JPH07138620A - Production of copper powder from cupric chloride liquid - Google Patents

Production of copper powder from cupric chloride liquid

Info

Publication number
JPH07138620A
JPH07138620A JP5312490A JP31249093A JPH07138620A JP H07138620 A JPH07138620 A JP H07138620A JP 5312490 A JP5312490 A JP 5312490A JP 31249093 A JP31249093 A JP 31249093A JP H07138620 A JPH07138620 A JP H07138620A
Authority
JP
Japan
Prior art keywords
copper
copper powder
cupric chloride
powder
chloride solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5312490A
Other languages
Japanese (ja)
Inventor
Hideo Uehara
英夫 上原
Satoshi Otomo
聡 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP5312490A priority Critical patent/JPH07138620A/en
Publication of JPH07138620A publication Critical patent/JPH07138620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide the process for efficiently producing the copper powder having desired grain sizes from a cupric chloride liquid. CONSTITUTION:Copper and the cupric chloride liquid are formed by bringing the cupric chloride liquid and iron into reaction and the formed copper is separated from the soln. This copper is then washed and dried to obtain copper powder. The copper powder belonging to the desired grain size is sorted from this copper powder. On the other hand, the copper powder having grain sizes exclusive of the range described above is dissolved into the cupric chloride liquid and is used as a raw material. The copper powder having the desired grain size is efficiently produced by repeating the reaction described above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩化第二銅液から銅粉
を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing copper powder from cupric chloride solution.

【0002】[0002]

【従来の技術】我国において、銅粉は、各種の家庭電化
製品、音響機器、事務器やマイクロモーターの軸受とし
て使用される焼結含油軸受、自動車、二輪車のクラッチ
やブレーキ、鉄道車輪のブレーキ、集電材などの銅系の
焼結摩擦材料、焼結集電材料、焼結機械部品の主成分と
して使用されており、この銅粉は従来から例えば電解法
や噴霧法等により製造されている。
2. Description of the Related Art In Japan, copper powder is a sintered oil-impregnated bearing used as a bearing for various home appliances, audio equipment, office equipment and micromotors, automobile and motorcycle clutches and brakes, railway wheel brakes, It is used as a main component of a copper-based sintered friction material such as a current collector, a sintered current collector, and a sintered machine part. This copper powder has been conventionally produced by, for example, an electrolytic method or a spray method.

【0003】このうち電解法は、電気銅からなる陽極及
び例えば銅板からなる陰極を備えた電解槽内で、硫酸1
20〜250g/l及び銅5〜35g/lを含む電解液
に対して、液温30〜50℃、電流7,500〜10,
000Aの条件の下で、電気分解を行うことにより、陽
極の電気銅を陰極に粉末状に析出させて銅粉を得る方法
であり、この方法においては、陰極電流密度、電解液の
液温、銅濃度、硫酸濃度等の電解条件を調整することに
より、得られる銅粉末の粒度、粒形が変化し、また電極
間の距離や電解液の流れの方向、陰極に析出した析出粉
のかき落し間隔の時間等が銅粉末の特性に影響を与える
ため、これらの条件を細かく調整することが必要とな
る。
Of these, the electrolysis method is one in which sulfuric acid is used in an electrolytic cell equipped with an anode made of electrolytic copper and a cathode made of, for example, a copper plate.
For an electrolytic solution containing 20 to 250 g / l and copper 5 to 35 g / l, the liquid temperature is 30 to 50 ° C., the current is 7,500 to 10,
Under the condition of 000 A, electrolysis is performed to deposit the electrolytic copper of the anode in the form of powder on the cathode to obtain copper powder. In this method, the cathode current density, the liquid temperature of the electrolytic solution, By adjusting the electrolysis conditions such as copper concentration and sulfuric acid concentration, the grain size and grain shape of the obtained copper powder change, and the distance between the electrodes, the direction of the flow of the electrolyte, and the scraping of the deposited powder deposited on the cathode It is necessary to finely adjust these conditions, because the time of the interval affects the properties of the copper powder.

【0004】また噴霧法は、銅を溶解して得た溶湯を、
チャンバ内において、高圧の空気、水、不活性ガス等の
噴霧媒で噴霧することにより銅粉を得る方法であり、こ
の方法においては、噴霧媒の圧力、ノズルの種類や角
度、溶湯の太さ、落下距離、噴霧時の周辺の雰囲気等の
噴霧条件が、得られる銅粉末の粒度や粒形に影響を与え
る。
Further, the spraying method uses a molten metal obtained by melting copper,
This is a method of obtaining copper powder by spraying with a spray medium such as high-pressure air, water, or an inert gas in the chamber. In this method, the pressure of the spray medium, the type and angle of the nozzle, and the thickness of the molten metal are used. The spraying conditions such as the dropping distance and the surrounding atmosphere at the time of spraying affect the particle size and shape of the obtained copper powder.

【0005】[0005]

【発明が解決しようとしている課題】しかしながら銅粉
を販売する際には、粒度や粒形が規格範囲内であること
が重要であるが、上述の電解法や噴霧法では、所望の粒
度や粒形を有する規格範囲内の銅粉を得るために、電解
装置、電解条件や噴霧条件を調整しても、銅粉の生産に
は必ず分布があり、規格範囲外の銅粉の製造量が多く、
規格範囲内の銅粉の収率が低いという問題があった。
However, when selling copper powder, it is important that the particle size and particle shape are within the specified range. However, in the above-mentioned electrolytic method and spraying method, the desired particle size and particle shape are required. Even if the electrolysis device, electrolysis conditions and spraying conditions are adjusted to obtain copper powder within the specified range that has a certain shape, there is always a distribution in the production of copper powder, and the production amount of copper powder outside the specified range is large ,
There was a problem that the yield of copper powder within the standard range was low.

【0006】またこの規格範囲外の銅粉に販売するとし
ても低価格になるため、処分の方法の1つとして原料と
して再利用することも考えられるが、電解法では、例え
ば縦1.2m、横1.2mであって、厚さが0.2〜
0.3mの形状を有する電気銅を陽極として用い、これ
が原料となるため、銅粉を原料として用いることはでき
ない。さらに噴霧法では、銅粉から溶湯を生成すると、
酸化されやすく、収率の低下を招くという問題があるた
め、銅粉を原料として用いることは好ましくない。従っ
て従来では規格範囲外の銅粉はほとんど原料としては再
利用されていない状態であった。
[0006] Further, even if sold to copper powders outside the standard range, the price will be low, so it may be possible to reuse it as a raw material as one of the disposal methods, but in the electrolytic method, for example, 1.2 m in length, The width is 1.2 m and the thickness is 0.2-
Since electrolytic copper having a shape of 0.3 m is used as an anode and this is a raw material, copper powder cannot be used as a raw material. Furthermore, in the atomization method, when molten metal is generated from copper powder,
It is not preferable to use copper powder as a raw material because it is easily oxidized and causes a decrease in yield. Therefore, in the past, copper powder outside the standard range was hardly reused as a raw material.

【0007】本発明は、このような事情の下になされた
ものであり、その目的は、塩化第二銅液から効率よく銅
粉を製造する方法を提供することにある。
The present invention has been made under such circumstances, and an object thereof is to provide a method for efficiently producing copper powder from a cupric chloride solution.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、塩化
第二銅液に鉄を反応させて、銅と塩化第一鉄液を生成す
る工程と、生成した銅を分離する工程と、当該銅から予
め設定された範囲の粒度を有する銅粉を選別する工程と
を含み、前記設定範囲以外の粒度を有する銅粉を塩化第
二銅液に溶解し、この溶液に鉄を反応させて銅の生成を
繰り返すことを特徴とする。
According to the invention of claim 1, a step of reacting iron with a cupric chloride solution to produce copper and ferrous chloride solution, and a step of separating the produced copper, Including a step of selecting a copper powder having a particle size in a preset range from the copper, dissolving the copper powder having a particle size other than the preset range in a cupric chloride solution, and reacting iron with this solution. It is characterized in that the production of copper is repeated.

【0009】請求項2の発明は、塩化第二銅液に銅を溶
解して、塩化第一銅を含む溶液を生成する工程と、この
溶液に鉄を反応させて、銅と塩化第一鉄液を生成する工
程と、生成した銅を分離する工程と、当該銅から予め設
定された範囲の粒度を有する銅粉を選別する工程と、を
含むことを特徴とする。
According to the second aspect of the present invention, a step of dissolving copper in a cupric chloride solution to produce a solution containing cuprous chloride, and reacting the solution with iron, the copper and ferrous chloride are reacted. It is characterized by including a step of producing a liquid, a step of separating the produced copper, and a step of selecting copper powder having a particle size in a preset range from the copper.

【0010】請求項3の発明は、塩化第二銅液に鉄を反
応させて、銅と塩化第一鉄液を生成する工程と、生成し
た銅を分離する工程と、当該銅から予め設定された範囲
の粒度を有する銅粉を選別する工程と、を含むことを特
徴とする。
According to the third aspect of the present invention, a step of reacting iron with a cupric chloride solution to produce copper and ferrous chloride solution, a step of separating the produced copper, and a preset step from the copper are set in advance. And a step of selecting a copper powder having a particle size in a different range.

【0011】[0011]

【作用】塩化第二銅液と鉄とを反応させると、塩化第二
銅が還元されて銅が生成する。この銅を溶液から分離
し、例えば篩装置を用いて、予め設定された範囲の粒度
を有する銅粉を得る。
When the cupric chloride solution and iron are reacted with each other, cupric chloride is reduced to produce copper. The copper is separated from the solution and, for example, using a sieving device, copper powder having a particle size in a preset range is obtained.

【0012】ここで、塩化第二銅液に銅を溶解すると、
塩化第一銅を含む溶液が生成するが、この塩化第一銅を
含む溶液と鉄との反応においても銅が生成する。従って
前記設定範囲以外の粒度を有する銅粉を塩化第二銅液に
溶解して原料として用い、銅の生成反応を繰り返すこと
により、所望の粒度を有する銅粉を効率よく生成するこ
とができる。
When copper is dissolved in the cupric chloride solution,
A solution containing cuprous chloride is produced, but copper is also produced in the reaction between the solution containing cuprous chloride and iron. Therefore, copper powder having a desired particle size can be efficiently produced by dissolving copper powder having a particle size outside the above-mentioned set range in a cupric chloride solution and using it as a raw material and repeating the copper production reaction.

【0013】[0013]

【実施例】本発明は、塩化第二銅(CuCl2 )液に鉄
(Fe)を添加して、所望の粒度を有する銅(Cu)粉
と、塩化第一鉄(FeCl2 )液とを製造する方法であ
り、原料である塩化第二銅液としては、例えば銅プリン
ト基板等のエッチングに使用される塩化第二銅液や塩化
第二鉄(FeCl3 )液のエッチング廃液を用いること
ができる。
EXAMPLE In the present invention, iron (Fe) is added to a cupric chloride (CuCl 2 ) solution to prepare a copper (Cu) powder having a desired particle size and a ferrous chloride (FeCl 2 ) solution. It is a manufacturing method, and as the raw material cupric chloride solution, for example, an etching waste solution of a cupric chloride solution or a ferric chloride (FeCl 3 ) solution used for etching a copper printed circuit board or the like is used. it can.

【0014】本発明方法について、図1に示すフローチ
ャートを用いて説明する。
The method of the present invention will be described with reference to the flow chart shown in FIG.

【0015】本発明方法は、初期操作(1回目の操作)
は図1(a)に示すように、塩化第二銅液に鉄を添加し
て銅を生成させる〔銅生成工程〕と、生成した銅を分離
し、洗浄して、乾燥させて銅粉を得る〔分離・洗浄・乾
燥工程〕と、得られた銅粉から所望範囲の粒度を有する
銅粉を選別する〔篩工程〕とからなり、2回目以降の操
作は図1(b)に示すように、篩分けされた範囲外の粒
度を有する銅粉を原料として再利用するものである。
In the method of the present invention, the initial operation (first operation)
As shown in FIG. 1A, when iron is added to a cupric chloride solution to generate copper [copper generation step], the generated copper is separated, washed, and dried to form copper powder. It consists of obtaining [separation / washing / drying process] and selecting a copper powder having a desired particle size from the obtained copper powder [sieving process], and the second and subsequent operations are as shown in FIG. 1 (b). In addition, copper powder having a particle size outside the sieved range is reused as a raw material.

【0016】初期操作の〔銅生成工程〕では、例えば反
応槽内にて、塩化第二銅液に例えば鉄粉を添加して反応
させることにより、次の(1)式に示すように、銅と塩
化第一鉄液とを生成させる。ここで添加される鉄粉の量
は、塩化第二銅液中の銅イオンを還元するのに必要な量
である。 CuCl2 +Fe→Cu+FeCl2 …(1) 〔分離・洗浄・乾燥工程〕では、例えば遠心分離機、フ
ィルタープレス、ベルト式濾過機、ヌッチェフィルター
等からなる分離機を用いて生成された銅を分離し、例え
ば上記分離機の洗浄工程を用いて分離した銅を洗浄し
て、この銅を例えば真空ドラム式乾燥機、気流式乾燥
機、流動層式乾燥機等からなる乾燥機を用いて乾燥させ
て、銅粉を得る。
In the [copper production step] of the initial operation, for example, iron powder is added to the cupric chloride solution in the reaction vessel to react the copper cuprate with copper, as shown in the following formula (1). And ferrous chloride liquid are generated. The amount of iron powder added here is the amount required to reduce the copper ions in the cupric chloride solution. CuCl 2 + Fe → Cu + FeCl 2 (1) In the [separation / washing / drying step], the generated copper is separated using a separator such as a centrifuge, a filter press, a belt type filter, and a Nutsche filter. , For example, by washing the copper separated using the washing step of the separator, and drying the copper using a dryer such as a vacuum drum dryer, a gas stream dryer, a fluidized bed dryer, etc. , Get copper powder.

【0017】〔篩工程〕では例えば篩装置を用いて、所
望の範囲の粒度を有する銅粉を選別する。即ち、篩装置
は、第1の篩部、第2の篩部、第3の篩部とがこの順番
に積み重なって構成され、第1の篩部及び第2の篩部の
底部には、所定の大きさの孔を有する網状体が設けられ
ている。例えば第1の篩部に配設された網状体には、予
め設定された所望の範囲(例えば規格範囲)の最大値の
大きさの孔が形成されており、第2の篩部に配設された
網状体には、規格範囲の最小値の大きさの孔が形成され
ている。このため規格範囲より大きい銅粉は第1の篩部
で除外されて第1の篩部へ残り、規格範囲より小さい銅
粉は第2の篩部で除外されて第3の篩部へ篩い落され、
規格範囲内の銅粉のみが第2の篩部に選別される。
In the [sieving step], for example, a sieving device is used to sort copper powder having a particle size in a desired range. That is, the sieving device is configured such that the first sieving portion, the second sieving portion, and the third sieving portion are stacked in this order, and the bottom portions of the first sieving portion and the second sieving portion have a predetermined size. A mesh having holes of the size For example, the net-like member disposed on the first sieve portion has holes having a maximum size in a preset desired range (for example, a standard range), and is disposed on the second sieve portion. A hole having a size of the minimum value within the standard range is formed in the formed mesh body. Therefore, copper powder larger than the specified range is excluded by the first sieve part and remains in the first sieve part, and copper powder smaller than the specified range is excluded by the second sieve part and sieved down to the third sieve part. Is
Only the copper powder within the standard range is sorted into the second sieve section.

【0018】このようにして選別された規格範囲内の粒
度を有する銅粉は次工程で製品化され、規格範囲外の粒
度を有する銅粉は原料として再利用される。また製品化
の段階で目的外品となった銅粉も原料として再利用され
る。
The copper powder having a particle size within the standard range thus selected is commercialized in the next step, and the copper powder having a particle size outside the standard range is reused as a raw material. In addition, the copper powder that became a non-purpose product at the commercialization stage is reused as a raw material.

【0019】2回目以降の操作では、先ず〔塩化第一銅
生成工程〕において、例えば反応槽内にて塩化第二銅液
に、例えば上述の規格範囲外の粒度を有する銅粉を溶解
して反応させることにより、次の(2)式に示すように
塩化第一銅(CuCl)を含む溶液を生成させる。 CuCl2 +Cu→2CuCl …(2) そしてこの反応により得られた塩化第一銅を含む溶液
に、再び鉄粉を添加して反応させることにより、〔銅生
成工程〕にて、以下の(3)式に従い、再度銅と塩化第
一鉄液とを生成させる。ここで上述の〔塩化第一銅生成
工程〕において未反応の塩化第二銅が存在する場合に
は、この塩化第二銅は鉄と上述の(1)式に示すように
反応して銅と塩化第一鉄液とを生成させる。
In the second and subsequent operations, first, in the step of producing cuprous chloride, first, for example, copper powder having a particle size outside the above-mentioned standard range is dissolved in a cupric chloride solution in a reaction tank. By reacting, a solution containing cuprous chloride (CuCl) is generated as shown in the following formula (2). CuCl 2 + Cu → 2CuCl (2) Then, by adding iron powder again to the solution containing cuprous chloride obtained by this reaction and reacting it, in (Copper producing step), the following (3) According to the formula, copper and ferrous chloride liquid are generated again. When unreacted cupric chloride is present in the above [cuprous chloride production step], the cupric chloride reacts with iron as shown in the above formula (1) to form copper. Ferrous chloride liquid is produced.

【0020】 2CuCl+Fe→2Cu+FeCl2 …(3) なお原料となる塩化第二銅液から効率よく銅粉を生成さ
せるためには、上述の塩化第二銅と銅との反応を示す
(2)式において、塩化第二銅と銅とは同量で反応する
ことから、原料として再利用できる銅粉の最大値は、塩
化第二銅液中に含まれる銅含有量と同量とされる。また
銅粉を原料として利用した場合においても、〔銅生成工
程〕において添加される鉄粉の量は、原料となる塩化第
二銅液中の銅イオンの量に応じて決定される。
2CuCl + Fe → 2Cu + FeCl 2 (3) In order to efficiently produce copper powder from the cupric chloride solution which is the raw material, the above formula (2) showing the reaction between cupric chloride and copper is used. Since cupric chloride and copper react in the same amount, the maximum value of the copper powder that can be reused as a raw material is the same as the copper content contained in the cupric chloride solution. Even when copper powder is used as a raw material, the amount of iron powder added in the [copper production step] is determined according to the amount of copper ions in the cupric chloride solution that is the raw material.

【0021】このように本発明方法によれば、塩化第二
銅液に銅を溶解して塩化第一銅を含む溶液を得た後、鉄
と反応させることにより銅粉を生成しているので、電解
法や噴霧法のように原料として使用される銅の形状は制
限されず、塩化第二銅液に溶解するものであれば、規格
範囲外の粒度を有する銅粉を原料として再利用すること
ができる。従って例え規格範囲外の粒度を有する銅粉が
生成しても、この銅粉を原料として用いて生成反応を繰
り返すことにより、所定の粒度を有する銅粉を効率よく
生成することができる。
As described above, according to the method of the present invention, copper powder is produced by dissolving copper in a cupric chloride solution to obtain a solution containing cuprous chloride and then reacting with iron. The shape of copper used as a raw material is not limited as in the electrolytic method or the spraying method, and copper powder having a particle size outside the standard range can be reused as a raw material as long as it can be dissolved in a cupric chloride solution. be able to. Therefore, even if a copper powder having a particle size outside the specified range is produced, it is possible to efficiently produce a copper powder having a predetermined particle size by repeating the production reaction using this copper powder as a raw material.

【0022】ここで塩化第二銅液と鉄との反応のみを行
って銅粉を得る場合と、塩化第二銅液に銅を溶解して塩
化第一銅を含む溶液を得た後、この塩化第一銅を含む溶
液と鉄との反応により銅粉を得る場合において、銅粉の
取得量について比較する。塩化第二銅液と鉄との反応の
みを行う場合には、原料である塩化第二銅液の量をAと
し、規格範囲外の銅粉の割合をy(y≦1)とすると、
規格範囲内の銅粉の取得量は(1−y)Aとなる。一方
塩化第二銅液と銅との反応後鉄を反応させる場合には、
規格範囲外の銅粉の割合をx(x≦1)とすると、規格
範囲内の銅粉の取得量はAとなり、塩化第二銅液と鉄と
の反応のみを行う場合より、yAだけ多くなる。
Here, when the copper powder is obtained by only reacting the cupric chloride solution with iron, and after the copper is dissolved in the cupric chloride solution to obtain a solution containing cuprous chloride, In the case of obtaining copper powder by reacting a solution containing cuprous chloride with iron, the amounts of copper powder to be obtained will be compared. When only the reaction of the cupric chloride solution and iron is performed, if the amount of the cupric chloride solution as the raw material is A and the proportion of the copper powder outside the standard range is y (y ≦ 1),
The acquisition amount of copper powder within the standard range is (1-y) A. On the other hand, when reacting iron after the reaction of the cupric chloride solution and copper,
If the ratio of copper powder outside the standard range is x (x ≦ 1), the amount of copper powder within the standard range will be A, which is larger by yA than when only reacting cupric chloride solution with iron. Become.

【0023】従って原料として用いる塩化第二銅液と鉄
の量が同量であっても、銅粉を原料として用いることに
より、銅粉の取得量を増加させることができる。
Therefore, even if the amount of cupric chloride solution used as a raw material and the amount of iron are the same, the amount of copper powder obtained can be increased by using copper powder as a raw material.

【0024】次に本発明方法の効果を確認するために行
った実験について説明する。 〈実験例1〉74μm(200mesh)以下の銅粉を
取得することを目的とした。
Next, an experiment conducted to confirm the effect of the method of the present invention will be described. <Experimental Example 1> The purpose was to obtain copper powder having a particle size of 74 μm (200 mesh) or less.

【0025】(方法)4.5m3 の反応槽に銅濃度1
0.2%、塩酸(HCl)濃度2.3%、比重1.25
の塩化第二銅液を3.0m3 張り込み、この溶液中に攪
拌しながら鉄粉(74μm以上が1.0%以下、45μ
m以下が約70%)を390Kg投入し、反応させた。
反応終了後、反応槽中の銅粉を分離し、洗浄して乾燥さ
せた後、篩分級を行って、74μmの粒度を有する銅粉
を取得した(1回目)。続いて空の反応槽へ塩化第二銅
液を3.0m3 張り込み、1回目の操作で得た銅粉の目
的外部分(74μm以上)を反応液中に溶解後、1回目
と同様に操作を行い、銅粉を取得した(2回目)。さら
に同様の操作を合計5回行い、5回目の操作後、取得し
た銅粉を分析した。
(Method) Copper concentration of 1 in a 4.5 m 3 reaction tank
0.2%, hydrochloric acid (HCl) concentration 2.3%, specific gravity 1.25
3.0 m 3 of cupric chloride solution was poured into the solution, and iron powder (74 μm or more was 1.0% or less, 45 μm or more, 45 μm
390 kg of m or less (about 70%) was added and reacted.
After completion of the reaction, the copper powder in the reaction vessel was separated, washed and dried, and then sieve classification was performed to obtain copper powder having a particle size of 74 μm (first time). Subsequently, 3.0 m 3 of cupric chloride solution was poured into an empty reaction tank, and an undesired portion (74 μm or more) of the copper powder obtained in the first operation was dissolved in the reaction solution, and then the same operation as in the first operation was performed. Then, copper powder was obtained (second time). Further, the same operation was performed 5 times in total, and after the 5th operation, the obtained copper powder was analyzed.

【0026】(結果)1回目から5回目までの操作によ
り、取得した銅粉の総量と、塩化第一鉄液の液量を〈表
1〉に示す。なお5回目の操作後に行った銅粉の分析の
結果は〈表2〉に示す。
(Results) Table 1 shows the total amount of copper powder obtained by the first to fifth operations and the amount of ferrous chloride liquid. The results of the copper powder analysis performed after the fifth operation are shown in Table 2.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 この実験により、1回目の操作により取得した銅粉の総
量は391Kgであり、5回目の操作により取得した粒
度74μm以下の銅粉の総量は373Kgであって、両
者はほぼ同量であることから、粒度が74μm以上の目
的外部分の銅粉を原料として用いて生成反応を繰り返す
ことにより、目的の粒度を有する銅粉を効率よく生成で
きることが確認された。 〈実験例2〉実験例1と同様の方法を用いて149μm
(100mesh)以下の銅粉を得ることを目的とし
て、実験を行った。なお、使用した鉄粉の粒度分布は、
149μm以上1.0%、105μm〜149μm2
4.1%、74μm〜105μm28.7%、63μm
〜74μm13.5%、45μm〜63μm15.4
%、45μm以下17.3%である。また5回目の操作
後に行った銅粉の分析の結果は〈表3〉に示す。
[Table 2] From this experiment, the total amount of copper powder obtained by the first operation was 391 Kg, and the total amount of copper powder having a particle size of 74 μm or less obtained by the fifth operation was 373 Kg, and both are almost the same amount. It was confirmed that the copper powder having the target particle size can be efficiently generated by repeating the generation reaction by using the copper powder having the particle size of 74 μm or more as the raw material for the external portion. <Experimental Example 2> Using the same method as Experimental Example 1, 149 μm
An experiment was conducted for the purpose of obtaining a copper powder of (100 mesh) or less. The particle size distribution of the iron powder used is
149 μm or more 1.0%, 105 μm to 149 μm 2
4.1%, 74 μm to 105 μm 28.7%, 63 μm
-74 μm 13.5%, 45 μm-63 μm 15.4
%, 45 μm or less, 17.3%. The results of the copper powder analysis performed after the fifth operation are shown in Table 3.

【0029】[0029]

【表3】 この実験により、目的の粒度を149μm以下に設定し
た場合であっても、目的の粒度を有する銅粉が効率よく
生成できることが確認された。従って本発明方法は、ど
のような粒度の銅粉にも適用でき、所望の粒度を有する
銅粉を効率よく生成できることが確認された。
[Table 3] From this experiment, it was confirmed that even when the target particle size was set to 149 μm or less, the copper powder having the target particle size could be efficiently produced. Therefore, it was confirmed that the method of the present invention can be applied to copper powder having any particle size and can efficiently produce a copper powder having a desired particle size.

【0030】なお以上において本発明では、原料として
用いる銅は、本発明方法で生成された目的の粒度以外の
銅粉のみならず、銅スクラップ等であってもよいし、初
期操作から銅を添加してもよい。本発明方法では原料と
して用いる銅は、塩化第二銅液に溶解するものであれ
ば、形状は制限されないからである。従って、電解法や
噴霧法で得られた目的品以外の銅粉も再利用することが
できる。また銅をメッキした鉄粉、鉄板等の不良品や、
銅粉と鉄粉とを混合した粉末も利用できる。
In the above, in the present invention, the copper used as a raw material may be not only copper powder having a particle size other than the intended particle size produced by the method of the present invention but also copper scrap or the like, or copper added from the initial operation. You may. This is because the shape of copper used as a raw material in the method of the present invention is not limited as long as it is soluble in the cupric chloride solution. Therefore, copper powder other than the target product obtained by the electrolysis method or the spray method can be reused. In addition, defective products such as copper-plated iron powder and iron plates,
A powder obtained by mixing copper powder and iron powder can also be used.

【0031】[0031]

【発明の効果】本発明によれば、設定範囲以外の粒度を
有する銅粉が生成しても、これを原料として使用するこ
とができるため、このような銅粉を原料として用いて銅
の生成反応を繰り返すことにより、所定の粒度を有する
銅粉を効率よく製造することができる。
According to the present invention, even if copper powder having a particle size outside the set range is produced, it can be used as a raw material. Therefore, copper powder is produced using such a copper powder as a raw material. By repeating the reaction, copper powder having a predetermined particle size can be efficiently produced.

【0032】また本発明によれば、塩化第二銅に溶解す
るものであれば、いかなる形状の銅も原料として使用す
ることができる。
Further, according to the present invention, any shape of copper can be used as a raw material as long as it is soluble in cupric chloride.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を説明するフローチャートを示す図
である。
FIG. 1 shows a flow chart illustrating the method of the invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 塩化第二銅液に鉄を反応させて、銅と塩
化第一鉄液を生成する工程と、 生成した銅を分離する工程と、 当該銅から予め設定された範囲の粒度を有する銅粉を選
別する工程とを含み、 前記設定範囲以外の粒度を有する銅粉を塩化第二銅液に
溶解し、この溶液に鉄を反応させて銅の生成を繰り返す
ことを特徴とする塩化第二銅液からの銅粉の製造方法。
1. A step of reacting iron with a cupric chloride solution to produce copper and ferrous chloride solution, a step of separating the produced copper, and a particle size within a preset range from the copper. A step of selecting a copper powder having, dissolving a copper powder having a particle size other than the set range in a cupric chloride solution, reacting iron with this solution to repeat the production of copper chloride Method for producing copper powder from cupric solution.
【請求項2】 塩化第二銅液に銅を溶解して、塩化第一
銅を含む溶液を生成する工程と、 この溶液に鉄を反応させて、銅と塩化第一鉄液を生成す
る工程と、 生成した銅を分離する工程と、 当該銅から予め設定された範囲の粒度を有する銅粉を選
別する工程と、 を含むことを特徴とする塩化第二銅液からの銅粉の製造
方法。
2. A step of dissolving copper in a cupric chloride solution to produce a solution containing cuprous chloride, and a step of reacting iron with the solution to produce copper and ferrous chloride solution. And a step of separating the produced copper, and a step of selecting a copper powder having a particle size within a preset range from the copper, the method for producing a copper powder from a cupric chloride solution. .
【請求項3】 塩化第二銅液に鉄を反応させて、銅と塩
化第一鉄液を生成する工程と、 生成した銅を分離する工程と、 当該銅から予め設定された範囲の粒度を有する銅粉を選
別する工程と、 を含むことを特徴とする塩化第二銅液からの銅粉の製造
方法。
3. A step of reacting iron with a cupric chloride solution to produce copper and ferrous chloride solution, a step of separating the produced copper, and a particle size within a preset range from the copper. And a step of selecting the copper powder having the method, and a method for producing the copper powder from the cupric chloride solution.
JP5312490A 1993-11-17 1993-11-17 Production of copper powder from cupric chloride liquid Pending JPH07138620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312490A JPH07138620A (en) 1993-11-17 1993-11-17 Production of copper powder from cupric chloride liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312490A JPH07138620A (en) 1993-11-17 1993-11-17 Production of copper powder from cupric chloride liquid

Publications (1)

Publication Number Publication Date
JPH07138620A true JPH07138620A (en) 1995-05-30

Family

ID=18029845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312490A Pending JPH07138620A (en) 1993-11-17 1993-11-17 Production of copper powder from cupric chloride liquid

Country Status (1)

Country Link
JP (1) JPH07138620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058713A (en) * 2012-09-14 2014-04-03 Dowa Electronics Materials Co Ltd Plate-like copper powder, method for producing the same, and conductive paste
JP2017043797A (en) * 2015-08-25 2017-03-02 東亞合成株式会社 Recovery method of copper powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058713A (en) * 2012-09-14 2014-04-03 Dowa Electronics Materials Co Ltd Plate-like copper powder, method for producing the same, and conductive paste
JP2017043797A (en) * 2015-08-25 2017-03-02 東亞合成株式会社 Recovery method of copper powder

Similar Documents

Publication Publication Date Title
Xiao et al. An environmentally friendly process to selectively recover silver from copper anode slime
Joda et al. Recovery of ultra fine grained silver and copper from PC board scraps
Yang et al. Recovery of ultrafine copper particles from metal components of waste printed circuit boards
US2239144A (en) Permanent magnet
CA2574863A1 (en) System and method for producing copper powder by electrowinning in a flow-through electrowinning cell
JP5144154B2 (en) Fine particle production method and fine particle dispersion production method
WO2006019971A3 (en) Apparatus for producing metal powder by electrowinning
KR102051321B1 (en) A method for preparing silver-copper mixture powder of core-shell structure using wet process
JP5010706B2 (en) Tantalum recovery method
EP1159467A1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
JPWO2012132962A1 (en) Tantalum recovery method
JP4406688B2 (en) Method for purifying electrolyte in monovalent copper electrowinning process
Liang et al. Electrolyte circulation: Metal recovery from waste printed circuit boards of mobile phones by alkaline slurry electrolysis
Perea et al. Copper leaching from wastes electrical and electronic equipment (WEEE) using alkaline monosodium glutamate: Thermodynamics and dissolution tests
JP4149364B2 (en) Dendritic fine silver powder and method for producing the same
Tran et al. Feasibility of direct conversion of copper present in waste printed circuit boards to oxidation-resistant materials employing eco-benign iron (III) sulfate and ascorbic acid
JPH07138620A (en) Production of copper powder from cupric chloride liquid
JP2008121051A (en) Method for producing silver powder
US10807085B2 (en) Silver recovery as Ag0nanoparticles from ion-exchange regenerant solution
JP3882074B2 (en) Method and apparatus for recovering metallic copper from copper metal waste
JPH058242B2 (en)
US7799112B2 (en) Production method of pure metal/alloy super-micro powder
JP2007182612A (en) Recycling system for composite material of high-melting metal and copper
CN112921356A (en) Method for recovering copper from waste printed circuit board
JPH058241B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20080919

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20090919

LAPS Cancellation because of no payment of annual fees