JPH0715889A - Control circuit for solar battery - Google Patents

Control circuit for solar battery

Info

Publication number
JPH0715889A
JPH0715889A JP5156514A JP15651493A JPH0715889A JP H0715889 A JPH0715889 A JP H0715889A JP 5156514 A JP5156514 A JP 5156514A JP 15651493 A JP15651493 A JP 15651493A JP H0715889 A JPH0715889 A JP H0715889A
Authority
JP
Japan
Prior art keywords
solar cell
relay
secondary battery
contact terminal
night
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5156514A
Other languages
Japanese (ja)
Inventor
Masaharu Ono
雅晴 大野
Shin Arakawa
伸 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5156514A priority Critical patent/JPH0715889A/en
Publication of JPH0715889A publication Critical patent/JPH0715889A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To eliminate the need for an adjusting mechanism and a hysteresis circuit, and to enable large current control by connecting a solar battery to a coil terminal for a relay, discriminating day and night and supplying day load and night load with outputs respectively through the contact terminals of two kinds of the normal open and normal close of the relay. CONSTITUTION:Night operating load 9 such as an illumination, an LED pilot lamp, etc., is connected to a secondary battery 2 through the normal-close contact terminal 7 of a relay 4 and operated at night. On the other hand, the operating voltage of a solar battery 1 rises and power sufficiently smaller than the generated power of the solar battery 1 is applied to a coil 5 by day, and day operating load 8 such as a ventilating fan, a pump, etc., is connected to the secondary battery 2 through a normal-open contact terminal 6 and operated. Day and night are discriminated at low speed by the coil resistance of the coil 5 at that time, but no thermal damage is generated by the control of large currents owing to low contact resistance and no-intermediate state. Accordingly, heat is not also dissipated and large currents can be controlled by simple circuit constitution, thus obtaining a control circuit capable of discriminating day and night.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は太陽電池で二次電池を充
電する太陽電池電源システムに用いる、充放電制御およ
び出力制御を行う太陽電池用制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell control circuit for charge / discharge control and output control used in a solar cell power supply system for charging a secondary battery with a solar cell.

【0002】[0002]

【従来の技術】太陽電池によって二次電池を充電する太
陽電池電源システムには、鉛蓄電池などの二次電池を保
護する過充電防止や過放電防止の制御回路が必要であ
り、さらに太陽電池の光センサ機能を応用した昼夜判別
出力の制御回路がよく用いられる。
2. Description of the Related Art A solar battery power supply system for charging a secondary battery with a solar battery requires a control circuit for protecting the secondary battery such as a lead storage battery from overcharge prevention and overdischarge prevention. A control circuit for day / night discriminating output applying an optical sensor function is often used.

【0003】従来の昼夜判別出力回路は、太陽電池の出
力電圧をIC回路で検知し、過放電防止回路とのロジッ
ク回路により出力部の半導体スイッチ素子を高速で開閉
する回路方式がよく用いられる。また従来の過充電防止
回路は、太陽電池と二次電池を逆流防止ダイオードを介
して接続し、二次電池の電圧上昇をIC回路で検出して
半導体スイッチ素子を高速で動作させ太陽電池を短絡ま
たは開放する回路方式が用いられる。
In the conventional day / night discrimination output circuit, a circuit system in which an output voltage of a solar cell is detected by an IC circuit and a semiconductor switch element of an output portion is opened / closed at high speed by a logic circuit together with an overdischarge prevention circuit is often used. In addition, the conventional overcharge prevention circuit connects the solar cell and the secondary battery via the backflow prevention diode, detects the voltage rise of the secondary battery with the IC circuit, and operates the semiconductor switch element at high speed to short-circuit the solar cell. Alternatively, an open circuit system is used.

【0004】そして、特開平1−234737号公報
に、商用電源に直列に換気扇と双方向性制御素子とを接
続したスイッチ回路と、前記双方向性制御回路素子の一
方の極とゲート極の間に抵抗とリードスイッチを接続
し、前記双方向性制御素子の他方の極とゲート極の間に
他の抵抗を接続したゲート回路と、前記リードスイッチ
に並置して設けられた電磁コイルと、この電磁コイルに
接続された太陽電池とからなる換気装置が開示されてい
る。
Further, Japanese Patent Laid-Open No. 1-234737 discloses a switch circuit in which a ventilation fan and a bidirectional control element are connected in series to a commercial power source, and between a pole and a gate pole of the bidirectional control circuit element. A resistor and a reed switch are connected to each other, and a gate circuit in which another resistor is connected between the other pole of the bidirectional control element and the gate pole, and an electromagnetic coil provided in parallel with the reed switch, A ventilator comprising a solar cell connected to an electromagnetic coil is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来例
の問題点の1つは半導体スイッチ素子の許容電流が小さ
くまた熱破壊しやすい点である。過充電防止回路の場
合、たとえば6V用二次電池を充電する定格8Vで最大
出力48Wの太陽電池を用いた場合に短絡電流は6Aな
いし7Aである。この時、十分にオンした場合にはパワ
ートランジスタやパワーMOS−FETなどの半導体ス
イッチ素子の電圧降下は一般に0.1V以下で発熱は
0.7W以下であるが、スイッチする時間に太陽電池の
動作点を通過するため、スイッチ速度が遅い場合48W
の電力が加わり、短い周期のチャタリングが発生すると
熱破壊を起こす。温度上昇を緩和する放熱フィンは大き
くなりまたコスト高である。さらに低価格で入手できる
スイッチ素子の許容電流は、一般に3Aないし5A以下
である。
However, one of the problems of the conventional example is that the semiconductor switch element has a small allowable current and is easily damaged by heat. In the case of an overcharge prevention circuit, for example, when a solar cell with a rated output of 8V and a maximum output of 48W for charging a 6V secondary battery is used, the short-circuit current is 6A to 7A. At this time, when it is sufficiently turned on, the voltage drop of the semiconductor switch element such as the power transistor or the power MOS-FET is generally 0.1 V or less and the heat generation is 0.7 W or less, but the operation of the solar cell is performed during the switching time. 48W when the switch speed is slow because it passes a point
When the chattering of a short period occurs due to the addition of the electric power of, heat destruction occurs. The radiating fins for reducing the temperature rise are large and the cost is high. The permissible current of the switch element that can be obtained at a lower price is generally 3 A to 5 A or less.

【0006】また、従来例の問題点の他の1つは昼夜判
別出力制御や充放電制御のために半導体スイッチ素子の
高速開閉によるチャタリング防止のヒステリシス回路と
ロジック回路が必要であり、昼夜判別出力制御では明る
さの不安定性に対するヒステリシス回路が、充放電制御
回路では電圧検出ICまたは電圧検出の不安定性に対す
るヒステリシス回路が必要である。
Further, another one of the problems of the conventional example is that a hysteresis circuit and a logic circuit for preventing chattering due to high-speed opening / closing of the semiconductor switch element are necessary for day / night discrimination output control and charge / discharge control. The control requires a hysteresis circuit for brightness instability, and the charge / discharge control circuit requires a voltage detection IC or a hysteresis circuit for voltage detection instability.

【0007】さらに、従来例では充電電圧の温度補正に
調整機構が必要であるという点である。温度補正回路に
サーミスタを用いた場合、抵抗のばらつきが大きく可変
抵抗による個別調整が必要である。
Further, in the conventional example, an adjusting mechanism is required for temperature correction of the charging voltage. When a thermistor is used for the temperature correction circuit, there is a large variation in resistance, and individual adjustment by variable resistance is necessary.

【0008】本発明は上記の問題点を解決するもので、
本発明の第1の目的は、調整機構や特別なヒステリシス
回路がない単純な回路構成であり放熱もなく大電流を制
御でき、昼夜判別出力が可能な太陽電池用制御回路を提
供するものである。
The present invention solves the above problems.
A first object of the present invention is to provide a solar cell control circuit which has a simple circuit configuration without an adjusting mechanism and a special hysteresis circuit, can control a large current without radiating heat, and can perform day / night discrimination output. .

【0009】さらに、本発明の第2の目的は充放電電圧
の温度補正が容易な太陽電池用制御回路を提供すること
である。
A second object of the present invention is to provide a solar cell control circuit in which the temperature of the charge / discharge voltage can be easily corrected.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、スイッチ素子としてリレーを用い、リレーのノーマ
ルオープンとノーマルクローズの接点端子を介して二次
電池と太陽電池の出力端子に接続し、コイル端子に光セ
ンサであり駆動電力源としての太陽電池を接続して昼夜
を判別し、リレーの昼間閉路、夜間開路となるノーマル
オープンと昼間開路、夜間閉路となるノーマルクローズ
の2種類の接点端子を応用してそれぞれ昼間と夜間動作
負荷に出力を供給するものである。
In order to achieve the above object, a relay is used as a switch element and is connected to an output terminal of a secondary battery and a solar cell through a normally open and normally closed contact terminal of the relay, An optical sensor is connected to the coil terminal to connect a solar cell as a drive power source to distinguish day and night, and there are two types of contact terminals: a relay daytime closed, a night open normally open and a day open, and a night closed normally closed. Is applied to supply the output to the daytime and nighttime operation loads, respectively.

【0011】また、発熱がほとんどなく高速スイッチの
必要性がないため、特性ばらつきが少なく負の温度特性
を持つLEDを直列接続して二次電池の温度特性に近似
させ、アナログ的電圧検知手段として用い、順方向直列
接続した複数の発光ダイオード(以下LEDという)、
または順方向直列接続した複数のLEDの電流信号によ
り動作するスイッチ素子を介してリレーのコイル端子に
接続し、充放電出力の制御を行うものである。
Further, since there is almost no heat generation and there is no need for a high-speed switch, LEDs having a small temperature variation and a negative temperature characteristic are connected in series to approximate the temperature characteristic of a secondary battery, and as an analog voltage detecting means. A plurality of light-emitting diodes (hereinafter referred to as LEDs) connected in series in the forward direction,
Alternatively, the charging / discharging output is controlled by connecting to the coil terminal of the relay through a switching element that operates according to the current signals of a plurality of LEDs connected in series in the forward direction.

【0012】リレーのコイル電流に対する開閉のヒステ
リシスによりチャタリングも少なく簡単な回路構成で、
充放電制御を実現するものである。
Due to the hysteresis of the coil current of the relay, there is little chattering and a simple circuit configuration.
It realizes charge / discharge control.

【0013】[0013]

【作用】上記構成により、日照により太陽電池に発生し
た出力がリレーのコイルに印加されると接点端子が開閉
する。雨天でも昼間は0.02kW/m2〜0.1kW
/m2の光量があるため、最大出力10Wの太陽電池で
も200mW〜1000mWの電力をコイルに供給で
き、直接駆動でも市販のほとんどのリレーが動作する。
昼間、ノーマルクローズ接点端子はオフ状態を、ノーマ
ルオープン接点端子はオン状態を保持し、日没後は反転
して昼夜判別の出力制御ができる。二次電池を電源とし
太陽電池の出力を増幅する半導体スイッチ素子によりコ
イルの励磁電流を制御する構成では数十ルックス以下の
照度で同様に機能する。
With the above structure, when the output generated in the solar cell due to sunshine is applied to the coil of the relay, the contact terminal opens and closes. 0.02kW / m 2 to 0.1kW in the daytime even in rainy weather
Since there is a light amount of / m 2 , even a solar cell with a maximum output of 10 W can supply electric power of 200 mW to 1000 mW to the coil, and most commercially available relays operate even when driven directly.
During the daytime, the normally closed contact terminal is kept in the off state, and the normally open contact terminal is kept in the on state. In a configuration in which the exciting current of the coil is controlled by a semiconductor switching element that amplifies the output of the solar cell using a secondary battery as a power source, the same function is achieved at an illuminance of several tens of lux or less.

【0014】また、過充電防止回路の場合、二次電池の
電圧が上昇すると直列接続した複数のLEDが順方向に
バイアスされ、直接またはスイッチ素子を介してリレー
のコイルに励磁電流が流れる。コイルが感動電圧に達す
ると、ノーマルクローズ接点端子を介して接続された二
次電池と太陽電池は開放され充電を停止する。コイルの
抵抗による電流電圧特性の勾配と、リレーの開放電圧が
感動電圧より低い性質のため接点の開閉は自動的にヒス
テリシスを持ち、充電停止後の電池電圧の低下によるチ
ャタリングは緩和される。コイルに直列の調整抵抗を接
続するとさらにチャタリング周期は長くなる。
Further, in the case of the overcharge prevention circuit, when the voltage of the secondary battery rises, a plurality of LEDs connected in series are forward biased, and an exciting current flows through the coil of the relay directly or through the switch element. When the coil reaches the moving voltage, the secondary battery and the solar battery connected via the normally closed contact terminal are opened and charging is stopped. Due to the gradient of the current-voltage characteristic due to the resistance of the coil and the nature of the open circuit voltage of the relay being lower than the sensing voltage, the opening and closing of the contacts automatically has a hysteresis, and the chattering due to the drop of the battery voltage after the charging is stopped is mitigated. If a series adjustment resistor is connected to the coil, the chattering period becomes longer.

【0015】接点に並列にバイパス抵抗を接続すると、
昼間は接点端子の開閉によらない定電流で二次電池が押
し込み充電され、充電停止による電池電圧の低下が緩慢
でチャタリングがほとんどなく、リレーの接点寿命と二
次電池寿命がともに長くなる。
If a bypass resistor is connected in parallel with the contact,
During the daytime, the secondary battery is pushed and charged by a constant current that does not depend on the opening and closing of the contact terminals, the battery voltage drops slowly due to charging stoppage, and there is almost no chattering, and both the contact life of the relay and the life of the secondary battery are extended.

【0016】[0016]

【実施例】以下本発明の実施例の太陽電池用制御回路に
ついて図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A solar cell control circuit according to an embodiment of the present invention will be described below with reference to the drawings.

【0017】(実施例1)本発明による昼夜判別出力機
能を持つ太陽電池用制御回路の代表的実施例を、図1と
図2に示す。図1において、太陽電池1が二次電池2を
充電するよう逆流防止ダイオード3を介して接続する。
リレー4のコイル5に太陽電池1を接続し、二次電池2
と接続した昼間閉路、夜間開路となるノーマルオープン
接点端子6の一方の端子と昼間開路、夜間閉路となるノ
ーマルクローズ接点端子7の他方の端子に、それぞれ昼
間動作負荷8と夜間動作負荷9を接続する。夜間はノー
マルクローズ接点端子7の他方の端子を介して照明やL
ED表示灯などの夜間動作負荷9が二次電池2と接続さ
れて動作し、昼間は太陽電池1の動作電圧が上昇する
と、太陽電池1の発電電力より十分少ない200mW〜
1000mWの電力がコイル5に加わり、ノーマルオー
プン接点端子6の一方の端子を介して換気扇やポンプな
どの昼間動作負荷8が二次電池2と接続されて動作す
る。コイル5の抵抗値は一般にリレーの定格電圧の2乗
に比例するので自動的に電流制限されるが、電源部の定
格に比べて低い定格電圧のリレーを使用したりリレーの
感動電圧と開放電圧の差によって発生するヒステリシス
を大きくして接点のチャタリングをなくす目的で、コイ
ル5に直列に調整抵抗10を接続する。コイル抵抗によ
る昼夜判別は低速であるが、接点抵抗が低く中間状態も
ないため大電流の制御による熱破損は発生しない。
(Embodiment 1) A typical embodiment of a solar cell control circuit having a day / night discrimination output function according to the present invention is shown in FIGS. 1 and 2. In FIG. 1, a solar cell 1 is connected via a backflow prevention diode 3 so as to charge a secondary battery 2.
The solar cell 1 is connected to the coil 5 of the relay 4, and the secondary battery 2 is connected.
A daytime operation load 8 and a nighttime operation load 9 are connected to one of the normally open contact terminals 6 for daytime closing and nighttime opening connected to the other terminal of the normally closed contact terminal 7 for daytime opening and nighttime closing. To do. At night, through the other terminal of the normally closed contact terminal 7, lighting or L
When the night operation load 9 such as an ED indicator lamp is connected to the secondary battery 2 to operate, and the operating voltage of the solar cell 1 rises during the daytime, the power generation power of the solar cell 1 is sufficiently less than 200 mW.
A power of 1000 mW is applied to the coil 5, and a daytime operation load 8 such as a ventilation fan or a pump is connected to the secondary battery 2 via one terminal of the normally open contact terminal 6 to operate. The resistance value of the coil 5 is generally proportional to the square of the rated voltage of the relay, so the current is automatically limited, but a relay with a lower rated voltage than the rating of the power supply unit may be used, or the excitement voltage and open circuit voltage of the relay may be used. The adjustment resistor 10 is connected in series to the coil 5 for the purpose of increasing the hysteresis generated by the difference between the two and eliminating chattering of the contacts. Day / night discrimination by coil resistance is slow, but contact resistance is low and there is no intermediate state, so thermal damage does not occur due to large current control.

【0018】太陽電池1は、単結晶シリコン太陽電池や
多結晶シリコン太陽電池、またはCdS/CdTe化合
物薄膜太陽電池やアモルファスシリコン薄膜太陽電池を
用い、二次電池2が定格12Vの場合、一般に34セル
〜40セルを直列接続した動作電圧約16Vのモジュー
ルを用いる。二次電池2として容量が4Ah以下の場合
には、過放電に比較的強い密閉形のニッケルカドミウム
蓄電池やニッケル水素蓄電池を複数個直列にしたパック
電池が低コストで使え、二次電池容量に対し1/4〜1
/10Cの発電電流の太陽電池の場合、使用条件により
過充電防止回路なしでも使える。二次電池2の容量が大
きく鉛蓄電池を用いて低コスト化する場合、図1の実施
例で省略した過充電防止や過放電防止の制御回路が必要
である。また複数のノーマルオープン接点や複数のノー
マルクローズ接点を持ったリレーを用いて多くの出力負
荷制御が同時に可能であり、節電のためラッチング型の
使用も可能である。
As the solar cell 1, a single crystal silicon solar cell, a polycrystalline silicon solar cell, a CdS / CdTe compound thin film solar cell or an amorphous silicon thin film solar cell is used, and when the secondary battery 2 has a rating of 12 V, it is generally 34 cells. A module having an operating voltage of about 16 V in which -40 cells are connected in series is used. When the capacity of the secondary battery 2 is 4 Ah or less, a packed battery in which a plurality of sealed nickel-cadmium storage batteries or nickel-hydrogen storage batteries, which are relatively strong against overdischarge, are used at low cost, 1/4 to 1
In the case of a solar cell with a generated current of / 10C, it can be used without an overcharge prevention circuit depending on the usage conditions. When the capacity of the secondary battery 2 is large and the cost is reduced by using the lead storage battery, the control circuit for overcharge prevention and overdischarge prevention omitted in the embodiment of FIG. 1 is necessary. In addition, many output load controls can be performed at the same time by using a relay with multiple normally open contacts and multiple normally closed contacts, and a latching type can be used to save power.

【0019】図2において、太陽電池23の出力をトラ
ンジスタ24によって増幅して感度を上げコイル25の
励磁電流を制御した本発明による別の実施例を示す。図
2において抵抗26、27により昼夜判別の感度調整
を、調整抵抗28により電圧ヒステリシスを調整する。
またリレー29は複数の接点を持ち、2個のノーマルオ
ープン接点端子30、30aにより換気扇やポンプなど
の昼間動作負荷31、31aを制御し、ノーマルクロー
ズ接点端子32により照明またはLED表示灯などの夜
間動作負荷33を制御する。太陽電池の出力が小さくて
もリレーの駆動が容易である。
FIG. 2 shows another embodiment according to the present invention in which the output of the solar cell 23 is amplified by the transistor 24 to increase the sensitivity and control the exciting current of the coil 25. In FIG. 2, the resistors 26 and 27 adjust the sensitivity for day / night discrimination, and the adjusting resistor 28 adjusts the voltage hysteresis.
Further, the relay 29 has a plurality of contacts, and controls the daytime operation loads 31, 31a such as a ventilation fan and a pump by the two normally open contact terminals 30, 30a, and the normally closed contact terminal 32 by the illumination or the LED indicator lamp at night. The operating load 33 is controlled. The relay can be easily driven even if the output of the solar cell is small.

【0020】(実施例2)本発明の実施例2による二次
電池の充放電制御機能を持つ太陽電池用制御回路の過充
電防止機能を有する代表的実施例を図3に示す。図3に
おいて、逆流防止ダイオード41とリレー42のノーマ
ルクローズ接点端子43を介して太陽電池44と二次電
池45を接続する。また過充電制御後に二次電池45に
太陽電池44から押し込み充電をするため比較的高抵抗
値のバイパス抵抗46をノーマルクローズ接点端子43
に並列接続した。リレー42のコイル47を介してコイ
ル47の一方の端子に太陽電池44の正極を接続し他方
の端子に調整抵抗48とトランジスタ49のコレクター
を直列に接続した。
(Embodiment 2) FIG. 3 shows a typical embodiment having an overcharge prevention function of a solar cell control circuit having a charge / discharge control function for a secondary battery according to Embodiment 2 of the present invention. In FIG. 3, the solar cell 44 and the secondary battery 45 are connected via the backflow prevention diode 41 and the normally closed contact terminal 43 of the relay 42. Further, in order to charge the secondary battery 45 from the solar battery 44 by charging after the overcharge control, the bypass resistor 46 having a relatively high resistance value is connected to the normally closed contact terminal 43.
Connected in parallel. The positive electrode of the solar cell 44 was connected to one terminal of the coil 47 via the coil 47 of the relay 42, and the adjustment resistor 48 and the collector of the transistor 49 were connected in series to the other terminal.

【0021】昼間、太陽電池44からの充電により二次
電池45が過充電となり電池電圧が設定値を越えて上昇
すると、電圧検出用に直列接続した複数の発光ダイオー
ド(以下LEDという)50に急激に電流が流れ抵抗5
1からベース電流が供給されてトランジスタ49がスイ
ッチオンし、コイル47に励磁電流が流れ感動電圧に達
するとリレー42のノーマルクローズ接点端子43が開
放され、太陽電池44からの通常の充電は停止する。
During the daytime, when the secondary battery 45 is overcharged due to charging from the solar battery 44 and the battery voltage rises above the set value, a plurality of light emitting diodes (hereinafter referred to as LEDs) 50 connected in series for voltage detection are rapidly used. Current flows through the resistance 5
When the base current is supplied from 1 and the transistor 49 is switched on, and the exciting current flows through the coil 47 and reaches the touching voltage, the normally closed contact terminal 43 of the relay 42 is opened and the normal charging from the solar cell 44 is stopped. .

【0022】なお、トランジスタ49を用いずに複数個
順方向直列接続されたLED50だけを用いてもよい。
It is also possible to use only a plurality of LEDs 50 connected in series in the forward direction without using the transistor 49.

【0023】二次電池が定格12Vの鉛蓄電池の場合、
リレー42は定格12V以下が使用でき、電圧が高いほ
うが励磁電流が少なく、許容値を越えないよう調整抵抗
48で調整した。抵抗51、52の抵抗値を大きくする
と電圧検出感度が小さくなりリレー42の電圧ヒステリ
シスが大きくなって、電池電圧の降下によるチャタリン
グ周期も長くなった。また、充電制御電圧は常温で1
3.8V〜14.7Vに設定し、複数のLED50は順
方向立ち上がり電圧が低くばらつきの少ない赤色のLE
Dを8〜10個直列接続した。遮光樹脂でモールドした
定電圧用LEDを使用することもできる。LEDは−2
mV/℃〜−3mV/℃の負の温度係数を持つため、定
格電圧12Vの鉛蓄電池(6セル)の場合、LEDを8
〜10セル直列接続して温度係数をほぼ補償することが
できる。
When the secondary battery is a lead storage battery having a rating of 12V,
For the relay 42, a rated voltage of 12 V or less can be used, the higher the voltage is, the smaller the exciting current is, and the adjustment resistance 48 is adjusted so as not to exceed the allowable value. When the resistance values of the resistors 51 and 52 are increased, the voltage detection sensitivity is decreased, the voltage hysteresis of the relay 42 is increased, and the chattering cycle due to the drop of the battery voltage is also increased. The charge control voltage is 1 at room temperature.
It is set to 3.8V to 14.7V, and the plurality of LEDs 50 have a low forward rising voltage and little variation in red LE.
8 to 10 Ds were connected in series. It is also possible to use a constant voltage LED molded with a light shielding resin. LED is -2
Since it has a negative temperature coefficient of mV / ° C to -3 mV / ° C, in the case of a lead storage battery (6 cells) with a rated voltage of 12V, 8 LEDs are used.
The temperature coefficient can be almost compensated by connecting 10 cells in series.

【0024】図3の実施例において赤色LEDを9個直
列にした温度特性測定結果を図4に示す。図4において
蓄電池電圧に対するコイル47の励磁電流が勾配を持
ち、25℃の場合にリレー42がオンする電圧14.5
Vに対しオフする電圧は14.0Vであり0.5Vの電
圧ヒステリシスがあった。55℃〜−15℃の温度特性
はトランジスタ49が加算され−25mV/℃であり1
2Vの蓄電池の温度特性−30mV/℃にほぼ近い温度
補償ができ、ばらつきはほとんどなかった。
FIG. 4 shows the results of temperature characteristic measurement in which nine red LEDs were connected in series in the embodiment of FIG. In FIG. 4, the excitation current of the coil 47 with respect to the storage battery voltage has a gradient, and the voltage at which the relay 42 turns on when the temperature is 25 ° C. is 14.5.
The voltage turned off with respect to V was 14.0 V, and there was a voltage hysteresis of 0.5 V. The temperature characteristic of 55 ° C to -15 ° C is -25 mV / ° C when the transistor 49 is added.
The temperature characteristic of the 2V storage battery was almost equal to −30 mV / ° C., and the temperature was almost compensated.

【0025】図3の実施例において定格12V・30A
hの鉛蓄電池を最大出力30Wの多結晶太陽電池で充電
した場合のチャタリングによる蓄電池電圧の時間変化の
測定結果を図5に示す。図5においてバイパス抵抗46
を100オームにするとバイパス抵抗46がない場合に
比べてチャタリング周期が約2.5倍に伸び、バイパス
抵抗50オームを用いた場合にはチャタリングがなく1
4.7Vの一定電圧に収束し押し込み充電が継続され
た。ノーマルクローズ接点端子43が過充電保護により
開放し、36セルの多結晶太陽電池が開放電圧約20.
5Vで動作する時、鉛蓄電池との電圧差6Vが加わり、
バイパス抵抗46が50オームの時120mAの押し込
み充電電流が流れる。電力損失は0.72Wであり合成
抵抗や小型の電力抵抗を回路基板に直接実装することが
容易にできる。
In the embodiment shown in FIG. 3, the rated voltage is 12V, 30A.
FIG. 5 shows the measurement result of the time change of the storage battery voltage due to chattering when the lead storage battery of h was charged by the polycrystalline solar cell having the maximum output of 30 W. In FIG. 5, the bypass resistor 46
Is 100 ohms, the chattering period is about 2.5 times longer than the case without the bypass resistor 46, and when the bypass resistor 50 ohm is used, there is no chattering.
It converged to a constant voltage of 4.7V and the charging was continued by pushing. The normally closed contact terminal 43 is opened due to overcharge protection, and the 36-cell polycrystalline solar cell has an open voltage of about 20.
When operating at 5V, a voltage difference of 6V from the lead acid battery is added,
When the bypass resistor 46 is 50 ohms, a push-in charging current of 120 mA flows. The power loss is 0.72 W, and it is easy to directly mount a synthetic resistance or a small power resistance on the circuit board.

【0026】次に、本発明による二次電池の充放電制御
機能を持つ太陽電池用制御回路の過放電機能を有する代
表的実施例を図6に示す。図6において逆流防止ダイオ
ード61を介して太陽電池62と二次電池63とを接続
する。またリレー64のコイル65を介してコイル65
の一方の端子に二次電池63の正極を接続し他方の端子
に調整抵抗66とトランジスタ67のコレクターを直列
に接続する。トランジスタ67のエミッタはアースされ
ベースはベース電流を制限する抵抗68を介して電圧検
出用に複数個直列接続したLED69の負極およびベー
ス電流を逃がすための抵抗70に接続する。複数個直列
接続したLED69の正極は二次電池63の正極に接続
され二次電池63の電圧を監視する。またリレー64の
ノーマルオープン接点端子71を介して二次電池63の
正極と負荷72とを接続する。通常は二次電池63によ
りLED69と抵抗68とを通ってベース電流が供給さ
れ、トランジスタ67はオン状態にありコイル65に定
格電流が流れてノーマルオープン接点端子71もオン状
態にある。したがって負荷72には二次電池63より電
力が常時供給されている。
Next, FIG. 6 shows a typical embodiment having an overdischarge function of a solar cell control circuit having a secondary battery charge / discharge control function according to the present invention. In FIG. 6, the solar cell 62 and the secondary battery 63 are connected via the backflow prevention diode 61. In addition, the coil 65 of the relay 64
The positive electrode of the secondary battery 63 is connected to one terminal, and the adjusting resistor 66 and the collector of the transistor 67 are connected in series to the other terminal. The emitter of the transistor 67 is grounded, and the base is connected to a negative electrode of a plurality of LEDs 69 connected in series for voltage detection and a resistor 70 for releasing the base current through a resistor 68 for limiting the base current. The positive electrode of a plurality of LEDs 69 connected in series is connected to the positive electrode of the secondary battery 63 to monitor the voltage of the secondary battery 63. Further, the positive electrode of the secondary battery 63 and the load 72 are connected via the normally open contact terminal 71 of the relay 64. Normally, the base current is supplied from the secondary battery 63 through the LED 69 and the resistor 68, the transistor 67 is in the ON state, the rated current flows through the coil 65, and the normally open contact terminal 71 is also in the ON state. Therefore, the load 72 is constantly supplied with power from the secondary battery 63.

【0027】負荷72の電力消費により二次電池63の
電圧が降下したとえば定格電圧12Vが10.5Vに低
下すると、LED69の電圧検出機能によりベース電流
が急減してトランジスタ67とコイル65がオフになり
ノーマルオープン接点端子71もオフ状態となって二次
電池63の過放電が防止される。
When the voltage of the secondary battery 63 drops due to the power consumption of the load 72, for example, the rated voltage 12V drops to 10.5V, the base current is suddenly reduced by the voltage detection function of the LED 69 to turn off the transistor 67 and the coil 65. The normally open contact terminal 71 is also turned off, and the secondary battery 63 is prevented from being over-discharged.

【0028】なお、トランジスタ67を用いずに複数個
順方向直列接続されたLED69だけを用いてもよい。
It is also possible to use only the LEDs 69 connected in series in the forward direction without using the transistor 67.

【0029】負荷72はLED標識灯、照明、換気扇、
ポンプなど太陽電池による独立電源を必要とする各種負
荷であり、負荷の種類により図1ないし図3の昼夜判別
出力回路または、過充電防止回路と過放電防止回路との
複合化が容易である。また複合化において温度補正の不
要な過放電防止の場合は電圧検出機能のLED69の代
わりに電圧検出ICなどを用いて回路の簡略化も可能で
ある。
The load 72 is an LED indicator light, a lighting, a ventilation fan,
It is a load such as a pump that requires an independent power source using a solar cell, and depending on the type of load, it is easy to combine the day / night discrimination output circuit of FIG. 1 to FIG. 3 or an overcharge prevention circuit and an overdischarge prevention circuit. In the case of over-discharging prevention that does not require temperature correction in the combination, the circuit can be simplified by using a voltage detection IC or the like instead of the LED 69 having the voltage detection function.

【0030】[0030]

【発明の効果】以上の説明により明らかなように、本発
明の太陽電池用制御回路によれば、スイッチ素子として
用いるリレーと二次電池と太陽電池の単純な構成により
特別な検知回路を用いないで昼夜を判別し、複数の出力
制御が可能である。スイッチ素子による電圧損失がな
く、放熱フィンなしでも発熱による破損がなく、ヒステ
リシスによるチャタリング防止が容易である。このため
小型低コストで信頼性の高い太陽電池用制御回路が容易
に得られる。また、スイッチ素子として用いるリレーと
二次電池と太陽電池と複数のLEDなどの単純な構成に
より、鉛蓄電池などの二次電池の温度補償が容易にで
き、スイッチ素子のチャタリングや熱破損のない充放電
制御が可能な太陽電池用制御回路が容易に得られる。さ
らに二次電池の寿命を延ばす押し込み充電や、充電制御
の状態を電圧検知用のLEDで表示することも可能であ
る。
As is apparent from the above description, according to the solar cell control circuit of the present invention, no special detection circuit is used due to the simple configuration of the relay used as the switch element, the secondary battery and the solar cell. It is possible to discriminate between day and night, and control multiple outputs. There is no voltage loss due to the switch element, there is no damage due to heat generation even without a heat radiation fin, and it is easy to prevent chattering due to hysteresis. Therefore, a small-sized, low-cost and highly reliable solar cell control circuit can be easily obtained. Further, the simple configuration of the relay used as the switch element, the secondary battery, the solar cell, the plurality of LEDs, and the like makes it possible to easily compensate the temperature of the secondary battery such as a lead storage battery, and to prevent the switching element from chattering or thermal damage. A solar cell control circuit capable of discharge control can be easily obtained. Further, it is possible to display the state of charge control or push-in charging for extending the life of the secondary battery by an LED for voltage detection.

【0031】さらにリレーの接点抵抗が無視できるため
複数のリレーを直列接続し、本発明による過放電防止用
と昼夜判別出力用の2種類以上の機能を複合させること
が容易である。
Further, since the contact resistance of the relays can be ignored, it is easy to connect a plurality of relays in series and combine the two or more functions of the present invention for preventing overdischarge and for day / night discrimination output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の太陽電池用制御回路の回路
FIG. 1 is a circuit diagram of a solar cell control circuit according to a first embodiment of the present invention.

【図2】同実施例1の他の太陽電池用制御回路の回路図FIG. 2 is a circuit diagram of another solar cell control circuit according to the first embodiment.

【図3】同実施例2の太陽電池用制御回路の回路図FIG. 3 is a circuit diagram of a solar cell control circuit according to the second embodiment.

【図4】同電池電圧に対するリレーのコイル電流の温度
特性の実測データを示すグラフ
FIG. 4 is a graph showing measured data of temperature characteristics of the coil current of the relay with respect to the battery voltage.

【図5】同過充電防止のスイッチ動作による電池電圧の
時間変動がバイパス抵抗により変化する実測データを示
すグラフ
FIG. 5 is a graph showing actual measurement data in which the time variation of the battery voltage due to the switch operation for preventing overcharge changes with the bypass resistance

【図6】同別の実施例の太陽電池用制御回路の回路図FIG. 6 is a circuit diagram of a solar cell control circuit according to another embodiment.

【符号の説明】[Explanation of symbols]

1,23,44,62 太陽電池 2,21,45,63 二次電池 3,22,41,61 逆流防止ダイオード 4,29,42,64 リレー 5,25,47,65 コイル 6,30,30a,71 ノーマルオープン接点端子 7,32,43 ノーマルクローズ接点端子 8,31,31a 昼間動作負荷 9,33 夜間動作負荷 10,28,48,66 調整抵抗 24,49,67 トランジスタ 26,27,51,52,68,70 抵抗 46 バイパス抵抗 50,69 LED 72 負荷 1,23,44,62 Solar cell 2,21,45,63 Secondary battery 3,22,41,61 Backflow prevention diode 4,29,42,64 Relay 5,25,47,65 Coil 6,30,30a , 71 Normally open contact terminal 7, 32, 43 Normally closed contact terminal 8, 31, 31a Daytime operation load 9,33 Nighttime operation load 10, 28, 48, 66 Adjustment resistor 24, 49, 67 Transistor 26, 27, 51, 52, 68, 70 resistance 46 bypass resistance 50, 69 LED 72 load

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 逆流防止ダイオードを介して太陽電池か
ら二次電池を充電する太陽電池電源システムにおいて、
昼間負荷が接続され、昼間閉路、夜間開路となるノーマ
ルオープン接点端子と、夜間負荷が接続され、昼間開
路、夜間閉路となるノーマルクローズ接点端子と、前記
両接点端子を開閉するコイルとを備えたリレーを備え、
前記コイルが日照による太陽電池の出力、または日照に
よる太陽電池の出力により動作する半導体素子により、
前記両接点端子を開閉する昼夜判別出力機能を備えた太
陽電池用制御回路。
1. A solar cell power supply system for charging a secondary battery from a solar cell via a backflow prevention diode,
A normally open contact terminal to which a daytime load is connected and which is closed in the daytime and opened at night, a normally closed contact terminal which is connected to a nighttime load and is to be opened in the daytime and closed at night, and a coil for opening and closing both contact terminals are provided. Equipped with a relay,
By the semiconductor element in which the coil operates by the output of the solar cell due to sunshine, or the output of the solar cell due to sunshine,
A solar cell control circuit having a day / night discrimination output function for opening and closing both contact terminals.
【請求項2】 逆流防止ダイオードを介して太陽電池か
ら二次電池を充電する太陽電池電源システムにおいて、
ノーマルクローズ接点端子と前記接点端子を開閉するコ
イルを有するリレーと、前記リレーを介して前記太陽電
池と二次電池に接続された順方向接続された発光ダイオ
ードまたは、順方向接続された発光ダイオードとそれに
より動作するスイッチ素子とを備え、二次電池の充電電
圧が設定値以上に上昇すると、前記順方向直列接続され
た発光ダイオード、または順方向接続された発光ダイオ
ードとスイッチ素子の電流が急増し、前記ノーマルクロ
ーズ接点端子を開路とし、前記太陽電池からの通常の充
電を停止させる過充電防止機能と、ノーマルオープン接
点端子と前記接点端子を開閉するコイルを有するリレー
と、前記リレーを介して前記太陽電池と二次電池に接続
された順方向接続された発光ダイオードまたは順方向接
続された発光ダイオードとそれにより動作するスイッチ
素子とを備え、二次電池の放電電圧が設定値以下に降下
すると、前記順方向接続した発光ダイオードまたは順方
向接続した発光ダイオードとスイッチ素子の電流が急減
し、前記ノーマルオープン接点端子を開路として、前記
二次電池の負荷への放電を停止する過放電防止機能とを
備えた太陽電池用制御回路。
2. A solar cell power supply system for charging a secondary battery from a solar cell via a backflow prevention diode,
A relay having a normally closed contact terminal and a coil for opening and closing the contact terminal, a forward-connected light emitting diode connected to the solar cell and a secondary battery via the relay, or a forward-connected light emitting diode. When the charging voltage of the secondary battery rises to a set value or higher, the light emitting diodes connected in series in the forward direction, or the currents of the light emitting diodes and the switching elements connected in the forward direction suddenly increase. , A normally closed contact terminal is opened, an overcharge prevention function for stopping normal charging from the solar cell, a relay having a normally open contact terminal and a coil for opening and closing the contact terminal, and the relay via the relay Forward connected light emitting diode or forward connected light emitting die connected to solar cell and secondary battery And a switching element operated thereby, when the discharge voltage of the secondary battery drops below a set value, the forward-connected light-emitting diode or the forward-connected light-emitting diode and the current of the switching element sharply decreases, A control circuit for a solar cell having an over-discharge prevention function of stopping the discharge of the secondary battery to a load by opening the normally open contact terminal.
【請求項3】 リレーのノーマルクローズ接点端子に並
列に充電用のバイパス抵抗を接続した請求項2記載の太
陽電池用制御回路。
3. The control circuit for a solar cell according to claim 2, wherein a bypass resistor for charging is connected in parallel to the normally closed contact terminal of the relay.
JP5156514A 1993-06-28 1993-06-28 Control circuit for solar battery Pending JPH0715889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5156514A JPH0715889A (en) 1993-06-28 1993-06-28 Control circuit for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5156514A JPH0715889A (en) 1993-06-28 1993-06-28 Control circuit for solar battery

Publications (1)

Publication Number Publication Date
JPH0715889A true JPH0715889A (en) 1995-01-17

Family

ID=15629445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5156514A Pending JPH0715889A (en) 1993-06-28 1993-06-28 Control circuit for solar battery

Country Status (1)

Country Link
JP (1) JPH0715889A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881278B2 (en) 1998-06-10 2005-04-19 Showa Denko K.K. Flux for solder paste
KR101054495B1 (en) * 2011-04-19 2011-08-04 주식회사 웨스트라인 Road Solar LED Indicator
CN108288565A (en) * 2018-01-25 2018-07-17 南京御弟哥哥电气有限公司 A kind of anti-interference relay circuit
CN110854914A (en) * 2019-11-28 2020-02-28 上海质卫环保科技有限公司 Pressurizing device and method isolated from power grid and applied to solar power station

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6881278B2 (en) 1998-06-10 2005-04-19 Showa Denko K.K. Flux for solder paste
KR101054495B1 (en) * 2011-04-19 2011-08-04 주식회사 웨스트라인 Road Solar LED Indicator
CN108288565A (en) * 2018-01-25 2018-07-17 南京御弟哥哥电气有限公司 A kind of anti-interference relay circuit
CN110854914A (en) * 2019-11-28 2020-02-28 上海质卫环保科技有限公司 Pressurizing device and method isolated from power grid and applied to solar power station
CN110854914B (en) * 2019-11-28 2023-05-23 上海质卫环保科技有限公司 Method for isolating solar power station from power grid

Similar Documents

Publication Publication Date Title
US5221891A (en) Control circuit for a solar-powered rechargeable power source and load
US9300153B2 (en) Charging control unit
US7035070B2 (en) Over-voltage protection circuit
US5847538A (en) Control circuit for protecting an excess discharge of a battery
US5041952A (en) Control circuit for a solar-powered rechargeable power source and load
US8193774B2 (en) Battery pack
US11871796B2 (en) Voltage output circuit for electronic cigarette and electronic cigarette using circuit
CN1334630A (en) Shunt voltage regulator with self-contained safety heat short-circuit protection
US20110285354A1 (en) Rechargeable battery controlling circuit, rechargeable battery controlling device, independent power system and battery pack
US6376932B1 (en) Solar cell-powered battery charging system in which battery output is controlled in response to charging current supplied by solar cell to battery
WO2017034674A1 (en) Contactor assembly for battery module
CN209658958U (en) Series-connected cell group controls protective module
EP1067655A1 (en) Temperature switch controlled charging circuit
US5341082A (en) Reverse current flow protector for electricity storage systems
JP3002623B2 (en) Overdischarge prevention circuit, overcharge prevention circuit and charge / discharge control circuit for series battery
JPH11341693A (en) Set battery having overcharge protective circuit
JPH0749721A (en) Protection device for electric apparatus using solar battery as power supply
JPH0715889A (en) Control circuit for solar battery
TW201123680A (en) Overcharge protection device for batteries
JP3485445B2 (en) Solar powered power supply
JP3522802B2 (en) Overcharge prevention circuit for solar battery storage battery
JP2004254386A (en) Dc power supply device
US5245268A (en) Battery charger with current stabilizer
JP2001092391A (en) Solar battery sign system
JP2697472B2 (en) Solar power unit