JPH07161881A - Heat conductor for semiconductor chip, and structure of mounting semiconductor chip - Google Patents

Heat conductor for semiconductor chip, and structure of mounting semiconductor chip

Info

Publication number
JPH07161881A
JPH07161881A JP5305609A JP30560993A JPH07161881A JP H07161881 A JPH07161881 A JP H07161881A JP 5305609 A JP5305609 A JP 5305609A JP 30560993 A JP30560993 A JP 30560993A JP H07161881 A JPH07161881 A JP H07161881A
Authority
JP
Japan
Prior art keywords
heat
semiconductor element
semiconductor chip
conductor
pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5305609A
Other languages
Japanese (ja)
Inventor
Hideki Tsunetsugu
秀起 恒次
Takeshi Hayashi
剛 林
Masakaze Hosoya
正風 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5305609A priority Critical patent/JPH07161881A/en
Publication of JPH07161881A publication Critical patent/JPH07161881A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Abstract

PURPOSE:To provide a heat conductor for a semiconductor chip high in conductivity and a structure for mounting a semiconductor chip at a high mounting density. CONSTITUTION:Heat radiation pads are provided above and below a metallic plate, and the intervals between them are larger than the diameter of the heat radiation pads. The heat conductor 12 by this structure produces flexibility by the flexure 13 of the metallic plate. When the heat conductor 12 having flexibility in thickness is put between the semiconductor chip 3 and a heat sink 9, the abutment and contact property between the head radiation pads and the semiconductor chip and the heat sink 9 improve. So, even if variation occurs in the interval between the semiconductor chip 3 and the heat sink 9, the heat radiation pad can be stuck fast to the rear of the semiconductor chip 3 and the surface of the heat sink 9. Moreover, the heat conductor 12 is constituted of metal high in heat conductivity. Therefore, the heat generated in the semiconductor chip 3 can be conducted efficiently to the heat sink 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、バンプ接続された構成
の半導体素子の裏面から、ヒートシンクあるいはキャッ
プ等の放熱体に効率よく熱を伝導させることが可能な半
導体素子用の熱伝導体および半導体素子の実装構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor element heat conductor and semiconductor capable of efficiently conducting heat from a back surface of a bump-connected semiconductor element to a radiator such as a heat sink or a cap. The mounting structure of the element.

【0002】[0002]

【従来の技術】従来、バンプ接続された半導体素子の放
熱に関して様々な提案がされている。例えば、半導体素
子に発生した熱をバンプおよび配線基板の中に形成した
伝熱用のビアホールすなわちサーマルビアを経てヒート
シンクに放熱する構成や、素子裏面にバネを接続した金
属製のピストンを押し当てたり、素子裏面とヒートシン
クの間に熱伝導性のグリースを用いたりしている。図7
は一の従来例を示しており、半導体素子3が配線基板1
に半田バンプ2で接続され、この半導体素子3の裏面に
バネ34を接続した金属製のピストン35を押し当て、
コールドプレート36に熱を逃がす構造である。また、
図8は他の一の従来例を示しており、半導体素子3の裏
面とヒートシンク39およびキャップ38間に熱伝導性
に優れるグリース37を用いて放熱する構造である。こ
れらの従来技術の掲載されている文献例を以下に記す。 ・「R.C.Chu, U.P.Hwang, and R.E.Simons. "Conductio
n Cooling for an LSI Package: A One Dimensional Ap
proach," IBM J. Res. Develop., 26(1):PP.45-55, Jan
uary 1982.」、・「S.Oktay, B.Dessauser, and J.I.Ho
rvath. "New International and External Coolinng En
hancements for the Air Cooled IBM 4381 Module," IE
EE International Conf. on Computer Design, PP.2-5,
November 1983.」。
2. Description of the Related Art Conventionally, various proposals have been made regarding heat dissipation of bump-connected semiconductor elements. For example, the heat generated in a semiconductor element is radiated to a heat sink through a via hole for heat transfer, that is, a thermal via formed in a bump and a wiring board, or a metal piston with a spring is pressed against the back surface of the element. , A thermally conductive grease is used between the element back surface and the heat sink. Figure 7
Shows one conventional example, in which the semiconductor element 3 is the wiring board 1
To the back surface of the semiconductor element 3 by pressing the metal piston 35 connected to the spring 34,
It is a structure that allows heat to escape to the cold plate 36. Also,
FIG. 8 shows another conventional example, in which a grease 37 having excellent thermal conductivity is used to radiate heat between the back surface of the semiconductor element 3 and the heat sink 39 and the cap 38. Examples of documents in which these conventional techniques are published are described below.・ "RC Chu, UPHwang, and RESimons." Conductio
n Cooling for an LSI Package: A One Dimensional Ap
proach, "IBM J. Res. Develop., 26 (1): PP.45-55, Jan
uary 1982. "," S. Oktay, B. Dessauser, and JIHo
rvath. "New International and External Coolinng En
hancements for the Air Cooled IBM 4381 Module, "IE
EE International Conf. On Computer Design, PP.2-5,
November 1983. "

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の構造において、半導体素子を搭載する配線基
板に、配線とは別の熱伝導のためのサーマルビアを形成
する構成では、半導体素子で発生した熱の大部分をバン
プやサーマルビアを経てヒートシンクに伝導させる構成
とせざるを得ない。このため、半導体素子の裏面の全面
から放熱する構成と比較して、冷却効率は著しく低下す
る。
However, in such a conventional structure, in the structure in which the thermal via for heat conduction different from the wiring is formed on the wiring substrate on which the semiconductor element is mounted, the problem occurs in the semiconductor element. Most of the generated heat must be conducted to the heat sink via bumps or thermal vias. For this reason, the cooling efficiency is significantly reduced as compared with the configuration in which heat is dissipated from the entire back surface of the semiconductor element.

【0004】また、図7に示バネ34と金属製のピスト
ン35を用いてコールドプレート36に熱を逃がす構造
では、バンプ2の形状や配線基板1の厚さのバラツキや
半導体素子3の高さのバラツキ等を吸収できる利点はあ
るものの、バネ34の圧力によるバンプ2への影響や、
放熱に要する部品形状が大型化し実装密度の向上を図る
上で障害を有する問題点を伴う。
In the structure shown in FIG. 7 in which heat is released to the cold plate 36 by using the spring 34 and the metal piston 35, variations in the shape of the bump 2 and the thickness of the wiring board 1 and the height of the semiconductor element 3 are caused. Although there is an advantage of being able to absorb the variation of the above, the influence of the pressure of the spring 34 on the bump 2 and
There is a problem in that the shape of the component required for heat dissipation becomes large and there is an obstacle in improving the mounting density.

【0005】更に、図8のグリース37を用いて放熱す
る構造では、グリース37の熱伝導率が金属と比較して
1/10〜1/100と小さいため、半導体素子3で発
生した熱を効率よくヒートシンク39へ伝えるのに限界
がある。
Further, in the structure for radiating heat using the grease 37 of FIG. 8, since the thermal conductivity of the grease 37 is as small as 1/10 to 1/100 as compared with metal, the heat generated in the semiconductor element 3 can be efficiently used. There is a limit to how well it can be transmitted to the heat sink 39.

【0006】このような従来の構造は、構成が複雑であ
り放熱性能が劣る等の理由により、基板の実装密度の向
上および放熱性の高効率化という観点から、問題点を多
分に有している。
[0006] Such a conventional structure has many problems from the viewpoint of improving the mounting density of the board and improving the efficiency of heat dissipation because of its complicated structure and poor heat dissipation performance. There is.

【0007】本発明は、伝導効率の高い半導体素子用の
熱伝導体および高密度実装を可能とする半導体素子の実
装構造を提供することを目的とする。
An object of the present invention is to provide a heat conductor for a semiconductor element having high conduction efficiency and a mounting structure of the semiconductor element which enables high density mounting.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の半導体素子用の熱伝導体は、放熱パッドの
径より大きな間隔で、凸形状の放熱パッドが交互にシー
ト状の金属板の表面および裏面へ配置されて成ることを
特徴としている。
To achieve the above object, a heat conductor for a semiconductor device according to the present invention is a sheet-shaped metal plate in which convex heat radiation pads are alternately arranged at intervals larger than the diameter of the heat radiation pads. It is characterized in that it is arranged on the front surface and the back surface of.

【0009】また、上記の凸形状の放熱パッドは、表面
が平坦なコイン状の金属片とするか、または、金属板か
ら一体に形成された凸部とするとよい。
Further, the above-mentioned convex heat radiation pad is preferably a coin-shaped metal piece having a flat surface, or a convex portion integrally formed from a metal plate.

【0010】また、本発明の半導体素子の実装構造は、
所定の大きさの凸形状の複数の放熱パッドを、放熱パッ
ドの径より大きいピッチで互い違いに、シート状の金属
板の表面および裏面に配置した構造からなる熱伝導体
が、半導体素子とヒートシンク、キャップ等の放熱体と
の間に挟まれていることを特徴とする。
The semiconductor element mounting structure of the present invention is
A plurality of heat-dissipating pads having a convex shape of a predetermined size are alternately arranged at a pitch larger than the diameter of the heat-dissipating pads, and a heat conductor composed of a structure arranged on the front surface and the back surface of a sheet-shaped metal plate, a semiconductor element and a heat sink It is characterized in that it is sandwiched between a heat radiator such as a cap.

【0011】[0011]

【作用】したがって、本発明の半導体素子用の熱伝導体
によれば、凸形状の放熱パッドが、この放熱パッドの径
より大きな間隔でシート状の金属板の表面および裏面へ
交互に配置されるため、この金属板の表面および裏面の
放熱パッド間に押圧力が働いた場合、放熱パッド間の金
属板が撓みバネ性を生じ、金属板両面の放熱パッドの間
隔が自在に変化する。
Therefore, according to the heat conductor for a semiconductor element of the present invention, the convex heat radiation pads are alternately arranged on the front surface and the back surface of the sheet-shaped metal plate at intervals larger than the diameter of the heat radiation pads. Therefore, when a pressing force is applied between the heat radiating pads on the front surface and the back surface of the metal plate, the metal plate between the heat radiating pads has a flexing spring property, and the distance between the heat radiating pads on both sides of the metal plate is freely changed.

【0012】また、本発明の半導体素子の実装構造によ
れば、凸形状の放熱パッドが放熱パッドの径より大きな
間隔を有してシート状の金属板の表面および裏面に互い
違いに配置されて熱伝導体が構成されるため、この熱伝
導体が半導体素子と放熱体との間に挟まれ押圧された場
合、放熱パッドが半導体素子、放熱体と柔軟性を有して
安定的に当接し、熱伝導性を向上させる。
Further, according to the semiconductor element mounting structure of the present invention, the convex heat radiation pads are arranged alternately on the front surface and the back surface of the sheet-shaped metal plate with a gap larger than the diameter of the heat radiation pad. Since the conductor is configured, when this heat conductor is sandwiched and pressed between the semiconductor element and the heat radiator, the heat dissipation pad stably abuts the semiconductor element and the heat radiator, Improves thermal conductivity.

【0013】[0013]

【実施例】次に添付図面を参照して本発明による半導体
素子用の熱伝導体および半導体素子の実装構造の実施例
を詳細に説明する。図1〜図6を参照すると本発明の半
導体素子用の熱伝導体および半導体素子の実装構造の実
施例が示されている。以下、本発明の構成を図面に示す
実施例に基づいて詳細に説明する。
Embodiments of the heat conductor for a semiconductor device and the mounting structure of the semiconductor device according to the present invention will now be described in detail with reference to the accompanying drawings. 1 to 6, there is shown an embodiment of a heat conductor for a semiconductor device and a semiconductor device mounting structure of the present invention. Hereinafter, the configuration of the present invention will be described in detail based on the embodiments shown in the drawings.

【0014】<第1の実施例>図1〜図3は、第1の実
施例であり、金属板の両面に放熱バッドを形成した熱伝
導体を介して、パンプ実装した半導体素子の裏面からヒ
ートシンクに放熱する構成を示している。
<First Embodiment> FIGS. 1 to 3 show a first embodiment of the present invention, in which a semiconductor chip mounted by pumping is mounted on a back surface of a semiconductor element through a heat conductor having heat radiating pads formed on both surfaces of a metal plate. The structure which radiates heat to the heat sink is shown.

【0015】図1〜図3に示す半導体素子用の熱伝導体
および半導体素子の実装構造は、配線基板1、バンプ
2、半導体素子3、ヒートシンク9および熱伝導体12
より構成される。また、熱伝導体12は、金属板10お
よび放熱バッド11により構成される。
The heat conductor for a semiconductor element and the mounting structure of the semiconductor element shown in FIGS. 1 to 3 have a wiring board 1, a bump 2, a semiconductor element 3, a heat sink 9 and a heat conductor 12.
It is composed of The heat conductor 12 is composed of the metal plate 10 and the heat radiation pad 11.

【0016】配線基板1は、ガラスエポキシ等の絶縁性
の板に所定の配線が形成された回路網である。バンプ2
は、配線基板1に搭載する電子部品との電気的接続を行
うための素材であり、本実施例では一般的な半田を用い
る。半導体素子3は、配線基板1に搭載する電子部品の
一部品である。ヒートシンク9は、放熱体であり実施例
においては半導体素子3の放熱の促進を目的とした一部
品である。金属板10は、後述の放熱バッド11と供に
熱伝導体12を構成し、半導体素子3の熱をヒートシン
ク9へ伝達するための部品である。放熱バッド11は、
所定の大きさの凸形状体である。一方の面の放熱パッド
11は、半導体素子3と接合して熱を吸収し、吸収した
熱は金属板10および他方の面の放熱パッド11を介し
て、ヒートシンク9へ伝達される。金属板10と放熱バ
ッド11とにより構成される熱伝導体12は、半導体素
子3が発生した熱をヒートシンク9へ伝達し放熱を促進
するための部品である。
The wiring board 1 is a circuit network in which predetermined wiring is formed on an insulating plate such as glass epoxy. Bump 2
Is a material for making an electrical connection with an electronic component mounted on the wiring board 1. In this embodiment, general solder is used. The semiconductor element 3 is a component of an electronic component mounted on the wiring board 1. The heat sink 9 is a radiator, and in the embodiment, is a component for promoting heat dissipation of the semiconductor element 3. The metal plate 10 is a component for forming a heat conductor 12 together with a heat radiation pad 11 described later, and transferring the heat of the semiconductor element 3 to the heat sink 9. The heat dissipation pad 11 is
It is a convex body having a predetermined size. The heat dissipation pad 11 on one surface is joined to the semiconductor element 3 to absorb heat, and the absorbed heat is transmitted to the heat sink 9 via the metal plate 10 and the heat dissipation pad 11 on the other surface. The heat conductor 12 composed of the metal plate 10 and the heat radiation pad 11 is a component for transmitting the heat generated by the semiconductor element 3 to the heat sink 9 and promoting heat radiation.

【0017】図2は、熱伝導体12の構成を示したもの
で、柔軟性を有するシート状の金属板10の両面に、円
形の釦状の放熱バッド11が配置されている。この放熱
パッド11は、放熱パッドの径より大きいピッチで金属
板10の表面および裏面に互い違いに配置されている。
よって、金属板10を挟んだ複数の放熱パッド11,
…,11間には、相互に重なり部が生じていない。ま
た、放熱パッドの凸形状部の大きさおよび放熱パッド間
の間隔距離は、熱伝導体12の大きさ、半導体素子の大
きさ、金属板10の板厚寸法および熱伝導体12に求め
る柔軟性等により定める。尚、放熱バッド11と金属板
10の接続には、例えば、熱伝導性に優れる半田を用い
る。
FIG. 2 shows the structure of the heat conductor 12, in which circular button-shaped heat radiation pads 11 are arranged on both sides of a flexible sheet-shaped metal plate 10. The heat dissipation pads 11 are alternately arranged on the front surface and the back surface of the metal plate 10 at a pitch larger than the diameter of the heat dissipation pads.
Therefore, the plurality of heat dissipation pads 11 sandwiching the metal plate 10,
, 11 are not overlapped with each other. The size of the convex portion of the heat dissipation pad and the distance between the heat dissipation pads are the size of the heat conductor 12, the size of the semiconductor element, the thickness of the metal plate 10 and the flexibility required for the heat conductor 12. Etc. In addition, for example, solder having excellent thermal conductivity is used for connecting the heat radiation pad 11 and the metal plate 10.

【0018】上記の構成によれば、金属板10の両面の
放熱パッド11,…,11間に押圧力が加えられた場
合、放熱パッド間の金属板10に撓み13が生じ、両面
の放熱パッド間の間隔は自在性を有する。このため、半
導体素子3とヒートシンク9との間隔にバラツキを生じ
ていても、放熱バッド11を、半導体素子3の裏面およ
びヒートシンク9の表面に安定的に密着させることがで
きる。図3は、図2に示した熱伝導体12のA−A’の
断面を示したものである。また、図1は、熱伝導体12
を、配線基板1にバンプ2で接続された半導体素子3の
裏面とヒートシンク9の間に挿入し、実装した際の断面
構造を概念的に示している。
According to the above construction, when a pressing force is applied between the heat radiation pads 11, ..., 11 on both sides of the metal plate 10, the metal plate 10 between the heat radiation pads is bent, and the heat radiation pads on both sides are bent. The distance between them is flexible. Therefore, even if the gap between the semiconductor element 3 and the heat sink 9 varies, the heat radiation pad 11 can be stably brought into close contact with the back surface of the semiconductor element 3 and the front surface of the heat sink 9. FIG. 3 shows a cross section taken along the line AA ′ of the heat conductor 12 shown in FIG. In addition, FIG.
Is conceptually shown in a cross-sectional structure when it is mounted by being inserted between the heat sink 9 and the back surface of the semiconductor element 3 connected to the wiring board 1 by the bump 2.

【0019】厚みにおいて柔軟性を有する熱伝導体12
を、半導体素子3およびヒートシンク9の間に挟んだ場
合、放熱パッド11と半導体素子3およびヒートシンク
9との当接および接触性が向上する。また、上記の熱伝
導体12は熱伝導性の高い金属を用いて構成されてい
る。故に、半導体素子3で発生した熱を効率よくヒート
シンク9に伝導することができる。
Thermal conductor 12 having flexibility in thickness
When is sandwiched between the semiconductor element 3 and the heat sink 9, the contact and contact between the heat dissipation pad 11 and the semiconductor element 3 and the heat sink 9 are improved. The heat conductor 12 is made of metal having high heat conductivity. Therefore, the heat generated in the semiconductor element 3 can be efficiently conducted to the heat sink 9.

【0020】<第2の実施例>図4〜図6は、熱伝導体
の第2の実施例を示している。図5は、熱伝導体22の
構造を示したもので、金属板20の両面からプレス加工
により凸形状の放熱パッド21を形成したものである。
図6は、図5に示した熱伝導体22のB−B’の断面を
示している。図4は、熱伝導体22を、配線基板1にバ
ンプ2で接続された半導体素子3の裏面とヒートシンク
9の間に挿入し、実装した際の断面構造を示したもので
ある。金属板20は押圧力により撓み23を生じ、半導
体素子3の裏面とヒートシンク9との間隔のバラツキを
吸収することが出来る。このため、この間隔にバラツキ
が生じていても放熱パッド21は、半導体素子の裏面お
よびヒートシンク9の表面に密着させることができる。
<Second Embodiment> FIGS. 4 to 6 show a second embodiment of the heat conductor. FIG. 5 shows the structure of the heat conductor 22, in which convex heat dissipation pads 21 are formed on both sides of the metal plate 20 by pressing.
FIG. 6 shows a cross section taken along the line BB ′ of the heat conductor 22 shown in FIG. FIG. 4 shows a cross-sectional structure when the heat conductor 22 is inserted between the back surface of the semiconductor element 3 connected to the wiring board 1 by the bump 2 and the heat sink 9 and mounted. The metal plate 20 bends 23 due to the pressing force, and can absorb the variation in the distance between the back surface of the semiconductor element 3 and the heat sink 9. Therefore, the heat dissipation pad 21 can be brought into close contact with the back surface of the semiconductor element and the front surface of the heat sink 9 even if the spacing varies.

【0021】本実施例の熱伝導体22は、一枚の連続し
た金属板10により構成されるため、熱伝導性が高い。
また、金属板10の両面に形成された放熱パッド21,
…,21間の厚み方向の間隔寸法は柔軟性およびバネ性
を有している。このため、半導体素子3とヒートシンク
9との熱伝導体22の当接が安定し、半導体素子3で発
生した熱をヒートシンク9へ効率良く伝達することがで
きる。
The heat conductor 22 of this embodiment has a high heat conductivity because it is composed of one continuous metal plate 10.
In addition, the heat dissipation pads 21 formed on both sides of the metal plate 10,
The dimension of the gap between the two in the thickness direction has flexibility and elasticity. Therefore, the contact of the heat conductor 22 between the semiconductor element 3 and the heat sink 9 is stabilized, and the heat generated in the semiconductor element 3 can be efficiently transferred to the heat sink 9.

【0022】上記の2つの実施例において、放熱パッド
の大きさ,放熱パッド間の間隔距離,金属板の板厚寸法
等は、熱伝導体の熱伝導特性と柔軟性に影響する。つま
り、放熱パッドの大きさおよび間隔は、半導体素子およ
びヒートシンクとの当接面積に影響し、板厚寸法は、熱
伝導率に影響する。また、熱伝導体としての熱伝導特性
および柔軟性に影響する。これらの具体的な数値は、半
導体素子の大きさ、金属板の材質、加工方法等により定
める。
In the above two embodiments, the size of the heat radiation pads, the distance between the heat radiation pads, the thickness of the metal plate, etc. affect the heat conduction characteristics and flexibility of the heat conductor. That is, the size and spacing of the heat radiation pads affect the contact area between the semiconductor element and the heat sink, and the plate thickness dimension affects the thermal conductivity. It also affects the heat transfer characteristics and flexibility of the heat conductor. These specific numerical values are determined by the size of the semiconductor element, the material of the metal plate, the processing method, and the like.

【0023】上記の本実施例については、ヒートシンク
の例について述べたが、キャップを用いた実装構造につ
いても適用できる。また、本実施例では、単体の半導体
素子の例について示したが、複数の半導体素子の間隔に
バラツキを生じている場合にも、一体に構成された熱伝
導体が適用できる。
In the above-mentioned embodiment, the example of the heat sink is described, but the mounting structure using the cap is also applicable. Further, in the present embodiment, an example of a single semiconductor element has been shown, but even when the intervals between a plurality of semiconductor elements are varied, the heat conductor integrally configured can be applied.

【0024】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施例の放熱パッドは、円柱あるいは角
形状のものについて示したが、この形状に制限されるも
のでない。
The above embodiment is an example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, although the heat dissipation pad of this embodiment has a columnar shape or a rectangular shape, it is not limited to this shape.

【0025】[0025]

【発明の効果】以上の説明より明かなように、本発明の
半導体素子用の熱伝導体および半導体素子の実装構造
は、凸形状の放熱パッドが、この放熱パッドの径より大
きな間隔を有してシート状の金属板の表面および裏面に
互い違いに配置される。このため金属板の表面および裏
面の放熱パッド間には中間の板部においてバネ性が生
じ、金属板両面の放熱パッドの間隔が自在に変化する。
この構造を有する熱伝導体を半導体素子と、ヒートシン
クまたはキャップ等の放熱体間に設置した場合、放熱パ
ッドの半導体素子および放熱体との当接および接触性が
安定し、熱伝導性が向上し、放熱効率を高く保持でき
る。半導体素子と熱伝導体の実装構造の集約化および放
熱効果の向上により、半導体素子等の部品の基板への実
装密度を上げることが可能となる。
As is apparent from the above description, in the heat conductor for a semiconductor element and the mounting structure of the semiconductor element of the present invention, the convex heat radiation pad has an interval larger than the diameter of the heat radiation pad. Are alternately arranged on the front surface and the back surface of the sheet-shaped metal plate. Therefore, a spring property is generated in the intermediate plate portion between the heat radiation pads on the front surface and the back surface of the metal plate, and the distance between the heat radiation pads on both surfaces of the metal plate is freely changed.
When a heat conductor having this structure is installed between a semiconductor element and a heat sink or a radiator such as a cap, the contact and contact between the heat dissipation pad and the semiconductor element and the radiator are stable, and the heat conductivity is improved. The heat dissipation efficiency can be kept high. By consolidating the mounting structure of the semiconductor element and the heat conductor and improving the heat dissipation effect, it is possible to increase the mounting density of components such as the semiconductor element on the substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体素子用の熱伝導体および半導体
素子の実装構造の、第1の実施例を示した縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a first embodiment of a heat conductor for a semiconductor element and a mounting structure of the semiconductor element of the present invention.

【図2】図1の熱伝導体の外観斜視図である。FIG. 2 is an external perspective view of the heat conductor of FIG.

【図3】図2のA−A’断面図である。3 is a cross-sectional view taken along the line A-A ′ of FIG.

【図4】本発明の半導体素子用の熱伝導体および半導体
素子の実装構造の、第2の実施例を示した縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing a second embodiment of the heat conductor for a semiconductor element and the mounting structure of the semiconductor element of the present invention.

【図5】図4の熱伝導体の外観斜視図である。FIG. 5 is an external perspective view of the heat conductor of FIG.

【図6】図5のB−B’断面図である。6 is a cross-sectional view taken along the line B-B ′ of FIG.

【図7】従来技術に基づく半導体素子用の熱伝導体およ
び半導体素子の実装構造の1例を示した縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing an example of a heat conductor for a semiconductor element and a mounting structure of the semiconductor element based on a conventional technique.

【図8】従来技術に基づく半導体素子用の熱伝導体およ
び半導体素子の実装構造の他の1例を示した縦断面図で
ある。
FIG. 8 is a vertical cross-sectional view showing another example of a heat conductor for a semiconductor element and a mounting structure of the semiconductor element based on a conventional technique.

【符号の説明】[Explanation of symbols]

1 配線基板、 2 バンプ、 3 半導体素子、 9 ヒートシンク、 10、20 金属板、 11、21 放熱バッド、 12、22 熱伝導体、 13、23 撓み。 DESCRIPTION OF SYMBOLS 1 wiring board, 2 bumps, 3 semiconductor element, 9 heat sink, 10, 20 metal plate, 11, 21 heat dissipation pad, 12, 22 heat conductor, 13, 23 bending.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 放熱パッドの径より大きな間隔で、凸形
状の前記放熱パッドが交互にシート状の金属板の表面お
よび裏面へ配置されて成ることを特徴とする半導体素子
用の熱伝導体。
1. A heat conductor for a semiconductor element, characterized in that the convex heat radiation pads are alternately arranged on the front surface and the back surface of a sheet-shaped metal plate at intervals larger than the diameter of the heat radiation pad.
【請求項2】 所定の大きさの凸形状の複数の放熱パッ
ドを、該放熱パッドの径より大きいピッチで互い違い
に、シート状の金属板の表面および裏面に配置した構造
からなる熱伝導体が、半導体素子とヒートシンク、キャ
ップ等の放熱体との間に挟まれていることを特徴とする
半導体素子の実装構造。
2. A heat conductor having a structure in which a plurality of heat-dissipating pads having a predetermined size and having a convex shape are alternately arranged on the front surface and the back surface of a sheet-shaped metal plate at a pitch larger than the diameter of the heat-dissipating pads. A mounting structure of a semiconductor element, which is sandwiched between a semiconductor element and a heat sink, a heat radiator such as a cap, or the like.
JP5305609A 1993-12-06 1993-12-06 Heat conductor for semiconductor chip, and structure of mounting semiconductor chip Pending JPH07161881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5305609A JPH07161881A (en) 1993-12-06 1993-12-06 Heat conductor for semiconductor chip, and structure of mounting semiconductor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5305609A JPH07161881A (en) 1993-12-06 1993-12-06 Heat conductor for semiconductor chip, and structure of mounting semiconductor chip

Publications (1)

Publication Number Publication Date
JPH07161881A true JPH07161881A (en) 1995-06-23

Family

ID=17947208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5305609A Pending JPH07161881A (en) 1993-12-06 1993-12-06 Heat conductor for semiconductor chip, and structure of mounting semiconductor chip

Country Status (1)

Country Link
JP (1) JPH07161881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076600A (en) * 2007-09-19 2009-04-09 Denso Corp Semiconductor cooling structure
JP2011525052A (en) * 2008-06-20 2011-09-08 アルカテル−ルーセント ユーエスエー インコーポレーテッド Heat transfer structure
JP2014192479A (en) * 2013-03-28 2014-10-06 Mitsubishi Materials Corp Thermal interface plate and method of manufacturing the same
JP2016533634A (en) * 2013-09-27 2016-10-27 アルカテル−ルーセント Structure for heat transfer interface and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076600A (en) * 2007-09-19 2009-04-09 Denso Corp Semiconductor cooling structure
JP2011525052A (en) * 2008-06-20 2011-09-08 アルカテル−ルーセント ユーエスエー インコーポレーテッド Heat transfer structure
US8963323B2 (en) 2008-06-20 2015-02-24 Alcatel Lucent Heat-transfer structure
US9308571B2 (en) 2008-06-20 2016-04-12 Alcatel Lucent Heat-transfer structure
JP2014192479A (en) * 2013-03-28 2014-10-06 Mitsubishi Materials Corp Thermal interface plate and method of manufacturing the same
JP2016533634A (en) * 2013-09-27 2016-10-27 アルカテル−ルーセント Structure for heat transfer interface and method of manufacturing the same
US11032942B2 (en) 2013-09-27 2021-06-08 Alcatel Lucent Structure for a heat transfer interface and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3273505B2 (en) Heat sink provided with heat radiation fins and method of fixing heat radiation fins
CN100539094C (en) The method of radiator, electronic package and manufacturing radiator
US7885075B2 (en) Heat dissipation device
US6831836B2 (en) Low thermal resistance interface for attachment of thermal materials to a processor die
US6462952B1 (en) Structure and method for constructing circuit module suitable for hand-held electronic equipment
JPH06209174A (en) Heat sink
JPS60126853A (en) Cooling device for semiconductor chip
JPH08222671A (en) Cooler for circuit module
JP2856193B2 (en) Multi-chip module mounting structure
JP2001085877A (en) Heat sink with heat receiving surface provided with protrusions
JP4467380B2 (en) Semiconductor package, printed circuit board on which semiconductor package is mounted, and electronic apparatus having such printed circuit board
US6343643B1 (en) Cabinet assisted heat sink
US20050157469A1 (en) Cooling arrangement for a printed circuit board with a heat-dissipating electronic element
JPH07161881A (en) Heat conductor for semiconductor chip, and structure of mounting semiconductor chip
JP5658837B2 (en) Heat dissipation device for electronic parts
JPH0864731A (en) Heat conducting member and cooler and electronic apparatus employing the same
JP3734895B2 (en) heatsink
JP4913285B2 (en) Heat dissipation fins and heat sinks
JP2000332175A (en) Heat sink with fin
JP3378174B2 (en) Heat dissipation structure of high heating element
JP2003198171A (en) Heat sink and radiator
JP4697118B2 (en) Electronic equipment
JP4380061B2 (en) Heat dissipation structure
JPH05315480A (en) Radiator
JPH10335860A (en) Heat sink