JPH07138798A - Method and device for deciding life of noble metal-based insoluble electrode for electroplating - Google Patents

Method and device for deciding life of noble metal-based insoluble electrode for electroplating

Info

Publication number
JPH07138798A
JPH07138798A JP30345193A JP30345193A JPH07138798A JP H07138798 A JPH07138798 A JP H07138798A JP 30345193 A JP30345193 A JP 30345193A JP 30345193 A JP30345193 A JP 30345193A JP H07138798 A JPH07138798 A JP H07138798A
Authority
JP
Japan
Prior art keywords
voltage
electrode
plating cell
life
theoretical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30345193A
Other languages
Japanese (ja)
Other versions
JP2792414B2 (en
Inventor
Teruo Horisawa
輝雄 堀澤
Toshiyuki Tsujihara
利之 辻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP30345193A priority Critical patent/JP2792414B2/en
Publication of JPH07138798A publication Critical patent/JPH07138798A/en
Application granted granted Critical
Publication of JP2792414B2 publication Critical patent/JP2792414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To decide the life of the noble metal-based insoluble electrode and to stabilize operation by determining voltage differences between the actual voltages of plating cells and the theoretical voltages of the plating cells. CONSTITUTION:The theoretical voltages of the plating cells are calculated from the actual voltage of the plating cells and the records of the electroplating operation, and the voltage differences between the actual voltages of the plating cells and the theoretical voltages of the plating cells are determined at all times. The degree of deterioration of the insoluble electrode is decided from these voltage differences. Practically, an alarm which emits an alarm when the voltage differences attain a specified value is installed. As a result, the deterioration conditions of the electrodes by each of the individual plating cells are continuously measured and, therefore, the adequate exchange of the electrodes by each of the plating cells is possible. The product quality is thus improved and the operation is stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、種々の操業条件の変
化に対応し、電流密度の大きく変化する連続電気メッキ
プロセスで使用する、チタン基体に貴金属系被膜または
貴金属酸化物系被膜を被覆した貴金属系不溶性電極の寿
命を判定する方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a titanium substrate coated with a noble metal-based coating or a noble metal oxide-based coating, which is used in a continuous electroplating process in which current density varies greatly in response to various operating conditions. The present invention relates to a method and apparatus for determining the life of a noble metal-based insoluble electrode.

【0002】[0002]

【従来の技術】連続電気メッキプロセスにおいて、チタ
ン基体に貴金属系または貴金属酸化物系{例、イリジウ
ム(Ir),Ir-Ox ,Pt(プラチナ)}被膜を被覆した貴金
属系不溶性電極が使用されている。以下、その1例であ
る、チタン基体にIr-Ox 被膜を被覆した電極(以下、
「Ir-Ox 電極」という)によって説明する。Ir-Ox 電極
を用いた電解技術は、ソーダ業界では確立しており、Ir
-Ox 電極の寿命判定(劣化度の判定)も容易である。Ir
-Ox 電極は、図1に示すように、電流を流し続けると、
電極表面から摩耗が生じ、その為にメッキセル電圧(ト
レイ電圧)が上昇する。そして、残存Ir-Ox 被膜量があ
る割合以下となると、急激にメッキセル電圧が上昇す
る。この時点が電極寿命である。図1はIr-Ox 電極の被
膜消耗量とメッキセル電圧との関係を示すグラフであ
り、Ir-Ox 被膜の膜厚は10g/m2、通電電流密度は120 A/
dm2 で一定である。ソーダプロセスでは、静止浴にてほ
ぼ定電流密度にて製造を行うため、Ir-Ox 被膜の消耗量
は通電時間と正比例する。従って、電極寿命の判定は容
易に行える。
2. Description of the Related Art In a continuous electroplating process, a noble metal-based insoluble electrode having a titanium substrate coated with a noble metal-based or noble metal oxide-based {eg, iridium (Ir), Ir-Ox, Pt (platinum)} film is used. There is. Hereinafter, one example thereof, an electrode in which a titanium substrate is coated with an Ir-Ox film (hereinafter, referred to as
"Ir-Ox electrode"). Electrolysis technology that uses Ir-Ox electrodes is well established in the soda industry.
-It is easy to determine the life of the Ox electrode (determination of the degree of deterioration). Ir
-Ox electrode, as shown in Fig. 1, continues to flow current,
Abrasion occurs from the electrode surface, which increases the plating cell voltage (tray voltage). Then, when the amount of the residual Ir—Ox coating film falls below a certain ratio, the plating cell voltage rapidly increases. This time is the life of the electrode. Fig. 1 is a graph showing the relationship between the film consumption of the Ir-Ox electrode and the plating cell voltage. The film thickness of the Ir-Ox film is 10 g / m 2 , and the current density is 120 A /.
It is constant at dm 2 . In the soda process, since the production is performed in a static bath at a nearly constant current density, the amount of Ir-Ox coating consumed is directly proportional to the energization time. Therefore, the electrode life can be easily determined.

【0003】これに対して、Ir-Ox 電極を用いた連続電
気メッキ鋼板の製造ラインにおいては、装入鋼板(鋼ス
トリップ)サイズ、操業ラインスピード(鋼板の移動速
度)の変化に伴い電流密度も大きく変わる。1つの例と
して数値を挙げれば、その変化は30〜100A/dm2にもな
る。図2は電流密度とIr-Ox 電極の被膜消耗量との関係
を示すグラフである。なお、図2は純亜鉛用硫酸亜鉛め
っき浴の静止浴におけるデータを示す。電流密度の変化
とIr-Ox 電極の被膜消耗量とは、図2に示すように、電
流密度が上昇すると被膜消耗量も増加するという関係と
なる。このため、連続電気メッキにおけるIr-Ox 電極の
寿命判定は、通電時間および通電量では的確に行えない
問題がある。
On the other hand, in a continuous electroplated steel sheet production line using an Ir-Ox electrode, the current density also changes as the charging steel sheet (steel strip) size and the operating line speed (steel sheet moving speed) change. It changes a lot. Taking a numerical value as an example, the change is 30 to 100 A / dm 2 . FIG. 2 is a graph showing the relationship between the current density and the film consumption of the Ir—Ox electrode. In addition, FIG. 2 shows the data in the static bath of the zinc sulfate plating bath for pure zinc. As shown in FIG. 2, the change in current density and the film consumption of the Ir-Ox electrode have a relationship that the film consumption increases as the current density increases. Therefore, there is a problem that the life of the Ir-Ox electrode in continuous electroplating cannot be accurately determined by the energization time and the energization amount.

【0004】また、寿命判定因子であるメッキセル電圧
は、電流密度、鋼板と電極との距離(以下、「極間」と
いう)、メッキ槽(トレイ)内の浴抵抗等に左右され
る。電気メッキ鋼板のメッキプロセスラインは連続ライ
ンであり、これらの要因が逐次に変化するために、電圧
の上昇はIr-Ox 被膜の消耗以外の要因によっても起こ
り、電圧の上昇による寿命判定は難しい。従って、早め
に電極を取替えることしか、ライン操業に影響を与えず
に電極管理を行う方法がなかった。
The plating cell voltage, which is a life determining factor, depends on the current density, the distance between the steel plate and the electrode (hereinafter referred to as "between electrodes"), the bath resistance in the plating tank (tray), and the like. Since the plating process line for electroplated steel plates is a continuous line and these factors change sequentially, the voltage rise also occurs due to factors other than the consumption of the Ir-Ox coating, and it is difficult to judge the life due to the voltage rise. Therefore, there has been no method of managing the electrodes without changing the electrodes as early as possible or affecting the line operation.

【0005】連続電気メッキ鋼板の製造設備(ライン)
においては、上記の様に、通電時間によるIr-Ox 電極の
寿命判定は不可能であるために、残存Ir-Ox 被膜量の測
定により寿命判定をしなければならない。しかしなが
ら、電気メッキプロセス中に電極のIr-Ox 被膜量を測る
ためには、操業を中断しなければならず現実的でない。
また、電極のIr-Ox 被膜量を簡単に測定できる機器もな
い。従って、従来のテストデータによって、寿命と予測
される通電量に達するかなり前の時期に電極を取り替え
る必要があった。
Continuous electroplated steel sheet manufacturing facility (line)
As described above, since it is impossible to judge the life of the Ir-Ox electrode by the energization time as described above, the life must be judged by measuring the amount of remaining Ir-Ox coating film. However, in order to measure the Ir-Ox coating amount of the electrode during the electroplating process, the operation must be interrupted, which is not realistic.
Also, there is no equipment that can easily measure the amount of Ir-Ox coating on the electrode. Therefore, according to the conventional test data, it was necessary to replace the electrodes long before the amount of electricity expected to reach the end of life was reached.

【0006】上記のような電気メッキ用貴金属系不溶性
電極の寿命判定の問題を解決する手段として、特開平3-
120397号公報には、測定点切り替え器、電位差計、計算
器および警報器とからなる装置を配置し、電極への陽極
側分岐点と各電極板との間の電位差を継続的に測定しこ
の電位差の変化から前記電極板の劣化度を判定する電気
メッキ用貴金属系電極の寿命識別方法および装置が開示
されている(以下、「先行技術1」という)。
As a means for solving the above-mentioned problem of determining the life of a noble metal insoluble electrode for electroplating, JP-A-3-
In the 120397 publication, a device consisting of a measuring point switch, a potentiometer, a calculator and an alarm device is arranged, and the potential difference between the anode side branch point to the electrode and each electrode plate is continuously measured. A method and apparatus for identifying the life of a noble metal-based electrode for electroplating, which determines the degree of deterioration of the electrode plate from changes in the potential difference, have been disclosed (hereinafter referred to as "Prior Art 1").

【0007】[0007]

【発明が解決しようとする課題】しかしながら、先行技
術1においては、装置構成が複雑で設備構築上また経済
上不利であるという問題がある。
However, in the prior art 1, there is a problem that the device configuration is complicated and it is disadvantageous in terms of facility construction and economy.

【0008】従って、この発明の目的は、多々にわたる
操業条件に影響されることなく電極寿命を的確に判定す
るすることができ、比較的簡単な装置によって構成する
ことができる、電気メッキ用貴金属系不溶性電極の寿命
判定方法および装置を提供することにある。
Therefore, an object of the present invention is to accurately determine the electrode life without being influenced by various operating conditions and to construct a noble metal system for electroplating which can be constructed by a relatively simple apparatus. An object of the present invention is to provide a method and an apparatus for determining the life of an insoluble electrode.

【0009】[0009]

【課題を解決するための手段および作用】この発明の方
法は、チタン基体に貴金属系被膜または貴金属酸化物系
被膜を被覆した連続電気メッキ用貴金属系不溶性電極の
寿命判定に際して、メッキセル実績電圧および電気メッ
キの操業実績からメッキセル理論電圧を計算し、前記メ
ッキセル実績電圧と前記メッキセル理論電圧との電圧差
を常時求め、この電圧差から前記不溶性電極の劣化度を
判定することに特徴を有するものである。この発明の装
置は、メッキセル実績電圧および電気メッキ操業実績か
らメッキセル理論電圧を計算する計算器と、前記計算器
から得られる前記メッキセル理論電圧と前記メッキセル
実績電圧とを常時比較し、前記メッキセル理論電圧と前
記メッキセル実績電圧との差が一定値に達したときに警
報を発する警報器とからなることに特徴を有するもので
ある。
According to the method of the present invention, a plating cell actual voltage and an electric voltage are used for determining the life of a precious metal insoluble electrode for continuous electroplating in which a titanium substrate is coated with a precious metal coating or a precious metal oxide coating. It is characterized in that the plating cell theoretical voltage is calculated from the plating operation record, the voltage difference between the plating cell record voltage and the plating cell theoretical voltage is always obtained, and the deterioration degree of the insoluble electrode is determined from this voltage difference. . The apparatus of the present invention, a calculator for calculating the plating cell theoretical voltage from the plating cell actual voltage and the electroplating operation record, constantly compares the plating cell theoretical voltage and the plating cell actual voltage obtained from the calculator, the plating cell theoretical voltage And an alarm device that issues an alarm when the difference between the plating cell actual voltage and a predetermined value reaches a certain value.

【0010】上述のように、Ir-Ox 電極の寿命は、Ir-O
x 被膜の残膜量によって決定される。経時変化によりIr
-Ox 被膜の摩耗が生じ、寿命が近づくと、メッキセル電
圧(メッキ槽電圧)が上昇する現象を利用し、操業条件
に合わせて計算されたメッキセル理論電圧値とメッキセ
ル実績電圧値とを連続的に比較監視し、実績電圧値の操
業条件による誤差をなくしたうえで、両者の電圧差によ
り電極寿命の判定を可能とする。
As mentioned above, the life of the Ir-Ox electrode is
x Determined by the amount of film remaining. Ir over time
-Ox coating wears and the plating cell voltage (plating tank voltage) rises as the life approaches, and the theoretical value of the plating cell calculated according to the operating conditions and the actual voltage of the plating cell are continuously calculated. By comparing and monitoring and eliminating the error of the actual voltage value due to the operating condition, it is possible to judge the electrode life by the voltage difference between the two.

【0011】以下、この発明を詳細に説明する。 まず、メッキセル理論電圧を求めるための各影響因
子およびそれらの電極の経時変化による変化について電
気亜鉛メッキプロセスを例にとって説明する。図3は連
続電気亜鉛メッキ槽の構成を示す概略断面図である。図
3において、1はIr-Ox 電極、2はコンダクターロー
ル、3は整流器、4はメッキ液である。図3に示す様な
セル構造によって電気メッキを行う際の理論メッキセル
電圧は、以下のように計算する。各抵抗別の電圧計算方
法を下記(1) 〜(5) に示す。 (1) 回路抵抗 整流器→電極 CDR→整流器 ブスバー+CDR接触+CDR+ブラシ接触 (2) 電極抵抗 チタン(Ti) 材料の抵抗×電流+基体と電極接触抵抗×
電流 (3) Ir-Ox 酸素過電圧:3V (4) メッキ浴抵抗 電圧=電導度×極間×電流密度 (5) 板抵抗 電圧=板抵抗(R)×電流 ここで、 板抵抗R=R1 ×R2 /R1 +R21 =板抵抗×l1 /板厚×板幅 R2 =板抵抗×l2 /板厚×板幅 上記(1) 〜(5) に示す各電圧の和が、メッキセル理論電
圧となる。これらは、装入鋼板サイズ、極間、電流密
度、電流がわかれば求まる。
The present invention will be described in detail below. First, each influential factor for obtaining the theoretical voltage of the plating cell and the change with time of those electrodes will be described by taking an electrogalvanizing process as an example. FIG. 3 is a schematic sectional view showing the structure of a continuous galvanizing bath. In FIG. 3, 1 is an Ir-Ox electrode, 2 is a conductor roll, 3 is a rectifier, and 4 is a plating solution. The theoretical plating cell voltage when performing electroplating with the cell structure as shown in FIG. 3 is calculated as follows. The voltage calculation method for each resistor is shown in (1) to (5) below. (1) Circuit resistance Rectifier → Electrode CDR → Rectifier Busbar + CDR contact + CDR + brush contact (2) Electrode resistance Titanium (Ti) material resistance × current + substrate and electrode contact resistance ×
Current (3) Ir-Ox Oxygen overvoltage: 3V (4) Plating bath resistance Voltage = Conductivity x Gap x Current density (5) Plate resistance Voltage = Plate resistance (R) x Current where plate resistance R = R 1 × R 2 / R 1 + R 2 R 1 = plate resistance × l 1 / plate thickness × plate width R 2 = plate resistance × l 2 / plate thickness × plate width Sum of the voltages shown in (1) to (5) above Is the plating cell theoretical voltage. These can be obtained by knowing the charged steel plate size, the gap, the current density, and the current.

【0012】次に、電極劣化による、上記(1) 〜(5) の
電圧変化の影響度を表1に示す。表1に示すように、メ
ッキセル理論電圧は、装入鋼板サイズ、極間、電流密
度、電流がわかれば求まる。
Next, Table 1 shows the degree of influence of the above voltage changes (1) to (5) due to electrode deterioration. As shown in Table 1, the plating cell theoretical voltage can be obtained by knowing the charged steel plate size, the gap, the current density, and the current.

【0013】[0013]

【表1】 [Table 1]

【0014】上記(3) 、(4) の電極摩耗(劣化)による
電圧上昇は、以下の理由により起こる。上記(3) に示す
Ir-Ox :酸素過電圧が上昇するため。上記(4) に示すメ
ッキ浴抵抗:電極の表面摩耗による劣化が進むと、放電
面積が減少する。電流は一定量流れるために、放電電流
密度が上昇するので、メッキ浴抵抗も上昇し、かくし
て、電圧上昇となる。
The voltage increase due to electrode wear (deterioration) in (3) and (4) above occurs due to the following reasons. Shown in (3) above
Ir-Ox: Because the oxygen overvoltage rises. Plating bath resistance shown in (4) above: As the deterioration of the electrode due to surface wear progresses, the discharge area decreases. Since a certain amount of current flows, the discharge current density increases, so the plating bath resistance also increases, thus increasing the voltage.

【0015】 次に、メッキセル実績電圧のバラツキ
について説明する。電極劣化による電圧上昇以外に、
「理論電圧≠実績電圧」となる場合がある。噴流、板形
状の影響による極間変動(理論電圧計算に用いた極間値
との差)が生じることによるもので、これにより、電圧
のバラツキが発生する。図4は、電極正常時における電
圧のバラツキを示すグラフであり、設定極間は15mmであ
る。図4に示すように、電圧のバラツキは電流密度に相
関があるが、我々の調査によれば、例えば、電導度115
msのメッキ浴を有する電気亜鉛メッキ設備では、極間変
動は、最大で±1.5mm であることがわかっている。この
ことより、メッキセル電圧の最大バラツキは、理論電圧
の±0.013 で求められる。即ち、電極が正常時でも、実
績電圧と理論電圧とでは、最大1.3 %の誤差が発生す
る。
Next, the variation in the actual voltage of the plating cell will be described. In addition to voltage increase due to electrode deterioration,
In some cases, "theoretical voltage ≠ actual voltage". This is caused by the fluctuation of the gap (difference from the gap value used for the theoretical voltage calculation) due to the influence of the jet flow and the plate shape, which causes the variation of the voltage. FIG. 4 is a graph showing variations in voltage when the electrodes are normal, and the distance between the set electrodes is 15 mm. As shown in FIG. 4, the variation in voltage correlates with the current density. According to our research, for example, the conductivity 115
It has been found that the maximum inter-electrode variation is ± 1.5 mm in the electrogalvanizing equipment with a plating bath of ms. From this, the maximum variation of the plating cell voltage can be found at ± 0.013 of the theoretical voltage. That is, even when the electrodes are normal, a maximum error of 1.3% occurs between the actual voltage and the theoretical voltage.

【0016】 次に、経時変化と電圧変化について説
明する。前記の図2に示したデータからもわかる様に、
Ir-Ox 電極は寿命が近づくとメッキセル理論電圧と実績
電圧との電圧差が大きくなる。上述ののデータより、
電極劣化による影響が±1.3 %あるが、これを超えるバ
ラツキは電極劣化に起因するものである。
Next, the change over time and the change in voltage will be described. As you can see from the data shown in Figure 2 above,
As the life of Ir-Ox electrodes approaches, the difference between the theoretical voltage of the plating cell and the actual voltage increases. From the above data,
The influence of electrode deterioration is ± 1.3%, but the variation exceeding this is due to electrode deterioration.

【0017】図5は通電時間とメッキセル電圧との関係
を示すグラフであり、操業条件は、、電流密度:30〜10
0 A/dm2 、最大電流25,000A、最大電圧:30V、Ir-Ox
電極膜厚:約50g/m2であった。実際の連続電気亜鉛メッ
キの操業データ(実ラインデータ)により、実績電圧と
理論電圧とのバラツキが2%を超えてからIr-Ox 電極が
寿命(最大電流時に過電圧が生じる)に至るまでには、
図5に示すように、通電時間にして少なくとも300 時間
はあることがわかる。
FIG. 5 is a graph showing the relationship between the energization time and the plating cell voltage. The operating conditions are: current density: 30 to 10
0 A / dm 2 , maximum current 25,000 A, maximum voltage: 30 V, Ir-Ox
Electrode film thickness: about 50 g / m 2 . Based on the actual continuous electrogalvanizing operation data (actual line data), the difference between the actual voltage and the theoretical voltage exceeds 2% until the Ir-Ox electrode reaches its life (overvoltage occurs at the maximum current) ,
As shown in FIG. 5, it can be seen that the energization time is at least 300 hours.

【0018】この±2%の時点で、電極寿命が近いと判
断すれば、寿命までに残りあと300時間(操業ベースで
2週間)と余裕があり、寿命までの間に電極取替え等の
対応をとることができる。従って {(実績電圧−理論電圧)/理論電圧}× 100=電圧のバラツキ・・・ として、上記式からこの値を監視し、電圧のバラツキ
が2%超えとなった時点で電極寿命が近いと判断し、操
業サイクルに合わせて取替時期の決定を行うことが可能
とする装置を設置することにより、個々の電極延命化お
よび適切な周期での電極取替を実行することが可能とな
る。
At this point of ± 2%, if it is judged that the electrode life is near, there is a margin of 300 hours remaining (2 weeks based on operation) until the life, and it is necessary to take measures such as electrode replacement during the life. Can be taken. Therefore, it is assumed that {(actual voltage-theoretical voltage) / theoretical voltage} × 100 = voltage variation ... By monitoring this value from the above equation, the electrode life is close when the voltage variation exceeds 2%. By installing a device capable of making a judgment and determining the replacement timing in accordance with the operation cycle, it becomes possible to prolong the life of each electrode and execute the electrode replacement at an appropriate cycle.

【0019】[0019]

【実施例】次に、この発明を図面に示す実施例に基づい
て説明する。15槽のメッキ槽を有する連続電気亜鉛メッ
キ装置を使用した鋼板の電気亜鉛メッキ製造ラインにお
いて、Ir-Ox 電極の寿命判定を行った。図6はメッキセ
ル理論電圧を求める制御手順のフローチャート、図7は
電極寿命判定装置の画面の正面図である。図6に示され
る制御方法により、No. 1〜15の各メッキ槽の各々のメ
ッキセル理論電圧値を計算する。図7中のAは、本ライ
ンが有する15のメッキ槽の各メッキセル実績電圧を表示
する表示盤、Bは各メッキ槽のメッキセル理論電圧値を
表示する表示盤、Cは理論電圧と実績電圧とのバラツキ
を示す表示盤、DはCのバラツキが±2%を超えたとき
に警報をだす警報器のランプである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described based on the embodiments shown in the drawings. The life of the Ir-Ox electrode was evaluated on the electrogalvanizing production line for steel plates using a continuous electrogalvanizing apparatus having 15 plating tanks. FIG. 6 is a flowchart of a control procedure for obtaining the plating cell theoretical voltage, and FIG. 7 is a front view of the screen of the electrode life determining device. According to the control method shown in FIG. 6, the plating cell theoretical voltage values of the plating tanks Nos. 1 to 15 are calculated. In FIG. 7, A is a display panel that displays the actual voltage of each plating cell of the 15 plating tanks of this line, B is a display panel that displays the theoretical voltage value of the plating cell of each plating tank, and C is the theoretical voltage and the actual voltage. And D is a lamp of an alarm device that issues an alarm when the variation of C exceeds ± 2%.

【0020】図7に示す装置を運転室に設置し、オペレ
ータが表示盤A〜C、ランプDを常時監視できるように
したことにより、電極状態の把握、寿命の予測、取替時
期の決定が容易である。
By installing the device shown in FIG. 7 in the operator's cab and allowing the operator to constantly monitor the display panels A to C and the lamp D, it is possible to grasp the electrode state, predict the service life, and determine the replacement time. It's easy.

【0021】電極の平均寿命および取替頻度について、
判定装置導入前(比較例)と判定装置導入後(本発明実
施例)とで調査比較した。調査は、装置導入前後各1年
間に渡り実施した。その結果を表2に示す。
Regarding the average life and replacement frequency of the electrodes,
Investigation and comparison were performed before introducing the determination device (comparative example) and after introducing the determination device (example of the present invention). The survey was conducted for one year each before and after the introduction of the equipment. The results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2に示すように、比較例では、電極を取
替えた回数n が61回あり、その各々の取替までの通電時
間の平均2,418 時間(h) で、突発取替が6回あった。実
施例では、電極を取替えた回数n が26回あり、その各々
の取替までの通電時間の平均2,892 時間(h) で、突発取
替はなかった。このように、判定装置を導入した本発明
実施例によれば、判定装置導入前(比較例)よりも、電
極の効率活用が可能となり、電極平均寿命が474 時間も
長くなり、更に、突発的な電極取替が解消されたことが
わかる。
As shown in Table 2, in the comparative example, the number of times n of electrode replacement was 61 times, and the average current-carrying time until each replacement was 2,418 hours (h), and there were 6 sudden replacements. It was In the example, the number of times n of electrode replacement was 26 times, and the average current-carrying time up to each replacement was 2,892 hours (h), and there was no sudden replacement. As described above, according to the embodiment of the present invention in which the determination device is introduced, it is possible to use the electrode more efficiently than before the introduction of the determination device (comparative example), the average life of the electrode is increased by 474 hours, and further, sudden It can be seen that the major electrode replacement has been resolved.

【0024】[0024]

【発明の効果】以上説明したように、この発明によれ
ば、連続電気メッキ用の貴金属系不溶性電極の寿命判定
において、個々のメッキセル(メッキ槽)毎の電極の劣
化状況を連続的に測定するので、個々の電極の寿命を的
確に識別することができ、このため、各メッキセル毎に
電極の適切な交換が可能となり、劣化した電極の使用に
よる品質トラブルが避けられ、同時に、電極の無駄な消
費および突発取替によるトラブルを回避することがで
き、製品品質の向上、省資源化および安定操業化に大き
く貢献することができ、かくして、工業上有用な効果が
もたらされる。
As described above, according to the present invention, in determining the life of the noble metal insoluble electrode for continuous electroplating, the deterioration state of the electrode for each individual plating cell (plating tank) is continuously measured. Therefore, it is possible to accurately identify the life of each electrode, which makes it possible to appropriately replace the electrode for each plating cell, avoid quality problems due to the use of a deteriorated electrode, and at the same time, waste the electrode. Trouble due to consumption and sudden replacement can be avoided, which can greatly contribute to improvement of product quality, resource saving, and stable operation, thus providing industrially useful effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ir-Ox 電極の被膜消耗量とメッキセル電圧との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the film consumption of Ir-Ox electrodes and the plating cell voltage.

【図2】電流密度とIr-Ox 電極の被膜消耗量との関係を
示すグラフである。
FIG. 2 is a graph showing the relationship between the current density and the film consumption of Ir—Ox electrodes.

【図3】連続電気亜鉛メッキ槽の構成を示す概略断面図
である。
FIG. 3 is a schematic sectional view showing the structure of a continuous electrogalvanizing bath.

【図4】電極正常時における電圧のバラツキを示すグラ
フである。
FIG. 4 is a graph showing variations in voltage when the electrodes are normal.

【図5】通電時間とメッキセル電圧との関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between energization time and plating cell voltage.

【図6】メッキセル理論電圧を求める制御手順のフロー
チャートである。
FIG. 6 is a flowchart of a control procedure for obtaining a plating cell theoretical voltage.

【図7】電極寿命判定装置の画面の正面図である。FIG. 7 is a front view of a screen of the electrode life determining device.

【符号の説明】[Explanation of symbols]

1 Ir-Ox 電極 2 コンダクターロール 3 整流器 4 メッキ液 A メッキセル実績電圧表示盤 B メッキセル理論電圧表示盤 C 理論電圧と実績電圧とのバラツキを示す表示盤 D 警報ランプ 1 Ir-Ox electrode 2 Conductor roll 3 Rectifier 4 Plating liquid A Plating cell actual voltage display panel B Plating cell theoretical voltage display panel C Display panel showing the variation between theoretical voltage and actual voltage D Alarm lamp

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 チタン基体に貴金属系被膜または貴金属
酸化物系被膜を被覆した連続電気メッキ用貴金属系不溶
性電極の寿命判定に際して、 メッキセル実績電圧および電気メッキの操業実績からメ
ッキセル理論電圧を計算し、前記メッキセル実績電圧と
前記メッキセル理論電圧との電圧差を常時求め、この電
圧差から前記不溶性電極の劣化度を判定することを特徴
とする電気メッキ用貴金属系電極の寿命判定方法。
1. When determining the life of a precious metal-based insoluble electrode for continuous electroplating in which a titanium base material is coated with a precious metal-based coating or a precious metal oxide-based coating, a theoretical plating cell voltage is calculated from the actual plating cell voltage and the electroplating operation result, A method for determining the life of a noble metal-based electrode for electroplating, characterized in that the voltage difference between the actual voltage of the plating cell and the theoretical voltage of the plating cell is always obtained, and the degree of deterioration of the insoluble electrode is determined from this voltage difference.
【請求項2】 メッキセル実績電圧および電気メッキ操
業実績からメッキセル理論電圧を計算する計算器と、前
記計算器から得られる前記メッキセル理論電圧と前記メ
ッキセル実績電圧とを常時比較し、前記メッキセル理論
電圧と前記メッキセル実績電圧との差が一定値に達した
ときに警報を発する警報器とからなることを特徴とする
電気メッキ用貴金属系不溶性電極の寿命判定装置。
2. A calculator for calculating a plating cell theoretical voltage from the plating cell actual voltage and an electroplating operation result, and the plating cell theoretical voltage and the plating cell actual voltage obtained from the calculator are constantly compared to obtain the plating cell theoretical voltage. An apparatus for determining the life of a precious metal-based insoluble electrode for electroplating, which comprises an alarm that issues an alarm when the difference from the actual voltage of the plating cell reaches a certain value.
JP30345193A 1993-11-09 1993-11-09 Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating Expired - Fee Related JP2792414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30345193A JP2792414B2 (en) 1993-11-09 1993-11-09 Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30345193A JP2792414B2 (en) 1993-11-09 1993-11-09 Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating

Publications (2)

Publication Number Publication Date
JPH07138798A true JPH07138798A (en) 1995-05-30
JP2792414B2 JP2792414B2 (en) 1998-09-03

Family

ID=17921150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30345193A Expired - Fee Related JP2792414B2 (en) 1993-11-09 1993-11-09 Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating

Country Status (1)

Country Link
JP (1) JP2792414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013058151A1 (en) * 2011-10-18 2015-04-02 株式会社シンク・ラボラトリー Remote control method for plate making consumables

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013058151A1 (en) * 2011-10-18 2015-04-02 株式会社シンク・ラボラトリー Remote control method for plate making consumables

Also Published As

Publication number Publication date
JP2792414B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US9255338B2 (en) Permanent system for continuous detection of current distribution in interconnected electrolytic cells
JP3917586B2 (en) Method for improving current efficiency in electrolysis.
JP2506574B2 (en) Method and apparatus for producing electrolytic copper foil
EP2959038B1 (en) Device for monitoring current distribution in interconnected electrolytic cells
JP2792414B2 (en) Method and apparatus for determining life of noble metal-based insoluble electrode for electroplating
JP2555892B2 (en) Method and apparatus for identifying life of noble metal electrode for electroplating
JP2506573B2 (en) Method and apparatus for producing electrolytic copper foil
JP2019167564A (en) Electrolysis device
KR102373893B1 (en) Plating equipment and plating system
JP6732261B2 (en) Plating equipment
JPH057474B2 (en)
JP3148115B2 (en) Determination method of additive amount in copper electrorefining
KR200279821Y1 (en) Plating cell electrode measuring instrument
JP2003247100A (en) Continuous electric plating method of metal strip
Kotowski et al. Titanium Anodes for Steel Strip Electrogalvanizing
US3464903A (en) Method of adjusting individual anodes in a mercury cathode cell
JPH06306693A (en) Plating electrode for controlling coating weight in width direction of metallic strip and method for controlling coating weight
JP2003160893A (en) Method for controlling voltage of electrolytic vessel
KR20030049745A (en) Administration System For Insoluble Anode Of Electroplating Cell And Method Thereof
JPH10237698A (en) Method for diagnosing deterioration of iridium oxide anode and device therefor
JPH05195296A (en) Automatic controlling device for electrolytic solution
JPS5835275B2 (en) Aluminum steel plate
JPH05271977A (en) Detection of short circuit
JPS5835274B2 (en) Aluminum steel plate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080619

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110619

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120619

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130619

LAPS Cancellation because of no payment of annual fees