JPH07154703A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH07154703A
JPH07154703A JP5323351A JP32335193A JPH07154703A JP H07154703 A JPH07154703 A JP H07154703A JP 5323351 A JP5323351 A JP 5323351A JP 32335193 A JP32335193 A JP 32335193A JP H07154703 A JPH07154703 A JP H07154703A
Authority
JP
Japan
Prior art keywords
optical axis
lens group
image pickup
magnetic force
photographing optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5323351A
Other languages
Japanese (ja)
Inventor
Shigeo Ogura
栄夫 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5323351A priority Critical patent/JPH07154703A/en
Publication of JPH07154703A publication Critical patent/JPH07154703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an image pickup device for high definition images which is provided with high responsiveness and durability by eliminating necessity to install the optical system of any new mechanism and is being constituted without any mechanical contact part. CONSTITUTION:A second lens group 1b is made movable in an optical axis direction over a prescribed range for zooming, and a fourth lens group 1d is made movable similarly for focus control. A cabinet 4 holds a first lens group la and an imaging device 3 or the like. A diaphragm member 6 changes the opening diameter of a diaphragm corresponding to a motive force source 7 such as a motor. This device is provided with a magnetic force generating member 101 composed of a permanent magnet or the like for holding the second and fourth lens groups 1b and 1d of movable lens groups respectively vertically to an optical axis with no contact to the cabinet 4 and a magnetic force generating member 102 composed of a permanent magnet or the like for respectively moving the second and fourth lens groups 1b and 1d of the movable lens groups in the optical axis direction with no contact to the cabinet 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像素子に対して
被撮像体の入射光像を相対的に微小移動させるように光
学系保持手段を磁力により変位させて高精細の画像を取
り込む撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device for picking up a high-definition image by displacing an optical system holding means by a magnetic force so that an incident light image of an object to be imaged is relatively minutely moved. Regarding the device.

【0002】[0002]

【従来の技術】近年、家庭用の小型ビデオカメラ、スチ
ルビデオカメラなどに使用されている固体撮像素子の高
画素化により、NTSC等のテレビ規格では十分な画質
が得られるようになってきた。しかしながら、大画面用
の画像やハードコピー、コンピュータグラフィックス等
に必要な解像力を得るには、現状の画素数では不十分で
ある。固体撮像素子の画素数は、通常40万画素、高精
細用でも200万画素が限度であり、さらなる改善は難
しいとされている。
2. Description of the Related Art In recent years, due to the increase in the number of pixels of solid-state image pickup devices used in home-use compact video cameras, still video cameras, etc., it has become possible to obtain sufficient image quality in the television standards such as NTSC. However, the current number of pixels is not sufficient to obtain the resolution required for a large-screen image, hard copy, computer graphics, and the like. The number of pixels of the solid-state image pickup device is usually 400,000, and even for high definition, the limit is 2 million, and further improvement is said to be difficult.

【0003】そこで、他の方法で高画素化を実現する方
法として、画素ずらしにより高精細な画像を合成する方
法が開示されている。これは特公昭57−31701
号、特公昭63−16064号等で提案されているよう
に固体撮像素子に入射される入力画像光の固体撮像素子
上の位置を微小変化させて撮像する方法で、得られた複
数の画像からエリアセンサの画素数より多い情報が得ら
れる。
Therefore, as another method for realizing a higher pixel count, a method for synthesizing a high-definition image by shifting pixels has been disclosed. This is Japanese Patent Publication Sho 57-31701
No. 63-16064, etc., a method of picking up images by slightly changing the position of the input image light incident on the solid-state image sensor on the solid-state image sensor is used. More information than the number of pixels of the area sensor can be obtained.

【0004】また、特開平1−184410号等では撮
影光学系に楔形の偏光部材を挿入し、偏光部の回転によ
って画像を移動させ、その画像を周期的に撮像し、画素
数以上の情報を得る提案がなされている。
In Japanese Patent Laid-Open No. 1-184410, a wedge-shaped polarizing member is inserted in a photographing optical system, an image is moved by rotation of a polarizing portion, the image is periodically taken, and information of more than the number of pixels is obtained. Proposals to get are made.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の方法では撮影光学系の駆動機構とは別に画素ずらしの
ための機構が必要であるためコストがかかる欠点があっ
た。さらに撮影光学系の途中に画素ずらしのための光学
系が入っているものは光学系全体の長さが長くなる欠点
があった。また、上述した偏光部材を回転させるような
摩擦が発生する機構では、応答性が悪く始動時に時間が
かかる、耐久性に欠ける、音が出る、等の欠点があっ
た。
However, these methods have the drawback of being costly because a mechanism for shifting the pixels is required in addition to the driving mechanism of the photographing optical system. Furthermore, the one having an optical system for shifting pixels in the middle of the photographing optical system has a drawback that the entire length of the optical system becomes long. In addition, the above-mentioned mechanism that causes friction such as rotating the polarizing member has drawbacks such as poor response, time required for starting, lack of durability, and sound.

【0006】本発明はかかる課題を解決するためになさ
れたもので、新たな機構からなる光学系を設ける必要が
なく、また、機械的接触部のない構成により、応答性、
耐久性に優れた高精細画像の撮像装置を提供することを
目的とする。
The present invention has been made in order to solve the above problems, and it is not necessary to provide an optical system having a new mechanism, and the structure having no mechanical contact portion allows the responsiveness,
An object is to provide a high-definition image pickup device having excellent durability.

【0007】[0007]

【課題を解決するための手段】本発明は固体撮像素子に
対して被撮像体の入射光像を集光する光学部材と、少な
くとも撮影光軸と垂直面内に働く磁力によって撮影光軸
に対し垂直面方向に非接触保持された少なくとも前記光
学部材の一部を含む光学部材保持手段と、前記固体撮像
素子に対して被撮像体の入射光像を相対的に微小移動さ
せるように前記光学系保持手段を前記磁力により変位さ
せる磁力制御手段とによって、画素ずらしを行う撮像装
置である。
The present invention relates to a solid-state image sensor, an optical member for converging an incident light image of an object to be imaged, and a magnetic force acting at least in a plane perpendicular to the photographing optical axis with respect to the photographing optical axis. An optical member holding unit that holds at least a portion of the optical member that is held in a non-contact manner in a vertical plane direction, and the optical system that moves the incident light image of the image-captured object relative to the solid-state image sensor minutely It is an imaging device that shifts pixels by a magnetic force control unit that displaces the holding unit by the magnetic force.

【0008】[0008]

【作用】上記の構成を有することにより、画像ずらしの
ための撮影光学系に、機械的接触部がなく、また、構造
が簡素で、応答性、耐久性に優れた高精細画像が得られ
る。
By virtue of the above construction, the photographing optical system for shifting the image has no mechanical contact portion, and the structure is simple, and a high-definition image excellent in responsiveness and durability can be obtained.

【0009】[0009]

【実施例】図1に本発明の第1の実施例を示す。1aは
第1レンズ群、1bは第2レンズ群、1cは第3レンズ
群、1dは第4レンズ群である。その中で第2レンズ群
1bがズーミングのために、第4レンズ群1dが焦点調
節のために所定範囲光軸方向に可動となっている。2は
光学ローパスフィルタ、3はCCD等の撮像素子であ
る。4は第1レンズ群1a、第3レンズ群1c、撮像素
子3等を保持している筐体である。5は第2レンズ群の
レンズ保持部材、6は絞り部材であってモータ等の動力
源7によって絞りの開口径が変化する。101は可動レ
ンズ群である第2レンズ群1b及び第4レンズ群1dを
それぞれ光軸と垂直な方向に筐体4に対して非接触で保
持するための永久磁石あるいは電磁石等からなる磁力発
生部材であり、可動レンズ群の周上に少なくとも1カ所
以上設置されている。102は可動レンズ群である第2
レンズ群1b及び第4レンズ群1dをそれぞれ光軸方向
に筐体4に対して非接触で移動させるための永久磁石あ
るいは電磁石等からなる磁力発生部材である。以下に、
本発明の磁力発生部材による第2レンズ群1bの制御方
法について説明する。
FIG. 1 shows the first embodiment of the present invention. Reference numeral 1a is a first lens group, 1b is a second lens group, 1c is a third lens group, and 1d is a fourth lens group. Among them, the second lens group 1b is movable for zooming, and the fourth lens group 1d is movable in a predetermined range in the optical axis direction for focus adjustment. Reference numeral 2 is an optical low-pass filter, and 3 is an image pickup device such as a CCD. Reference numeral 4 denotes a housing that holds the first lens group 1a, the third lens group 1c, the image pickup device 3, and the like. Reference numeral 5 is a lens holding member of the second lens group, and 6 is a diaphragm member, and the aperture diameter of the diaphragm is changed by a power source 7 such as a motor. Reference numeral 101 denotes a magnetic force generating member made up of a permanent magnet or an electromagnet for holding the second lens group 1b and the fourth lens group 1d, which are movable lens groups, in a direction perpendicular to the optical axis without contacting the housing 4. In addition, at least one place is installed on the circumference of the movable lens group. 102 is a second movable lens group
It is a magnetic force generating member composed of a permanent magnet or an electromagnet for moving the lens group 1b and the fourth lens group 1d in the optical axis direction in a non-contact manner with respect to the housing 4. less than,
A method of controlling the second lens group 1b by the magnetic force generating member of the present invention will be described.

【0010】図2は前記第2レンズ群1bに対する本発
明の構成図である。図2において201,202は永久
磁石であり、筐体に固定されている。203はコイルと
鉄芯とから成る電磁石であり、第2レンズ群のレンズ保
持部材に固定されている。これらの磁石を用いて後述す
る方法により第2レンズ群1bを光軸方向に非接触で移
動させる。204、206は永久磁石であり、第2レン
ズ群のレンズ保持部材に固定されている。205、20
7は電磁石であり、筐体に固定されている。208、2
09はギャップセンサであって、それぞれ電磁石20
5、207と第2レンズ群1bとのギャップを磁気的ま
たは電気的に検出し、電気量に変換する。210は磁力
制御手段であって、ギャップセンサ208、209の信
号に基づいて、電磁石205、207の磁力を制御す
る。磁力制御手段210の構成は、次のようになってい
る。211は、ギャップセンサ208、209の信号を
アナログからデジタルに変換するAD変換器、212は
ROM、RAMを含んだコンピュータ、213はコンピ
ュータ212のデジタル信号をアナログに変換するDA
変換器、214は電流アンプであって電磁石205、2
07に電流を供給する。これらの構成により後述する方
法で、第2レンズ群1bを光軸と垂直な方向に非接触で
保持する。
FIG. 2 is a block diagram of the present invention for the second lens group 1b. In FIG. 2, 201 and 202 are permanent magnets, which are fixed to the housing. An electromagnet 203 is composed of a coil and an iron core, and is fixed to the lens holding member of the second lens group. Using these magnets, the second lens group 1b is moved in the optical axis direction in a non-contact manner by a method described later. Reference numerals 204 and 206 denote permanent magnets, which are fixed to the lens holding member of the second lens group. 205, 20
An electromagnet 7 is fixed to the housing. 208, 2
Reference numeral 09 denotes a gap sensor, each of which is an electromagnet 20.
The gap between 5, 207 and the second lens group 1b is detected magnetically or electrically and converted into an electric quantity. A magnetic force control unit 210 controls the magnetic forces of the electromagnets 205 and 207 based on the signals of the gap sensors 208 and 209. The structure of the magnetic force control means 210 is as follows. Reference numeral 211 is an AD converter that converts the signals of the gap sensors 208 and 209 from analog to digital, 212 is a computer including ROM and RAM, and 213 is a DA that converts the digital signals of the computer 212 to analog.
A converter, 214 is a current amplifier, and is composed of electromagnets 205, 2
Supply current to 07. With these configurations, the second lens group 1b is held in the direction perpendicular to the optical axis in a non-contact manner by the method described later.

【0011】第2レンズ群1bを光軸方向に移動させる
方法は特開昭59−198409号に記載されているの
で、ここでは簡単に説明する。永久磁石201と永久磁
石202の対向面は同極性(図2においてはN極)にな
っている。電磁石203に電流を通電し、図2のような
極性になると、第2レンズ群1bは第3レンズ群方向
(図2においては右側)に移動し、電磁石203に逆方
向の電流を通電すると第2レンズ群1bは第1レンズ群
方向(図2においては左側)に移動する。従って、電磁
石203に流れる電流を例えばコンピュータ等からなる
制御手段により制御することで、第2レンズ群1bの光
軸方向の位置を制御することができる。
A method of moving the second lens group 1b in the optical axis direction is described in JP-A-59-198409, so a brief description will be given here. The facing surfaces of the permanent magnet 201 and the permanent magnet 202 have the same polarity (N pole in FIG. 2). When a current is applied to the electromagnet 203 and the polarity becomes as shown in FIG. 2, the second lens group 1b moves in the direction of the third lens group (right side in FIG. 2), and when a current is applied to the electromagnet 203 in the opposite direction, The second lens group 1b moves in the first lens group direction (left side in FIG. 2). Therefore, the position of the second lens group 1b in the optical axis direction can be controlled by controlling the current flowing through the electromagnet 203 by the control means such as a computer.

【0012】次に、第2レンズ群1bを光軸方向と垂直
な方向に非接触に保持する方法を説明する。電磁石20
5には永久磁石204と電磁石205の対向面の極性が
同極性になるような電流の方向に通電される。同様に、
電磁石207には永久磁石206と電磁石207の対向
面の極性が同極性になるような電流の方向に通電され
る。永久磁石204と電磁石205及び永久磁石206
と電磁石207とは、磁力により、それぞれ反発しあ
い、その反発力は電磁石205及び207に流れる電流
の大きさに依存する。したがって、電磁方向と垂直方向
の決められた位置に非接触保持することができる。さら
に光軸方向と垂直面内において、電磁石205、207
の磁力の発生方向と違う、例えば90度異なった方向に
働く磁力発生部材の磁力を合わせて制御することで、光
軸と垂直平面内の任意の方向に磁力を合成することがで
き、その結果、可動レンズ群を垂直平面内の任意の方向
に任意の距離だけ移動させることができる。
Next, a method for holding the second lens group 1b in a direction perpendicular to the optical axis direction without contact will be described. Electromagnet 20
Current is applied to 5 in a current direction such that the facing surfaces of the permanent magnet 204 and the electromagnet 205 have the same polarity. Similarly,
The electromagnet 207 is energized in a current direction such that the opposing surfaces of the permanent magnet 206 and the electromagnet 207 have the same polarity. Permanent magnet 204, electromagnet 205, and permanent magnet 206
And the electromagnet 207 repel each other due to the magnetic force, and the repulsive force depends on the magnitude of the current flowing through the electromagnets 205 and 207. Therefore, it can be held in a non-contact manner at a predetermined position perpendicular to the electromagnetic direction. Further, in the plane perpendicular to the optical axis direction, the electromagnets 205, 207
By controlling the magnetic forces of the magnetic force generating members that act in directions different from the direction of the magnetic force of, for example, 90 degrees, the magnetic forces can be combined in any direction within the plane perpendicular to the optical axis. , The movable lens group can be moved by any distance in any direction within the vertical plane.

【0013】次に、第2レンズ群1bを光軸と垂直方向
に微小移動させるための上記電磁石205、207に対
する電流制御方法について説明する。光軸をX軸とする
と、各レンズ群の偏心敏感度はx軸上の位置の関数であ
り、第2レンズ群1bの偏心敏感度をα(x)、第2レ
ンズ群の光軸と垂直方向の移動量をw、固体撮像素子上
での入射光像のずれ量をpとすると、p=α(x)×w
であるから、 w=p/α(x) だけ第2レンズ群を光軸と垂直方向に移動(すなわち偏
心)させれば良い。従って、磁力制御手段210は、第
2レンズ群1bの光軸方向の位置xを例えば特開平5−
181049号に公開されているようなレンズ位置検出
装置によって検出した後、コンピュータがxに対応した
α(x)をROMテーブルから読み出しあるいは演算
し、移動量がwになるようにギャップセンサ208、2
09からの信号を検出して電磁石205、207に与え
る電流量を制御する。
Next, a current control method for the electromagnets 205 and 207 for slightly moving the second lens group 1b in the direction perpendicular to the optical axis will be described. When the optical axis is the X axis, the decentering sensitivity of each lens group is a function of the position on the x axis, and the decentering sensitivity of the second lens group 1b is α (x), which is perpendicular to the optical axis of the second lens group. If the amount of movement in the direction is w and the amount of shift of the incident light image on the solid-state image sensor is p, then p = α (x) × w
Therefore, the second lens group may be moved (that is, decentered) in the direction perpendicular to the optical axis by w = p / α (x). Therefore, the magnetic force control means 210 determines the position x of the second lens group 1b in the optical axis direction, for example, as disclosed in Japanese Patent Laid-Open No.
No. 181049, a computer reads or calculates α (x) corresponding to x from a ROM table after detection by a lens position detecting device, and the gap sensors 208, 2 are set so that the movement amount becomes w.
The signal from 09 is detected to control the amount of current applied to the electromagnets 205 and 207.

【0014】また、撮影終了後は、電磁石203に電流
を通電し、第1レンズ群方向(図2においては左側)あ
るいは第3レンズ群方向(図2においては右側)に第2
レンズ群1bを移動し、電磁石203と永久磁石201
あるいは永久磁石202とが吸着した後は、電磁石20
3、205、207への通電を止めても、電磁石203
の鉄芯と永久磁石201あるいは永久磁石202とが吸
着しているので、第2レンズ群のレンズ保持部材は筐体
に対して固定保持される。
After the photographing is finished, a current is passed through the electromagnet 203 to move the second lens group in the direction of the first lens group (left side in FIG. 2) or in the direction of the third lens group (right side in FIG. 2).
By moving the lens group 1b, the electromagnet 203 and the permanent magnet 201 are moved.
Alternatively, after the permanent magnet 202 is attracted, the electromagnet 20
Even if the power supply to 3, 205 and 207 is stopped, the electromagnet 203
Since the iron core and the permanent magnet 201 or the permanent magnet 202 are attracted to each other, the lens holding member of the second lens group is fixedly held to the housing.

【0015】以上説明したことは第4レンズ群1dにお
いても全く同様であり、第4レンズ群1dの偏心敏感度
をβ(x)とすると w=p/β(x) だけ第4レンズ群を偏心させればpだけ固体撮像素子上
の像をずらすことができる。従って例えばpを固体撮像
素子の画素ピッチとすれば、p/2だけ固体撮像素子の
水平方向にずらすことによって水平方向の画素数を2倍
にすることができるし、p/2だけ垂直方向にずらすこ
とによって垂直方向の画素数を2倍にすることができ
る。このように固体撮像素子3によって光電変換された
異なった光学像の信号を、それぞれ記憶しておいて合成
するので高い解像度の画像を得ることができる。
What has been described above is exactly the same for the fourth lens group 1d. If the decentering sensitivity of the fourth lens group 1d is β (x), the fourth lens group is w = p / β (x). If it is decentered, the image on the solid-state image sensor can be shifted by p. Therefore, for example, if p is the pixel pitch of the solid-state image sensor, the number of pixels in the horizontal direction can be doubled by shifting in the horizontal direction of the solid-state image sensor by p / 2, and only p / 2 in the vertical direction. By shifting, the number of pixels in the vertical direction can be doubled. In this way, the signals of different optical images photoelectrically converted by the solid-state image sensor 3 are stored and combined, so that an image with high resolution can be obtained.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、固
体撮像素子に対して被撮像体の入射光像を相対的に微小
移動させるように、撮影光軸と垂直面内に働く磁力によ
って撮影光軸に対し垂直面方向に非接触保持された少な
くとも前記光学部材の一部を含む光学部材保持手段を、
磁力により撮影光軸に対し垂直面方向に変位させること
によって、機械的接触部が無く、応答性、耐久性に優れ
た高精細画像の撮像装置が得られる。
As described above, according to the present invention, the magnetic force acting in the plane perpendicular to the photographing optical axis so as to slightly move the incident light image of the image pickup object with respect to the solid-state image pickup element. An optical member holding means including at least a part of the optical member held in a non-contact manner in a direction perpendicular to the photographing optical axis,
By displacing in a direction perpendicular to the photographing optical axis by magnetic force, it is possible to obtain a high-definition image pickup device having no mechanical contact portion and having excellent responsiveness and durability.

【0017】また、上記光学部材は、光軸方向に移動す
ることによってズーミングまたは焦点調節を行うので、
画素ずらしのために新たな機構、光学系を追加する必要
がなくコストを削減できるだけでなく、従来提案されて
きた画素ずらしのための撮影光学系に比べ光学系の全長
を短くすることができる。
Further, since the optical member performs zooming or focus adjustment by moving in the optical axis direction,
It is not necessary to add a new mechanism and an optical system for the pixel shift, so that the cost can be reduced, and the total length of the optical system can be shortened as compared with the conventionally proposed photographing optical system for the pixel shift.

【0018】さらに、上記光学部材が光軸方向に移動し
てもその位置に合わせて撮影光軸に対して垂直面方向の
変位量を変化させることができるため、被撮像体をズー
ミングしたり合焦操作を行って光学部材の位置が変化し
ても、所定の量だけ画素ずらしした画像を取り込むこと
ができる。
Further, even if the optical member moves in the optical axis direction, the amount of displacement in the direction perpendicular to the photographing optical axis can be changed according to the position, so that the object to be imaged can be zoomed or combined. Even if the position of the optical member is changed by performing the focusing operation, it is possible to capture an image in which the pixels are shifted by a predetermined amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の主要部の概略構成を示す図
である。
FIG. 1 is a diagram showing a schematic configuration of a main part of an embodiment of the present invention.

【図2】図1に示す第2レンズ群に対する構成図であ
る。
FIG. 2 is a configuration diagram of a second lens group shown in FIG.

【符号の説明】[Explanation of symbols]

1a 第1レンズ群 1b 第2レンズ群 1c 第3レンズ群 1d 第4レンズ群 2 光学ローパスフィルタ 3 CCD 4 筐体 5 レンズ保持部材 6 絞り部材 7 動力源 101,102 磁力発生部材 1a 1st lens group 1b 2nd lens group 1c 3rd lens group 1d 4th lens group 2 Optical low pass filter 3 CCD 4 Housing 5 Lens holding member 6 Aperture member 7 Power source 101,102 Magnetic force generation member

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体撮像素子に対して被撮像体の入射光
像を集光する光学部材と、少なくとも撮影光軸と垂直面
内に働く磁力によって撮影光軸に対し垂直面方向に非接
触保持された少なくとも前記光学部材の一部を含む光学
部材保持手段と、前記固体撮像素子に対して被撮像体の
入射光像を相対的に微小移動させるように、前記光学系
保持手段を前記磁力により撮影光軸に対し垂直面方向に
変位させる磁力制御手段とを具備したことを特徴とする
撮像装置。
1. An optical member for collecting an incident light image of an image pickup object on a solid-state image pickup element, and a non-contact holding member in a direction perpendicular to a photographing optical axis by a magnetic force acting at least in a plane perpendicular to the photographing optical axis. The optical member holding means including at least a part of the optical member, and the optical system holding means by the magnetic force so as to slightly move the incident light image of the object to be imaged with respect to the solid-state imaging device. An image pickup apparatus comprising: a magnetic force control unit that displaces in a direction perpendicular to a photographing optical axis.
【請求項2】 請求項1記載の撮像装置において、前記
光学部材を撮影光軸方向に移動することによってズーミ
ング、または焦点調節を行うことを特徴とする撮像装
置。
2. The image pickup apparatus according to claim 1, wherein zooming or focus adjustment is performed by moving the optical member in a photographing optical axis direction.
【請求項3】 請求項2記載の撮像装置において、前記
固体撮像素子に対する被撮像体の入射光像の相対的微小
移動量が同等になるように、前記光学部材の撮影光軸方
向の位置により、前記磁力制御手段を用いて前記光学系
保持手段の撮影光軸に対する垂直面方向の変位量を制御
することを特徴とする撮像装置。
3. The image pickup apparatus according to claim 2, wherein the position of the optical member in the photographing optical axis direction is adjusted so that the relative minute movement amount of the incident light image of the image pickup object with respect to the solid-state image pickup element becomes equal. An imaging apparatus, wherein the magnetic force control means is used to control the amount of displacement of the optical system holding means in the direction perpendicular to the photographing optical axis.
JP5323351A 1993-11-30 1993-11-30 Image pickup device Pending JPH07154703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5323351A JPH07154703A (en) 1993-11-30 1993-11-30 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5323351A JPH07154703A (en) 1993-11-30 1993-11-30 Image pickup device

Publications (1)

Publication Number Publication Date
JPH07154703A true JPH07154703A (en) 1995-06-16

Family

ID=18153822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5323351A Pending JPH07154703A (en) 1993-11-30 1993-11-30 Image pickup device

Country Status (1)

Country Link
JP (1) JPH07154703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151123A (en) * 2007-12-20 2009-07-09 Casio Hitachi Mobile Communications Co Ltd Electric microlens unit and portable device using the same
US9185279B2 (en) 2012-03-16 2015-11-10 Ricoh Company, Ltd. Imaging system
DE102009038642B4 (en) 2008-08-25 2023-11-16 Disco Corporation Laser processing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151123A (en) * 2007-12-20 2009-07-09 Casio Hitachi Mobile Communications Co Ltd Electric microlens unit and portable device using the same
DE102009038642B4 (en) 2008-08-25 2023-11-16 Disco Corporation Laser processing device
US9185279B2 (en) 2012-03-16 2015-11-10 Ricoh Company, Ltd. Imaging system
US9456113B2 (en) 2012-03-16 2016-09-27 Ricoh Company, Ltd. Imaging system
US9736372B2 (en) 2012-03-16 2017-08-15 Ricoh Company, Ltd. Imaging system
US9992414B2 (en) 2012-03-16 2018-06-05 Ricoh Company, Ltd. Imaging system
US10382681B2 (en) 2012-03-16 2019-08-13 Ricoh Company, Ltd. Imaging system
US10855919B2 (en) 2012-03-16 2020-12-01 Ricoh Company, Ltd. Imaging system

Similar Documents

Publication Publication Date Title
US5282045A (en) Depth-of-field control apparatus and image pickup apparatus having the same therein
US5506912A (en) Imaging device capable of tracking an object
CN101183204B (en) Electromagnetic driving apparatus and optical apparatus
US6263162B1 (en) Image-shake preventing apparatus
US6100927A (en) Photographing apparatus having a blurring correcting apparatus
CN102385133B (en) Lens barrel and optical apparatus including the same
JP2006129411A (en) Reconfigurable image sensor
EP0871327B1 (en) Image pickup apparatus having image shifting plate
JP2000221557A (en) Image blur correcting device and photographing device using the same
JPH07154703A (en) Image pickup device
JPH0437627B2 (en)
JPH0444870B2 (en)
JPH07240870A (en) Image pickup device
JPH0943663A (en) Device and method for correcting hand fluctuation of video camera using magnetic floating
JP3302379B2 (en) Imaging device
JPS5913476A (en) Image pickup mechanism
JP2004336857A (en) Electromagnetic drive, lens drive, and imaging apparatus
JPH06296252A (en) Video camera device
CN100570423C (en) Collapsible-type lens barrel and image sensing device
JPH0815598A (en) Focusing method for rear focus type zoom lens
JP2000115621A (en) Image pickup device and method therefor
JP5665402B2 (en) Imaging system and control method thereof
JP2008017023A (en) Video signal processor
KR100285947B1 (en) High-definition image inputting device
JP2005260778A (en) Monitoring camera