JPH07137157A - Manufacture of optical thin film - Google Patents

Manufacture of optical thin film

Info

Publication number
JPH07137157A
JPH07137157A JP5307300A JP30730093A JPH07137157A JP H07137157 A JPH07137157 A JP H07137157A JP 5307300 A JP5307300 A JP 5307300A JP 30730093 A JP30730093 A JP 30730093A JP H07137157 A JPH07137157 A JP H07137157A
Authority
JP
Japan
Prior art keywords
film
thin film
optical thin
lead
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5307300A
Other languages
Japanese (ja)
Inventor
Nobuaki Mitamura
宣明 三田村
Bunji Akimoto
文二 秋元
Hiroshi Ikeda
浩 池田
Takeshi Kawamata
健 川俣
Nobuyoshi Toyohara
延好 豊原
Kazunari Tokuda
一成 徳田
Yoshiki Nitta
佳樹 新田
Toshiaki Oimizu
利明 生水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP5307300A priority Critical patent/JPH07137157A/en
Publication of JPH07137157A publication Critical patent/JPH07137157A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form an optical thin film which hardly causes discoloration of glass and absorption of light by a method wherein, even in the case of a lead- containing glass base, reduction of PbO present in the vicinity of the surface of the glass base due to the ions bombardment is suppressed. CONSTITUTION:In forming an optical thin film on a surface of a lead-containing glass base containing 20wt.% or more of at least lead oxide (PbO) by a sputtering method, a film is formed at film-forming speed as slow as 0.1nm/sec or less until at least a physical film thickness of the optical thin film becomes 10nm or more, or a film is formed by introducing gas containing at least oxygen (O) molecules.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化鉛(PbO)を含
む光学ガラスの表面に反射防止膜やハーフミラー等の光
学薄膜を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an optical thin film such as an antireflection film or a half mirror on the surface of an optical glass containing lead oxide (PbO).

【0002】[0002]

【従来の技術】従来、ガラス基板表面に反射防止膜やハ
ーフミラー等の光学薄膜を形成する場合、成膜材料を抵
抗加熱や電子線等で加熱してガラス基板の表面に付着さ
せる真空蒸着法が主に用いられてきた。しかし近年にな
り、例えば特開昭62−73202号公報に開示されて
いるように、真空蒸着に比べて、基板加熱なしに優れた
膜の密着性を得られることや、自動化,量産化の容易さ
といった利点から、スパッタリング法による光学薄膜の
形成技術が検討されてきている。
2. Description of the Related Art Conventionally, in the case of forming an optical thin film such as an antireflection film or a half mirror on the surface of a glass substrate, a vacuum deposition method in which a film forming material is heated by resistance heating or electron beam to adhere to the surface of the glass substrate Has been mainly used. However, in recent years, as disclosed in, for example, Japanese Patent Application Laid-Open No. 62-73202, excellent film adhesion can be obtained without heating the substrate, and automation and mass production are easy as compared with vacuum evaporation. Due to such advantages, a technique for forming an optical thin film by a sputtering method has been studied.

【0003】ここで、スパッタリング法とは成膜装置内
を減圧してAr等の不活性ガスを導入した後、高周波電
圧等をかけてプラズマを発生させ、Arイオン等でター
ゲット状の物質をたたき出す(スパッタする)ことによ
り、基板表面に薄膜を形成する技術である。
Here, the sputtering method is that the inside of the film forming apparatus is decompressed and an inert gas such as Ar is introduced, and then a high frequency voltage or the like is applied to generate plasma, and a target material is knocked out by Ar ions or the like. This is a technique for forming a thin film on the substrate surface by (sputtering).

【0004】[0004]

【発明が解決しようとする課題】一般に、光学ガラスの
中には屈折率を調整するための酸化鉛(PbO)を含む
ような、いわゆる鉛含有ガラスが少なくない。このよう
な鉛含有ガラス基板に対して、前記従来技術のように単
にスパッタリング法により光学薄膜を形成した場合、プ
ラズマの中のArイオンやスパッタされたイオンによっ
て基板表面がたたかれ、そのイオン衝撃の結果、基板表
面近傍に存在するPbOのOがたたき出され、Pbに還
元されてしまう。このため鉛含有ガラスには光の吸収が
生じ、黄色に変色するという重大な問題が発生する。
Generally, there are not a few so-called lead-containing glasses that contain lead oxide (PbO) for adjusting the refractive index in optical glasses. When an optical thin film is simply formed on such a lead-containing glass substrate by the sputtering method as in the conventional technique, the substrate surface is hit by Ar ions in the plasma or sputtered ions, and the ion bombardment thereof is performed. As a result, O of PbO existing near the substrate surface is knocked out and reduced to Pb. Therefore, the lead-containing glass absorbs light, which causes a serious problem of discoloration to yellow.

【0005】因って、本発明は前記従来技術における問
題点に鑑みて開発されたもので、鉛含有ガラス基板に対
してスパッタリング法により光学薄膜を形成しても、ガ
ラスの変色や光の吸収が生じない光学薄膜の製造方法を
提供することを目的とする。
Therefore, the present invention was developed in view of the above problems in the prior art. Even if an optical thin film is formed on a lead-containing glass substrate by a sputtering method, the glass is discolored or light is absorbed. It is an object of the present invention to provide a method for producing an optical thin film that does not cause

【0006】[0006]

【課題を解決するための手段】本発明は、少なくとも酸
化鉛(PbO)を20重量%以上含む鉛含有ガラス基板
の表面にスパッタリング法により光学薄膜を成膜するに
あたり、少なくとも前記光学薄膜の物理的膜厚が10n
m以上になるまで、0.1nm/秒以下の遅い成膜速度
で成膜するか、または少なくとも酸素(O)分子を含む
ガスを導入して成膜する方法である。
According to the present invention, in forming an optical thin film on a surface of a lead-containing glass substrate containing at least 20% by weight of lead oxide (PbO) by a sputtering method, at least a physical layer of the optical thin film is formed. Film thickness is 10n
This is a method of forming a film at a slow film forming rate of 0.1 nm / sec or less until the m or more, or introducing a gas containing at least oxygen (O) molecules.

【0007】ここで、本発明でいう光学薄膜には、例え
ば反射防止膜,反射増加膜,ハーフミラー,偏光ビーム
スプリッター,バンドパスフィルターおよびカットフィ
ルター等があり、それらを構成する材料も酸化物および
フッ化物等の誘導体や金属等を用いることができ、特に
限定されない。また、本発明でいうスパッタリング法に
は、例えばマグネトロンスパッタ,二極スパッタ,三極
または四極スパッタ,高周波スパッタ,直流スパッタ,
バイアススパッタ,イオンビームスパッタ,ECRスパ
ッタおよび対向ターゲットスパッタ等があり、特に限定
されるものではない。さらに、本発明のO分子を含むガ
スとは、酸素(O2 ),オゾン(O3 ),水(H
2 O),一酸化炭素(CO),二酸化炭素(CO2 ),
一酸化窒素(NO)および二酸化窒素(NO2 )があ
り、特に限定されない。
Here, the optical thin film referred to in the present invention includes, for example, an antireflection film, a reflection increasing film, a half mirror, a polarization beam splitter, a bandpass filter and a cut filter, and the materials constituting them are oxide and Derivatives such as fluorides and metals can be used and are not particularly limited. Further, the sputtering method in the present invention includes, for example, magnetron sputtering, bipolar sputtering, tripolar or quadrupolar sputtering, high frequency sputtering, DC sputtering,
There are bias sputtering, ion beam sputtering, ECR sputtering, facing target sputtering, and the like, and there is no particular limitation. Furthermore, the gas containing O molecules of the present invention means oxygen (O 2 ), ozone (O 3 ), water (H
2 O), carbon monoxide (CO), carbon dioxide (CO 2 ),
There are nitric oxide (NO) and nitrogen dioxide (NO 2 ), which are not particularly limited.

【0008】なお、少なくとも酸化鉛(PbO)を20
重量%以上含む鉛含有ガラス基板としたのは、前記従来
技術の問題点で述べたように、スパッタリング法により
光学薄膜を形成する場合において、酸化鉛(PbO)を
20重量%以上含む鉛含有ガラスが、特にガラスの変色
や光の吸収が著しく、本発明の作用が充分に発揮され、
その効果が大きいからである。また、スパッタリング法
により光学薄膜を形成する場合において、酸化鉛(Pb
O)を20重量%以上含む鉛含有ガラスが変色や光の吸
収を生じるのは、成膜初期過程で鉛含有ガラスの表面が
プラズマの中のArイオンやスパッタされたイオンによ
ってたたかれるからであるから、少なくとも光学薄膜の
物理的膜厚が10nm以上になって基板表面がその光学
薄膜で一様に保護されるまで、0.1nm/秒以下の遅
い成膜速度で成膜するか、または少なくとも酸素(O)
分子を含むガスを導入して成膜することが望ましい。
At least lead oxide (PbO) is added to 20
The lead-containing glass substrate containing not less than 20% by weight of the lead-containing glass contains 20% by weight or more of lead oxide (PbO) when the optical thin film is formed by the sputtering method as described in the problems of the prior art. However, especially the discoloration of glass and the absorption of light are remarkable, and the action of the present invention is sufficiently exerted,
This is because the effect is great. Further, when forming an optical thin film by a sputtering method, lead oxide (Pb
The lead-containing glass containing 20% by weight or more of O) causes discoloration and absorption of light because the surface of the lead-containing glass is hit by Ar ions in the plasma or sputtered ions in the early stage of film formation. Therefore, at least until the physical film thickness of the optical thin film becomes 10 nm or more and the substrate surface is uniformly protected by the optical thin film, the film is formed at a slow film forming rate of 0.1 nm / sec or less, or At least oxygen (O)
It is desirable to introduce a gas containing molecules to form a film.

【0009】[0009]

【作用】本発明では、少なくとも光学薄膜の物理的膜厚
が10nm以上になるまで、投入パワーを落とす等によ
り0.1nm/秒以下の遅い成膜速度で成膜すれば、プ
ラズマ中のArイオンやスパッタされたイオンの数が減
るとともに、そうしたイオンの持つエネルギーも減少す
るので、イオン衝撃によるPbOの還元が抑えられる。
また、少なくとも光学薄膜の物理的膜厚が10nm以上
になるまで、O分子を含むガスを導入して成膜した場合
には、O分子の供給により還元されたPbの酸化が促進
されるので、結果として還元が抑制される。
In the present invention, Ar ions in plasma can be formed by forming the film at a slow film forming rate of 0.1 nm / sec or less by reducing the input power until at least the physical film thickness of the optical thin film becomes 10 nm or more. In addition to reducing the number of sputtered ions and the energy of such ions, the reduction of PbO due to ion bombardment can be suppressed.
Also, when a gas containing O molecules is introduced to form a film until at least the physical film thickness of the optical thin film is 10 nm or more, the oxidation of Pb reduced by the supply of O molecules is promoted. As a result, reduction is suppressed.

【0010】さらに、鉛含有ガラス基板上に形成される
光学薄膜の物理的膜厚が10nm以上になった後は、該
光学薄膜によって基板表面が一様に保護されてイオン衝
撃を防ぐので、0.1nm/秒以上の速い成膜速度で成
膜したり、O分子を含むガスを導入しなくても、PbO
の還元が起こらない。従って、成膜速度を遅くしたり、
O分子を含むガスの導入することによる生産性の低下は
最小限にとどめられる。
Further, after the physical thickness of the optical thin film formed on the lead-containing glass substrate becomes 10 nm or more, the substrate surface is uniformly protected by the optical thin film to prevent ion bombardment. Even if a film is formed at a high film forming rate of 1 nm / sec or more and a gas containing O molecules is not introduced, PbO
No reduction will occur. Therefore, slow down the film formation speed,
The reduction in productivity due to the introduction of the gas containing O molecules is minimized.

【0011】[0011]

【実施例1】図1および図2は本実施例を示すグラフで
ある。本実施例では、光学ガラスとしてKzFS1(P
bO含有率38重量%、屈折率1.613)を用い、φ
30,厚さ1mmの形状に加工してガラス基板を作製し
た。このガラス基板をRFマグネトロンスパッタ装置の
真空槽内に、ターゲットとの距離が70mmとなるよう
にセットした。ターゲットにはSiO2 を用いた。次に
基板を加熱すること無しに真空槽内を1×10-4Paま
で排気した。その後、分圧にして1×10-1PaのAr
ガスを真空槽内に導入した。
Embodiment 1 FIGS. 1 and 2 are graphs showing this embodiment. In this embodiment, KzFS1 (P
bO content 38% by weight, refractive index 1.613)
A glass substrate was produced by processing into a shape having a thickness of 30 mm and a thickness of 1 mm. This glass substrate was set in a vacuum chamber of an RF magnetron sputtering device so that the distance from the target was 70 mm. SiO 2 was used as the target. Next, the inside of the vacuum chamber was evacuated to 1 × 10 −4 Pa without heating the substrate. Then, the partial pressure is 1 × 10 −1 Pa of Ar.
Gas was introduced into the vacuum chamber.

【0012】続いて、投入パワー80Wの条件でSiO
2 をスパッタし、物理的膜厚が10nmになるまで成膜
を行った。この時の成膜速度は0.1nm/秒と非常に
遅かった。さらに投入パワーを800Wまで上げ、1n
m/秒の遅い成膜速度で膜厚が90nmになるまで成膜
を行った。このようにしてSiO2 の1層からなる反射
防止膜を得た。本実施例で得られた反射防止膜の分光特
性を図1に、また光学部品の吸収特性を図2に示す。
Then, SiO is applied under the condition of a power of 80 W.
2 was sputtered to form a film with a physical film thickness of 10 nm. The film formation rate at this time was 0.1 nm / sec, which was extremely low. Further increase the input power to 800W, 1n
Film formation was performed at a slow film formation rate of m / sec until the film thickness reached 90 nm. Thus, an antireflection film consisting of one layer of SiO 2 was obtained. FIG. 1 shows the spectral characteristics of the antireflection film obtained in this example, and FIG. 2 shows the absorption characteristics of the optical components.

【0013】本実施例によれば、単層で良好な反射防止
効果が得られ、また光学部品の可視域(400〜700
nm)での光の吸収もなく、変色もほとんどなかった。
According to this embodiment, a good antireflection effect can be obtained with a single layer, and the visible range (400 to 700) of the optical component can be obtained.
(nm) did not absorb light and there was almost no discoloration.

【0014】[0014]

【実施例2】図3および図4は本実施例を示すグラフで
ある。本実施例では、光学ガラスとしてLF1(PbO
含有率35重量%、屈折率11.573)を用い、ガラ
ス基板を作製した。このガラス基板を前記実施例1と同
様にセットした。ターゲットにはZrO2 とSiO2
用いた。次に、前記実施例1と同様に排気した後、分圧
5×10-2PaのArガスに分圧5×10-2PaのO2
ガスを添加した混合ガスを真空槽内に導入した。続い
て、投入パワー700Wの条件でZrO2 をスパッタ
し、物理的膜厚が14nmになるまで成膜を行った。こ
の時の成膜速度は1nm/秒と速かった。
Embodiment 2 FIGS. 3 and 4 are graphs showing this embodiment. In this embodiment, LF1 (PbO) is used as the optical glass.
A glass substrate was prepared using a content of 35% by weight and a refractive index of 11.573). This glass substrate was set in the same manner as in Example 1 above. ZrO 2 and SiO 2 were used as the target. Next, Example 1 and after venting similarly, partial pressure 5 × 10 -2 partial pressure of Ar gas in Pa 5 × 10 -2 Pa of O 2
The mixed gas to which the gas was added was introduced into the vacuum chamber. Subsequently, ZrO 2 was sputtered under the condition of an applied power of 700 W to form a film until the physical film thickness became 14 nm. The film forming rate at this time was as high as 1 nm / sec.

【0015】次に、導入ガスを分圧1×10-1PaのA
rに切り換え、投入パワー800W、成膜速度1nm/
秒の条件でSiO2 をスパッタし、膜厚113nmを形
成した。このようにして2層からなる反射防止膜を得
た。本実施例で得られた反射防止膜の分光特性を図3
に、また光学部品の吸収特性を図4に示す。
Next, the introduced gas is subjected to A with a partial pressure of 1 × 10 −1 Pa.
Switch to r, input power 800 W, film formation rate 1 nm /
SiO 2 was sputtered under the condition of second to form a film thickness of 113 nm. Thus, an antireflection film having two layers was obtained. FIG. 3 shows the spectral characteristics of the antireflection film obtained in this example.
FIG. 4 shows the absorption characteristics of the optical components.

【0016】本実施例によれば、成膜された反射防止膜
は良好な反射防止効果を有し、また光学部品の可視域
(400〜700nm)での光の吸収もなく、変色もほ
とんどなかった。
According to the present embodiment, the formed antireflection film has a good antireflection effect, does not absorb light in the visible range (400 to 700 nm) of the optical component, and hardly discolors. It was

【0017】[0017]

【実施例3】図5および図6は本実施例を示すグラフで
ある。本実施例では、前記実施例2と同様に、光学ガラ
スとしてLF1を用い、ガラス基板を作製した。このガ
ラス基板を前記実施例2と同様にセットした。ターゲッ
トにはTiO2 とSiO2 を用いた。次に、前記実施例
1と同様に排気した後、分圧5×10-2PaのArガス
に分圧5×10-2PaのCO2 ガスを添加した混合ガス
を真空槽内に導入した。
Third Embodiment FIGS. 5 and 6 are graphs showing the present embodiment. In this example, as in Example 2, LF1 was used as the optical glass to manufacture a glass substrate. This glass substrate was set in the same manner as in Example 2. TiO 2 and SiO 2 were used as the target. Next, after evacuating the same manner as in Example 1, was introduced a partial pressure 5 × 10 -2 Pa Ar gas partial pressure 5 × 10 -2 Pa mixed gas obtained by adding CO 2 gas in the vacuum chamber .

【0018】続いて、投入パワー60Wの条件下でTi
2 をスパッタし、物理的膜厚が10nmになるまで成
膜を行った。この時の成膜速度は0.08nm/秒と非
常に遅かった。さらに導入ガスを分圧1×10-1Paの
Arに切り換え、投入パワーを900Wに上げ、成膜速
度1.2nm/秒の条件下でTiO2 をスパッタし、膜
厚が76nmになるまで形成して第1層を得た。
Subsequently, Ti is fed under the condition of an input power of 60 W.
O 2 was sputtered to form a film with a physical film thickness of 10 nm. The film forming rate at this time was 0.08 nm / sec, which was extremely low. Further, the introduced gas was switched to Ar with a partial pressure of 1 × 10 −1 Pa, the input power was increased to 900 W, and TiO 2 was sputtered under the condition of the film forming rate of 1.2 nm / sec to form a film thickness of 76 nm. The first layer was obtained.

【0019】次に投入パワー800W、成膜速度1nm
/秒の条件下でSiO2 をスパッタし、膜厚110nm
形成して第2層を得た。次に投入パワー900W、成膜
速度1.2nm/秒の条件下でTiO2 をスパッタし、
膜厚76nm形成して第3層を得た。次に投入パワー8
00W、成膜速度1nm/秒の条件でSiO2 をスパッ
タし、膜厚110nm形成して第4層を得た。
Next, input power 800 W, film formation rate 1 nm
SiO 2 is sputtered under the condition of 1 / second, and the film thickness is 110 nm.
Formed to obtain a second layer. Next, TiO 2 is sputtered under the conditions of an input power of 900 W and a film forming rate of 1.2 nm / sec.
A film thickness of 76 nm was formed to obtain a third layer. Next, input power 8
SiO 2 was sputtered under the conditions of 00 W and a film forming rate of 1 nm / sec to form a film having a thickness of 110 nm, thereby obtaining a fourth layer.

【0020】次に投入パワー900W、成膜速度1.2
nm/秒の条件でTiO2 をスパッタし、膜厚76nm
形成して第5層を得た。最後に投入パワー800W、成
膜速度1nm/秒の条件でSiO2 をスパッタし、膜厚
110nm形成して第6層を得た。このようにして6層
からなるハーフミラーを得た。本実施例で得られたハー
フミラーの分光特性を図5に、また光学部品の吸収特性
を図6に示す。
Next, input power 900 W, film formation rate 1.2.
TiO 2 is sputtered under the condition of nm / sec, and the film thickness is 76 nm.
Formed to obtain a fifth layer. Finally, SiO 2 was sputtered under the conditions of an input power of 800 W and a film formation rate of 1 nm / sec to form a film having a thickness of 110 nm, thereby obtaining a sixth layer. Thus, a half mirror having 6 layers was obtained. FIG. 5 shows the spectral characteristic of the half mirror obtained in this example, and FIG. 6 shows the absorption characteristic of the optical component.

【0021】本実施例によれば、成膜されたハーフミラ
ーはHe−Neレーザーの波長(633nm)に対し、
50%反射,50%透過の半透膜となっており、また光
学部品の633nmで光の吸収もなく、変色もほとんど
なかった。
According to the present embodiment, the formed half mirror has a wavelength of He--Ne laser (633 nm),
It was a semi-transmissive film with 50% reflection and 50% transmission, and there was no light absorption at 633 nm of the optical component, and there was almost no discoloration.

【0022】[0022]

【比較例1】図7および図8は本比較例を示すグラフで
ある。本比較例では、前記実施例1と同様に光学ガラス
としてKzFS1を用い、前記実施例1と同様に真空槽
内にセットし、排気した。その後、分圧にして1×10
-1PaのArガスを真空槽内に導入した。続いて、投入
パワー800Wの条件でSiO2 をスパッタし、物理的
膜厚が90nmになるまで成膜を行った。この時の成膜
速度は1nm/秒と非常に速かった。このようにしてS
iO2 の1層からなる反射防止膜を得た。本比較例で得
られた反射防止膜の分光特性を図7に、また光学部品の
吸収特性を図8に示す。
Comparative Example 1 FIGS. 7 and 8 are graphs showing this comparative example. In this comparative example, KzFS1 was used as the optical glass in the same manner as in Example 1, and was set in the vacuum chamber and exhausted as in Example 1. Then, set the partial pressure to 1 x 10
Ar gas of -1 Pa was introduced into the vacuum chamber. Then, SiO 2 was sputtered under the condition of an input power of 800 W to form a film until the physical film thickness became 90 nm. The film forming rate at this time was very high at 1 nm / sec. In this way S
An antireflection film consisting of one layer of iO 2 was obtained. FIG. 7 shows the spectral characteristic of the antireflection film obtained in this comparative example, and FIG. 8 shows the absorption characteristic of the optical component.

【0023】本比較例によれば、充分な反射防止効果を
得られたものの、光学部品は可視域(400〜700n
m)で光の吸収が生じ、黄色に変色してしまった。
According to this comparative example, although a sufficient antireflection effect was obtained, the optical components were in the visible range (400 to 700n).
In m), absorption of light occurred and the color changed to yellow.

【0024】[0024]

【比較例2】図9および図10は本比較例を示すグラフ
である。本比較例では、前記実施例2と同様に光学ガラ
スとしてLF1を用い、前記実施例2と同様に真空槽内
にセットし、排気した。その後、分圧にして1×10-1
PaのArガスを真空槽内に導入した。続いて、投入パ
ワー700Wの条件でZrO2 をスパッタし、物理的膜
厚が14nmになるまで成膜を行った。この時の成膜速
度は1nm/秒と非常に速かった。
Comparative Example 2 FIGS. 9 and 10 are graphs showing this comparative example. In this comparative example, LF1 was used as the optical glass as in the case of Example 2, and was set in the vacuum chamber and exhausted as in Example 2. After that, set the partial pressure to 1 × 10 -1
Ar gas of Pa was introduced into the vacuum chamber. Subsequently, ZrO 2 was sputtered under the condition of an applied power of 700 W to form a film until the physical film thickness became 14 nm. The film forming rate at this time was very high at 1 nm / sec.

【0025】次に、Arの導入はそのままで、投入パワ
ー800W,成膜速度1nm/秒の条件でSiO2 をス
パッタし、膜厚113nmを形成した。このようにして
2層からなる反射防止膜を得た。本実施例で得られた反
射防止膜の分光特性を図9に、また光学部品の吸収特性
を図10に示す。
Next, with the introduction of Ar as it is, SiO 2 was sputtered under the conditions of an input power of 800 W and a film formation rate of 1 nm / sec to form a film having a thickness of 113 nm. Thus, an antireflection film having two layers was obtained. FIG. 9 shows the spectral characteristics of the antireflection film obtained in this example, and FIG. 10 shows the absorption characteristics of the optical components.

【0026】本比較例によれば、充分な反射防止効果を
得られたものの、光学部品は可視域(400〜700n
m)で光の吸収が生じ、黄色に変色してしまった。
According to this comparative example, although a sufficient antireflection effect was obtained, the optical components were in the visible range (400 to 700n).
In m), absorption of light occurred and the color changed to yellow.

【0027】[0027]

【発明の効果】以上説明した様に、本発明に係るスパッ
タリングによる光学薄膜の製造方法によれば、少なくと
も光学薄膜の物理的膜厚が10nm以上になるまで、
0.1nm/秒以下の遅い成膜速度で成膜するか、また
は少なくともO分子を含むガスを導入するので、鉛含有
ガラス基板であっても、その表面近傍に存在するPbO
のイオン衝撃による還元が抑制され、ガラスの変色や光
の吸収が生じにくい。
As described above, according to the method for producing an optical thin film by sputtering according to the present invention, at least until the physical thickness of the optical thin film becomes 10 nm or more.
Since a film is formed at a low film formation rate of 0.1 nm / sec or less, or a gas containing at least O molecules is introduced, PbO existing near the surface of the lead-containing glass substrate is present.
The reduction due to ion bombardment is suppressed, and discoloration of glass and absorption of light are less likely to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1を示すグラフである。FIG. 1 is a graph showing Example 1.

【図2】実施例1を示すグラフである。2 is a graph showing Example 1. FIG.

【図3】実施例2を示すグラフである。FIG. 3 is a graph showing Example 2.

【図4】実施例2を示すグラフである。FIG. 4 is a graph showing Example 2.

【図5】実施例3を示すグラフである。FIG. 5 is a graph showing Example 3.

【図6】実施例3を示すグラフである。FIG. 6 is a graph showing Example 3.

【図7】比較例1を示すグラフである。FIG. 7 is a graph showing Comparative Example 1.

【図8】比較例1を示すグラフである。FIG. 8 is a graph showing Comparative Example 1.

【図9】比較例2を示すグラフである。9 is a graph showing Comparative Example 2. FIG.

【図10】比較例2を示すグラフである。FIG. 10 is a graph showing Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川俣 健 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 豊原 延好 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 徳田 一成 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 新田 佳樹 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 (72)発明者 生水 利明 東京都渋谷区幡ヶ谷2丁目43番2号 オリ ンパス光学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ken Kawamata 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd. (72) Inventor Nobuyoshi Toyohara 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. Olympus Optical Co., Ltd. (72) Inventor Issei Tokuda 2-43-2 Hatagaya, Shibuya-ku, Tokyo No. 2 Olympus Optical Co., Ltd. (72) Inventor Yoshiki Nitta 2-43 Hatagaya, Shibuya-ku, Tokyo No. 2 Olympus Optical Co., Ltd. (72) Inventor Toshiaki Namasu 2-43-2 Hatagaya, Shibuya-ku, Tokyo Olympus Optical Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも酸化鉛を20重量%以上含む
鉛含有ガラス基板の表面にスパッタリング法により光学
薄膜を成膜するにあたり、少なくとも前記光学薄膜の物
理的膜厚が10nm以上になるまで、0.1nm/秒以
下の遅い成膜速度で成膜することを特徴とする光学薄膜
の製造方法。
1. When forming an optical thin film on the surface of a lead-containing glass substrate containing at least 20% by weight of lead oxide by a sputtering method, at least until the physical thickness of the optical thin film becomes 10 nm or more. A method for producing an optical thin film, which comprises forming a film at a slow film forming rate of 1 nm / sec or less.
【請求項2】 少なくとも酸化鉛を20重量%以上含む
鉛含有ガラス基板の表面にスパッタリング法により光学
薄膜を成膜するにあたり、少なくとも前記光学薄膜の物
理的膜厚が10nm以上になるまで、少なくとも酸素分
子を含むガスを導入して成膜することを特徴とする光学
薄膜の製造方法。
2. When forming an optical thin film on the surface of a lead-containing glass substrate containing at least 20% by weight of lead oxide by a sputtering method, at least oxygen until at least the physical thickness of the optical thin film becomes 10 nm or more. A method for producing an optical thin film, which comprises forming a film by introducing a gas containing molecules.
JP5307300A 1993-11-12 1993-11-12 Manufacture of optical thin film Withdrawn JPH07137157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5307300A JPH07137157A (en) 1993-11-12 1993-11-12 Manufacture of optical thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5307300A JPH07137157A (en) 1993-11-12 1993-11-12 Manufacture of optical thin film

Publications (1)

Publication Number Publication Date
JPH07137157A true JPH07137157A (en) 1995-05-30

Family

ID=17967489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5307300A Withdrawn JPH07137157A (en) 1993-11-12 1993-11-12 Manufacture of optical thin film

Country Status (1)

Country Link
JP (1) JPH07137157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084997A1 (en) * 2011-12-07 2013-06-13 株式会社ニコン・エシロール Optical component production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084997A1 (en) * 2011-12-07 2013-06-13 株式会社ニコン・エシロール Optical component production method
JPWO2013084997A1 (en) * 2011-12-07 2015-04-27 株式会社ニコン・エシロール Manufacturing method of optical components

Similar Documents

Publication Publication Date Title
US6210542B1 (en) Process for producing thin film, thin film and optical instrument including the same
EP0657562B1 (en) Durable sputtered metal oxide coating
JP2010511079A (en) Method for producing nanostructures on plastic surfaces
Sundaram et al. Deposition and X-ray photoelectron spectroscopy studies on sputtered cerium dioxide thin films
JP3391944B2 (en) Method of forming oxide thin film
JP3846641B2 (en) Optical waveguide manufacturing method
US5646780A (en) Overcoat method and apparatus for ZRO2 mirror stacks
JPH04246649A (en) Photomask blank, production thereof, photomask and production thereof
JP2002371355A (en) Method for manufacturing transparent thin film
JPH07137157A (en) Manufacture of optical thin film
JP4208981B2 (en) Light-absorbing antireflection body and method for producing the same
JP3979814B2 (en) Optical thin film manufacturing method
JP3506782B2 (en) Manufacturing method of optical thin film
JP3478561B2 (en) Sputter deposition method
JPH07166344A (en) Formation of thin metallic fluoride film
JP2715299B2 (en) Method for forming Z-bottom nO film
JPH0812373A (en) Film forming method
JP3401062B2 (en) Optical thin film and method for manufacturing the same
JPH0651103A (en) Antireflection synthetic-resin optical parts and its production
JP2003262750A (en) METHOD FOR MANUFACTURING SiON THIN FILM
JP2000297367A (en) Formation of metallic oxide thin film
JP3742443B2 (en) Thin film manufacturing method
JPH04358058A (en) Method and apparatus for forming thin film
JP2828987B2 (en) Method for producing transparent conductive laminate
JPH0465803A (en) Formation of dielectric oxide thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130