ▼ ▲ Fe 3+ 14 ▼] O 27 , SrZn 2+ Fe 2+ 〔▲ Al 3+ 3 ▼ ▲ Fe
3+ 13 ▼] O 27 , ▲ BaZn 2+ 2 ▼ 〔▲ Al 3+ 2 ▼ ▲ Fe 3+ 14 ▼〕 O 27 , ▲ SrZn 2+ 2
(▲ Al 3+ 4 ▼ ▲ Fe 3+ 12 ▼) O 27 , ▲ PbZn 2+ 2 ▼ (Sc 3+ ▲ Fe 3+ 15 ▼) O 27 , ▲ BaZn 2+ 2 ▼ (▲ Ga
3+ 3 ▼ ▲ Fe 3+ 13 ▼] O 27 , ▲ BaZn 2+ 2 ▼ 〔In 3+ ▲ Fe 3+ 15 ▼〕 O 27 , ▲ SrZn 2+ 2 ▼ 〔▲ Ga
3+ 3 ▼ ▲ Fe 3+ 13 ▼] O 27 , ▲ BaCu 2+ 2 ▼ 〔▲ Al 3+ 3 ▼ ▲ Fe 3+ 13 ▼〕 O 27 , BaNi 2+ Cu 2+ 〔▲ Ga 3+ 3 ▼ ▲ Fe 3+ 13 ▼] O 27 , ▲ SrCu 2+ 2 ▼ 〔▲ Al 3+ 3 ▼ In 3+ ▲ Fe 3+ 13 ▼〕 O 27 , ▲ BaFe 2+ 2 ▼ 〔▲ Al 3+ 3 ▼ ▲ Fe 3+ 13 ▼] O 27 , BaZn 2+ Fe 2+ 〔▲ Ga 3+ 2 ▼ In 3+ ▲ Fe 3+ 13 ▼〕 O 27 , ▲ SrFe 2+ 2 ▼ 〔▲ Ga 3+ 3 ▼ ▲ Fe 3+ 12 ▼] O 27 , ▲ PbFe 2+ 2 ▼ 〔▲ Ga 3+ 3 ▼ In 3+ ▲ Fe 3+ 12 ▼〕 O 27 , ▲ SrCo 2+ 2 ▼ 〔▲ Co 2+ 3 ▼ Ti 3 / 2 ▲ Fe 3+ 12 ▼] O 27 , ▲ PbFe 2+ 2 ▼ 〔▲ Al 3+ 2 ▼ ▲ Fe 3+ 14 ▼〕 O 27 , ▲ BaCo 2+ 2 ▼ 〔Co 2+ Ti 4+ ▲ Fe 3 + 13 ▼] O 27 , ▲ BaMg 2+ 2 ▼ 〔▲ Al 3+ 4 ▼ ▲ Fe 3+ 12 ▼〕 O 27 , ▲ SrZn 2+ 2 ▼ 〔▲ Zn 2+ 2 ▼ Sn 4+ ▲ Fe 3+ 13 ▼] O 27 , BiNi 2+ Fe 2+ (▲ Al 3+ 3 ▼ ▲ Fe 3+ 13 ▼) O 27 , ▲ BaFe 2+ 2
[▲ Cr 3+ 4 ▼ ▲ Fe 3+ 12 ▼ ] O 27, ▲ BaZn 2+ 2 [▲ Zn 2+ 2 ▼ Ta 4+ ▲ Fe 3+ 13 ▼ ] O 27, ▲ BaFe 2+
2 ▼ (▲ Bi 3+ 3 ▼ ▲ Fe 3+ 13 ▼) O 27 , BaCo 2+ Fe 3+ (▲ Ga 2+ 2 ▼ ▲ Fe 3+ 14 ▼) O 27 Hexagonal according to the present invention as described above The crystalline W-type oxide magnetic material is preliminarily used as a target, and the target is used to achieve a film thickness of 1000 by maintaining the temperature of the support at 200 to 650 ° C by means such as sputtering, ion plating, or ionization cluster beam method. Obtain a perpendicular magnetization film of ~ 30000Å.

ターゲツトの作製方法の一例を示せば次のようである。
すなわちACO3とFe2O3およびMeO,MOの粉末をポールミル
で50時間混合し、これを金型にプレスし、これをO2分圧
10-6〜10-12,11分のN2気流中で1200〜1400℃で5時
間焼成する。次いでこれを粉砕し、ボールミルで100時
間粉砕した後、これを5%HCl水溶液にて酸処理し不純
物を除去する。これを乾燥し、金型に入れてプレスして
大気中にて1200〜1400℃にて焼成し、所望の六方晶W型
酸化物磁性体ターゲツトを得る。
The following is an example of the method for producing the target.
That is, powders of ACO 3 and Fe 2 O 3 and MeO, MO were mixed in a pole mill for 50 hours, pressed into a mold, and O 2 partial pressure was applied to this.
Baking is performed at 1200 to 1400 ° C. for 5 hours in a N 2 gas flow of 10 −6 to 10 −12 , 11 minutes. Next, this is crushed and crushed with a ball mill for 100 hours, and then this is acid-treated with a 5% HCl aqueous solution to remove impurities. This is dried, put in a mold, pressed, and fired at 1200 to 1400 ° C. in the atmosphere to obtain a desired hexagonal W-type oxide magnetic substance target.

本発明に適用し得る支持体としては耐熱ガラス、石英ガ
ラス、結晶化ガラス、GGG、リチウムタンタレート、単
結晶Si、アモルフアス無機SiO2、有機SiO2、セラミツク
(ZnO,MgO,Al2O3,SiC,Si3N4,TiN,TaN,CrN,AlN)、メタ
ル(Ni,Ni−P、ステンレス、銅、Al)、耐熱性プラス
チツク(ポリイミド、ポリアミド)等が好ましい。
As the support applicable to the present invention, heat-resistant glass, quartz glass, crystallized glass, GGG, lithium tantalate, single crystal Si, amorphous inorganic SiO 2 , organic SiO 2 , ceramic (ZnO, MgO, Al 2 O 3 , SiC, Si 3 N 4 , TiN, TaN, CrN, AlN), metal (Ni, Ni-P, stainless steel, copper, Al), heat-resistant plastic (polyimide, polyamide), etc. are preferable.

これらの支持体上に前述したスパツタリング法等の手段
で六方晶W型酸化物磁性体の垂直磁化膜を作製する。な
お、これら磁性体を垂直磁化膜にエピタキヤシヤル生成
させるためにはW型酸化物磁性体の結晶の六方晶C面と
の界面のミスフイツト率が小さいZnO,AlN,Ti,BaFe2O4,M
nZnFe2O4,αFe2O3,MgO,MnFe2O4等の下地層を設けること
が好ましい。
A perpendicular magnetization film of a hexagonal W-type oxide magnetic material is formed on these supports by a method such as the sputtering method described above. It should be noted that in order to form these magnetic substances epitaxially on the perpendicularly magnetized film, ZnO, AlN, Ti, BaFe 2 O 4 , M having a small misfit ratio at the interface with the hexagonal C-plane of the crystal of the W-type oxide magnetic substance.
It is preferable to provide an underlayer of nZnFe 2 O 4 , αFe 2 O 3 , MgO, MnFe 2 O 4 or the like.

また、支持体には反射層としてAl,Ag,Au,Pt,Cu等を設け
るようにしてもよく、このような反射層を設けた場合に
は光磁気記録媒体として使用するに好適である。その
他、磁性層の上面に所望により適宜の保護層、保護板を
設けるようにしてもよい。また磁性層の下にはパーマロ
イ等の軟磁性層を設けてもよい。
The support may be provided with Al, Ag, Au, Pt, Cu or the like as a reflective layer, and such a reflective layer is suitable for use as a magneto-optical recording medium. In addition, if desired, an appropriate protective layer or protective plate may be provided on the upper surface of the magnetic layer. A soft magnetic layer such as Permalloy may be provided below the magnetic layer.

以下に実施例を示す。Examples will be shown below.

実施例1 単結晶シリコン(日立金属製)支持体1上に下地層2と
してZnOを膜厚500Å付着させ、この上に▲BaZn2+ 2
〔▲Ga3+ 3▼▲Fe3+ 13▼〕O27からなる磁性層3を3000Å
付着させ、保護板4として1mm厚のポリカーボネートを
エポキシ接着剤層5を介して接合し、第1図に示される
ような光磁気記録媒体を得た。
Example 1 ZnO having a film thickness of 500 Å was deposited as an underlayer 2 on a single crystal silicon (Hitachi Metals) support 1 and ▲ BaZn 2+ 2 ▼ was deposited thereon.
[▲ Ga 3+ 3 ▼ ▲ Fe 3+ 13 ▼] 3000 Å the magnetic layer 3 made of O 27
A polycarbonate plate having a thickness of 1 mm was bonded as a protective plate 4 via an epoxy adhesive layer 5 to obtain a magneto-optical recording medium as shown in FIG.

実施例2 バイコールガラス303(コーニング製)支持体1上に反
射層6としてAgを膜厚500Å付着させ、次に下地層2と
してAlNを膜厚500Å付着させ、この下地層2の上に磁性
層3としてSrZn2+Fe2+〔▲Al3+ 3▼▲Fe3+ 13▼〕O27を膜
厚5000Å付着させ、次にこの磁性層3の上にエポキシ接
着剤層5を介してプレグルーブ付メチルメタクリレート
樹脂からなる保護板4を接合して第2図に示されるよう
な光磁気記録媒体を得た。
Example 2 On a Vycor glass 303 (made by Corning) support 1, Ag was deposited as a reflective layer 6 in a film thickness of 500Å, and then AlN was deposited as an underlayer 2 in a film thickness of 500Å, and a magnetic layer was formed on the underlayer 2. As SrZn 2+ Fe 2+ [▲ Al 3+ 3 ▼ ▲ Fe 3+ 13 ▼] O 27 , a film thickness of 5000Å is adhered, and then a pregroove is formed on the magnetic layer 3 through an epoxy adhesive layer 5. A protective plate 4 made of a coated methyl methacrylate resin was joined to obtain a magneto-optical recording medium as shown in FIG.

実施例3 プレグルーブ付Ni電鋳板の支持体1上に下地層としてZn
Oを膜厚1000Å付着させ、次いで磁性層3としてBaZn2+F
e2+〔▲Ga3+ 2▼In3+▲Fe3+ 13▼〕O27を膜厚3000Å付着
させ、この上にエポキシ接着剤層5を介して保護板4と
してポリメチルメタクリレール樹脂を接合し、第3図に
示されるような光磁気記録媒体を得た。
Example 3 Zn was used as a base layer on the support 1 of Ni electroformed plate with pregroove.
O was deposited to a film thickness of 1000Å, and then BaZn 2+ F was used as the magnetic layer 3.
e 2+ [▲ Ga 3+ 2 ▼ In 3+ ▲ Fe 3+ 13 ▼] O 27 is adhered to a film thickness of 3000Å, and a polymethylmethacryl resin is used as a protective plate 4 with an epoxy adhesive layer 5 on it. Bonding was performed to obtain a magneto-optical recording medium as shown in FIG.

実施例4、5 実施例1で得た第1図に示される光磁気記録媒体におい
て、磁性層3を次表に示す六方晶W型酸化物磁性体を用
いたこと以外は全く同様にして光磁気記録媒体を得た。
Examples 4 and 5 In the magneto-optical recording medium shown in FIG. 1 obtained in Example 1, the optical recording was performed in the same manner except that the hexagonal W-type oxide magnetic material shown in the following table was used for the magnetic layer 3. A magnetic recording medium was obtained.

実施例8〜15 実施例1で得た第1図に示される光磁気記録媒体におい
て、磁性層3を次表に示す六方晶W型酸化物磁性体を用
いたこと以外は全く同様にして光磁気記録媒体を得た。
Examples 8 to 15 In the magneto-optical recording medium shown in FIG. 1 obtained in Example 1, the light was recorded in exactly the same manner as the magnetic layer 3 except that the hexagonal W-type oxide magnetic material shown in the following table was used. A magnetic recording medium was obtained.

上記各実施例の記録媒体のうち、実施例1,2,3,8,9,10,1
1,12,13,14,15はキュリー温度が350℃以下であり、光レ
ーザーによつて記録再生するものである。
Of the recording medium of each of the above examples, Examples 1, 2, 3, 8, 9, 10, 1
Curie temperatures of 1,12,13,14,15 are 350 ° C or lower, and recording / reproduction is performed by an optical laser.

上記実施例9の記録媒体を用い、830nmのレーザー光を8
mWの強さ、媒体の磁界と逆の外部磁界300エールステツ
ドをかけながら0.5メガヘルツの周波数で記録した結
果、約2μのビツト径が記録された。次に同じレーザー
2mWの強さで再生したところ、フアラデー回転角が約0.8
゜/μmであつた。また第1表および第2表に示した各
実施例の記録媒体について同様にテストを行つたとこ
ろ、得られたビツト径は約1〜2μm、フアラデー回転
角は0.2〜0.9゜/μmであつた。
Using the recording medium of Example 9 above, a laser beam of 830 nm was used.
A bit diameter of about 2μ was recorded as a result of recording at a frequency of 0.5 MHz while applying an external magnetic field of 300 aerial, which is the opposite of the magnetic field of the medium, to the intensity of mW. Then the same laser
When played back with a strength of 2 mW, the Faraday rotation angle was about 0.8.
The angle was ° / μm. Further, when the recording media of the respective examples shown in Table 1 and Table 2 were similarly tested, the obtained bit diameter was about 1 to 2 μm and the Faraday rotation angle was 0.2 to 0.9 ° / μm. .

効果 以上のような本発明によれば、六方晶W型酸化物磁性体
をバインダーを使用することなく、ターゲツトとし、こ
れを適宜の支持体上にスパツタリング、イオンプレーテ
イング、イオン化クラフトビーム法等によりエピタキシ
ヤル成長させるため、垂直磁化配向性に優れるとともに
記録密度が従来のものに比べて飛躍的に増大させること
が可能となる。
Effects According to the present invention as described above, a hexagonal W-type oxide magnetic material is used as a target without using a binder, and this target is formed on a suitable support by sputtering, ion plating, ionization craft beam method, or the like. Since the epitaxial growth is performed, the perpendicular magnetic orientation is excellent and the recording density can be dramatically increased as compared with the conventional one.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第3図は本発明の実施例における記録媒体の構
成を示す概略説明図である。 1……支持体、2……下地層 3……磁性層 4……保護層、保護板、5……接合層 6……反射層
1 to 3 are schematic explanatory views showing the structure of a recording medium in an embodiment of the present invention. 1 ... Support, 2 ... Underlayer 3 ... Magnetic layer 4 ... Protective layer, protective plate, 5 ... Bonding layer 6 ... Reflective layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一般式 ▲AMe2+ 2▼〔MxFe16-x〕O27 (但し、AはBa,Sr,Pb,Caの1種、Me2+はFe,Zn,Ni,Mg,C
o,Cuの1種又は2種、MはAl,Ga,Cr,In,Tiの1種又は2
種、O<X≦5)で示される六方晶W型酸化物磁性体の
垂直磁化膜を有する光磁気記録媒体。
1. A general formula ▲ AMe 2+ 2 ▼ [MxFe 16- x] O 27 (where A is one of Ba, Sr, Pb and Ca, and Me 2+ is Fe, Zn, Ni, Mg, C).
1 or 2 of o, Cu, M is 1 or 2 of Al, Ga, Cr, In, Ti
A magneto-optical recording medium having a perpendicularly magnetized film of a hexagonal W-type oxide magnetic material represented by O <X ≦ 5).
JP59151495A 1984-07-21 1984-07-21 Magneto-optical recording medium Expired - Lifetime JPH0719400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59151495A JPH0719400B2 (en) 1984-07-21 1984-07-21 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151495A JPH0719400B2 (en) 1984-07-21 1984-07-21 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPS6129415A JPS6129415A (en) 1986-02-10
JPH0719400B2 true JPH0719400B2 (en) 1995-03-06

Family

ID=15519745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151495A Expired - Lifetime JPH0719400B2 (en) 1984-07-21 1984-07-21 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH0719400B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280498A (en) * 2003-12-09 2009-12-03 Tdk Corp Ferrite magnetic material
US8960482B2 (en) 2008-09-23 2015-02-24 Aerovironment Inc. Cryogenic liquid tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393664C (en) * 2003-12-09 2008-06-11 Tdk株式会社 Ferrite magnetic material and ferrite sintered magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660001A (en) * 1979-10-19 1981-05-23 Toshiba Corp Magnetic recording medium
JPS56118305A (en) * 1980-02-25 1981-09-17 Dowa Mining Co Ltd Manufacture of magnetic powder
JPS5945644A (en) * 1982-09-07 1984-03-14 Ricoh Co Ltd Photomagnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280498A (en) * 2003-12-09 2009-12-03 Tdk Corp Ferrite magnetic material
US8960482B2 (en) 2008-09-23 2015-02-24 Aerovironment Inc. Cryogenic liquid tank

Also Published As

Publication number Publication date
JPS6129415A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US4690861A (en) Magneto optical recording medium
JPH0719400B2 (en) Magneto-optical recording medium
JPS6189606A (en) Metal oxide magnetic substance and magnetic film
Matsuoka et al. Perpendicular magnetic anisotropy of reactively sputtered cobalt nitride thin films
JPS62134817A (en) Magnetic recording medium
JPH0664761B2 (en) Magneto-optical recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film
JPH0572662B2 (en)
JPS62279517A (en) Magnetic recording medium and production of magnetic recording medium
JPS6189604A (en) Metal oxide magnetic substance and magnetic film
JPS58114329A (en) Magnetic recording medium
JPS6255904A (en) Hexagonal system ferrite magnetic powder
JPS63316312A (en) Magnetic recording medium
JPS6319804A (en) Multilayer magnetic material film
JPS61190702A (en) Magnetic head
JP2570891B2 (en) Substrate for magnetic head
JPS59195809A (en) Photomagnetic recording medium
JPS59157829A (en) Magnetic recording medium
NAKAGAWA et al. Fabrication and Recording Characteristics of Sputter-Deposited Ba-Ferrite Thin Films Deposited on Pt-Ta Underlayers for Perpendicular Magnetic Recording Media
JPS62267949A (en) Magneto-optical recording medium
JPS63273237A (en) Magneto-optical recording medium
JPS6243820A (en) Magnetic recording medium
Desserre Magnetic Recording Technology
JPH02236815A (en) Magnetic recording medium and its production
JPS61192006A (en) Magnetic head