JPH07128051A - Unevenness survey system - Google Patents

Unevenness survey system

Info

Publication number
JPH07128051A
JPH07128051A JP27433793A JP27433793A JPH07128051A JP H07128051 A JPH07128051 A JP H07128051A JP 27433793 A JP27433793 A JP 27433793A JP 27433793 A JP27433793 A JP 27433793A JP H07128051 A JPH07128051 A JP H07128051A
Authority
JP
Japan
Prior art keywords
means
surveying
carriage
surface
survey
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27433793A
Other languages
Japanese (ja)
Inventor
Makoto Hirano
Yasuhiro Nakahara
康博 中原
信 平野
Original Assignee
Sekisui Chem Co Ltd
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chem Co Ltd, 積水化学工業株式会社 filed Critical Sekisui Chem Co Ltd
Priority to JP27433793A priority Critical patent/JPH07128051A/en
Publication of JPH07128051A publication Critical patent/JPH07128051A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To provide an unevenness survey system which can conduct unevenness survey efficiently even for the ground having a plurality of types of gradient or a ground having local irregularities.
CONSTITUTION: Level sensors 1, 2 mounted on a truck measure the distance between a laser beam projected from a laser projector and a plane to be measured. An unevenness amount, i.e., the difference between the measured distance and the design gradient of the plane to be measured inputted through an input means 18, is then operated. The unevenness amount thus operated is delivered, along with the coordinates of each survey point, measured by an encoder 5 carried on the front wheel 3 of the truck, to an output means, e.g. a printer.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、路面やスポーツ施設のフィールド等の表面凹凸を測定する不陸測量装置に関する。 The present invention relates, on the Non-land surveying device for measuring the surface irregularities of the field of the road surface or the like and sports facilities.

【0002】 [0002]

【従来の技術】路面等の不陸測量装置として、例えば特開昭61−28813号公報に記載されたものがある。 As non land surveying device such BACKGROUND ART road, it is disclosed in JP-Sho 61-28813.
この不陸測量装置は、路面等の基盤面の任意の位置に立設され、基盤面の仮想基準面と平行にレーザ光線を照射するレーザ投光器と、前記基盤面上を走行する台車とを有し、台車には、基盤面の不陸に沿って垂直方向に摺動するスライドバーと、スライドバーに所定の間隔をもって上下方向に並設された複数の受光素子からなるレベル検知手段が設けられており、前記レーザ光線を受光している受光素子から出力される出力信号に基づいて各測定ポイントにおける実測値を演算するものである。 The uneven surface surveying device is upright in any position of the base surface of the road surface or the like, organic and laser projector for irradiating a parallel laser beam and the virtual reference plane of the base surface, and a carriage traveling on the base surface and, in the carriage, a slide bar to slide vertically along the uneven surface of the base surface, the level detecting means comprising a plurality of light receiving elements arranged in a vertical direction at predetermined intervals in a slide bar provided and which is intended for calculating the measured value at each measurement point based on an output signal output from the light receiving element that receives the laser beam.

【0003】 [0003]

【発明が解決しようとする課題】前記測量装置では、レーザ光線と仮想基準面は常に平行であることが前提であり、例えば、図4に示すような2種類の勾配をもつテニスコートの人工芝の下地層表面の不陸を測量する場合、 In [0005] the surveying device, it is premised virtual reference plane and the laser beam is always parallel, for example, synthetic grass tennis court with two gradient as shown in FIG. 4 when surveying the uneven surface of the underlying layer surface,
図5に示すように、レベル検知手段1を備える台車で1 As shown in FIG. 5, 1 bogie comprising level detecting means 1
つの面の不陸を測量した後、照射されるレーザ光線8a One after surveying the uneven surface of the surface, the laser beam 8a to be irradiated
が他方の基盤面の仮想基準面に平行になるようにレーザ投光器8を調節し直す必要があり、不陸測量作業に時間がかかり作業効率が悪かった。 There must be re-adjust the laser projector 8 to be parallel to the virtual reference surface of the other base surface, working efficiency takes time to not land surveying operation is poor.

【0004】また、野球場のピッチャーマウンドのような局部的な凹凸を持つ地面を測量する用途には不適当であった。 [0004] In addition, it was unsuitable for applications to surveying the ground with a local irregularities, such as the baseball field pitcher mound. 本発明は、複数種類の勾配を持つ地面の不陸測量を行なう場合でも効率よく不陸測量作業が行なえる不陸測量装置を提供すること、及び、野球場のピッチャーマウンドのような局部的な凹凸を持つ地面に対しても不陸測量が可能な不陸測量装置を提供することを目的とする。 The present invention is to provide an efficient Furiku surveying operation can be performed not land surveying instrument, even when performing the non land surveying the ground with a plurality of types of gradient, and, for local, such as a baseball field pitcher mound and an object thereof is also to provide a non land surveying apparatus capable uneven surface surveying the ground with irregularities.

【0005】 [0005]

【課題を解決するための手段】前記目的は、測定対象面上に水平にレーザ光線を照射するレーザ投光器と、測定対象面上を走行する台車と、台車に備えられ台車下方の測定対象面と台車上方のレーザ光線との間の距離を測定するレベル測量手段と、測定対象面上での台車の2次元位置を測定する位置測定手段と、測定対象面の勾配の設計値を入力する入力手段と、前記入力手段より入力された設計値を記憶する記憶手段と、演算手段と、出力手段とを含み、前記演算手段は各測量ポイント毎に前記記憶手段に記憶された設計値と前記レベル測量手段による測量値との差を演算し、前記位置測定手段により測定された各測量ポイントの座標と共に前記出力手段に出力することを特徴とする不陸測量装置によって達成される。 Means for Solving the Problems] The object is achieved by a laser projector for irradiating a horizontally laser beam on the object surface, and carriage traveling on the object surface, and the object surface of the carriage downwardly provided dolly a level surveying means for measuring the distance between the carriage upper laser beam, a position measuring means for measuring the two-dimensional position of the carriage on the object surface, an input means for inputting the design value of the gradient of the object surface When a storage means for storing the input design value from the input means, and calculating means, and an output means, said calculating means is the level surveying and stored design values ​​in the storage means for each survey point It calculates the difference between survey values ​​by means are achieved by non land surveying device and outputs to the output unit along with the coordinates of each survey point measured by the position measuring means. 前記レベル測量手段は、前記台車上に設けられたライン型光センサと前記台車の下面に設けられた平坦性測量センサから構成することができる。 Said level surveying means may be composed of flatness surveying sensor provided on the lower surface of the a line-type optical sensor provided on said carriage carriage.

【0006】 [0006]

【作 用】測量値を設計値と比較することにより不陸量を求めるため、レーザ光線と仮想基準面を常に平行にする必要がない。 To determine the uneven surface amount by comparison with [create a] design value survey values, there is no need to always parallel to the laser beam a virtual reference plane. したがって、レーザ投光器を調整し直すことなく複数種類の勾配を持つ地面の不陸測量を行うことができ、局部的な凹凸を持つ地面に対しても不陸測量が可能となる。 Therefore, it is possible to carry out the uneven surface surveying the ground with a plurality of types of gradients without readjust the laser projector, it becomes possible not land surveying the ground with local irregularities.

【0007】 [0007]

【実施例】図1に、本発明を採用した不陸測量装置の構成例を示す。 [Embodiment] FIG. 1 shows a configuration example of a non land surveying apparatus employing the present invention. 1はレベル測量用光センサであり、例えば、レーザ光等を受光した位置に応じて電気信号を出力するライン型の光センサである。 1 is a light sensor level survey, for example, an optical sensor of a line type that outputs an electrical signal according to the position that receives the laser beam or the like. 2は台車のベース12 2 the base of the truck 12
から下地層表面までの距離を測量するための平坦性測量センサで、例えば、超音波センサ等が用いられる。 In flatness surveying sensor for surveying the distance to the underlying layer from the surface, for example, an ultrasonic sensor or the like is used. 台車自体は自走式でも、手押し式でもよい。 The truck itself is also a self-propelled, may be at hand expressions. 台車の左右の前輪3にはロータリーエンコーダ等の回転数検出手段5、 Rotational speed detecting means 5 such as a rotary encoder to the front wheels 3 of the left and right carriage,
6が取り付けられている。 6 is attached.

【0008】台車内には、図3に示す制御手段7が設けられている。 [0008] In the carriage, the control means 7 shown in FIG 3 is provided. 制御手段7は、入力手段18及び記憶手段17に接続され、記憶手段17は入力手段18より入力された下地層勾配の設計値を記憶する。 Control means 7 is connected to the input means 18 and memory means 17, storage means 17 for storing the design value of the underlying layer gradient input from the input means 18. 制御手段7中のマイクロコンピュータ15は、増幅回路13で増幅されたレベル測量用ライン型光センサ1の出力信号と、増幅回路14で増幅された平坦性測量センサ2の出力信号から測量値を演算し、記憶手段17に記憶されている下地層勾配の設計値との差を求め、下地層表面の不陸測量を行なう。 The microcomputer 15 in the control means 7, calculates the survey value and level output signal of the surveying line-type optical sensor 1 is amplified by the amplifying circuit 13, the amplified output signal of the flatness surveying sensor 2 by the amplifier circuit 14 and obtains the difference between the design value of the underlying layer gradient stored in the storage unit 17, performs non land surveying surface of the underlying layer. マイクロコンピュータ15は、また、前記左右前輪の回転数検出手段5、6からの出力で台車の走行ライン毎のスタート位置からの距離を算出する。 The microcomputer 15 also calculates the distance from the start position for each running line of the truck at the output from the left and right front wheels of the rotational speed detecting means 5, 6.

【0009】台車の2次元位置は、次のように算出される。 [0009] 2-dimensional position of the carriage is calculated as follows. 図6に示すように、測量スタート地点を座標原点O As shown in FIG. 6, the coordinate origin O of the Survey starting point
とし、台車の走行方向をY方向とする。 And then, the traveling direction of the carriage and the Y direction. 台車の旋回方法を一方のタイヤ固定し、他方のタイヤを一定回転数だけ回転させるようにすることにより、台車の前輪のトレッド間隔をWとすると、n本目の走行ラインのX座標は、 The method of turning the truck to one of the tire fixed, by the rotate the other tires by a predetermined rotational speed, when the tread spacing of the front wheels of the cart and W, n X-coordinate of the first traveling line,
W×(n−1)で求められる。 W is obtained by × (n-1). また、Y座標は、Y方向の走行距離をL、走行ライン毎のスタート位置からの距離をL Yとすると、奇数本目の走行ラインではL Y 、偶数本目の走行ラインでは、(L−L Y )で求められる。 Further, Y coordinates, the travel distance in the Y direction is L, and the distance from the start position for each running line and L Y, the odd-numbered L Y is the travel line, the even-th traveling line, (L-L Y ) in is required.

【0010】本装置を用いた不陸測量の様子を図2に示す。 [0010] The manner of Furiku survey using this device shown in FIG. レーザ投光器8は、水平にレーザ光8aを照射している。 Laser projector 8 is irradiated horizontally the laser beam 8a. 照射されたレーザ光8aを、レベル測量センサである台車上のライン型光センサ1で捕らえ、その出力を制御手段7に送る。 The emitted laser beam 8a, captured by the line-type optical sensor 1 on the dolly at the level surveying sensor, and sends its output to the control unit 7. 制御手段7は、平坦性測量センサである超音波センサ2からの出力も同時に取り込み、これら2つの出力を基に各測量ポイント毎に測量値を演算し、その測量値と設計値の差すなわち不陸を各測量ポイント毎に求める。 Control means 7, the output from the ultrasonic sensor 2 which is a flatness surveying sensor also captures simultaneously, the two outputs calculates the survey value for each survey point based on the difference i.e. not designed value and its survey value seek land for each survey point. 各測量ポイントの座標と不陸の値は、 The value of the coordinates and Furiku of each survey point,
プリンタ等の出力手段16に出力される。 Is output to the output unit 16 such as a printer. 作業者は、出力手段16より出力された結果を見て、各測量ポイントの不陸量を容易に知ることができる。 Operator sees the result output from the output unit 16 can easily know the uneven surface of each survey point.

【0011】前記実施例では、センサとしてレベル測量用光センサと平坦性測量センサを組み合わせて用いた。 [0011] In the above embodiment, using the combination of flatness surveying sensors and level surveying optical sensor as the sensor.
この場合には、センサに可動部材が含まれないため測量の精度及び信頼性の向上を図ることができる。 In this case, it is possible to achieve the precision and improve the reliability of the survey for the sensor does not contain a movable member. しかし、 But,
センサとして従来技術で説明したスライドバーのような摺動部材を含むもの使用してもよいことは勿論である。 It may also be used to include a sliding member such as a slide bar described in the prior art as a sensor as a matter of course.

【0012】 [0012]

【発明の効果】本発明によると、複数の勾配がある場合でも勾配毎にレーザ投光器の調節を行なう必要がなく測量作業の時間短縮が図ることができ、局部的な凹凸を持つ地面の測量も可能となるという作用効果を奏することができる。 According to the present invention, faster time surveying operation without the need to perform the adjustment of the laser projector for each gradient, even if there are multiple gradients can be achieved, even surveying the ground with local irregularities advantages can be attained that can become.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による不陸測量装置の実施例を説明する図。 Diagram illustrating an embodiment of the uneven surface surveying device according to the invention; FIG.

【図2】不陸測量装置による測量の様子を示す概念図。 Figure 2 is a conceptual diagram showing a state of surveying by uneven surface surveying device.

【図3】制御手段の機能ブロック図。 Figure 3 is a functional block diagram of the control means.

【図4】複数の勾配を持つテニスコートの例を示す図。 4 is a diagram showing an example of a tennis court with a plurality of gradients.

【図5】複数の勾配を持つ測量面に対する従来の測量方法の説明図。 Figure 5 is an explanatory view of a conventional surveying methods for surveying surface having a plurality of gradient.

【図6】台車の走行経路とX,Y座標の関係を示す図。 6 travel route and X of the carriage, illustrates the relationship between the Y-coordinate.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…ライン型光センサ、2…平坦性測量センサ、3…前輪、5,6…左右前輪回転数検出手段、7…制御手段、 1 ... line-type optical sensor, 2 ... flatness surveying sensor, 3 ... front wheel, 5,6 ... left and right front wheels rotational speed detecting means, 7 ... control unit,
8…レーザ灯台,8a…レーザ光線、12…台車のベース、13…ライン型光センサの増幅回路、14…超音波センサの増幅回路、15…マイクロコンピュータ、16 8 ... laser lighthouse, 8a ... laser beam 12 ... base of the carriage, 13 ... amplifier circuit of the line-type optical sensor, 14 ... amplifier circuit of the ultrasonic sensor, 15 ... microcomputer, 16
…出力手段、17…記憶手段、18…入力手段 ... output means, 17 ... storage means, 18 ... input means

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 測定対象面上に水平にレーザ光線を照射するレーザ投光器と、測定対象面上を走行する台車と、 And 1. A laser projector for irradiating a horizontally laser beam on the object surface, and carriage traveling on the object surface,
    台車に備えられ台車下方の測定対象面と台車上方のレーザ光線との間の距離を測定するレベル測量手段と、測定対象面上での台車の2次元位置を測定する位置測定手段と、測定対象面の勾配の設計値を入力する入力手段と、 A level surveying means for measuring the distance between the object surface and the carriage upper laser beam of the bogie downwardly provided a truck, a position measuring means for measuring the two-dimensional position of the carriage on the object surface, the measurement object input means for inputting the design value of gradient of the surface,
    前記入力手段より入力された設計値を記憶する記憶手段と、演算手段と、出力手段とを含み前記演算手段は各測量ポイント毎に前記記憶手段に記憶された設計値と前記レベル測量手段による測量値との差を演算し、前記位置測定手段により測定された各測量ポイントの座標と共に前記出力手段に出力することを特徴とする不陸測量装置。 Storage means for storing the input design value from the input means, and calculating means, said calculating means and an output means surveying by the level survey means and stored design values ​​in the storage means for each survey point calculates the difference between the value, the position not land surveying device and outputs to the output unit with the sighting point coordinates measured by the measuring means.
  2. 【請求項2】 前記レベル測量手段は、前記台車上に設けられたライン型光センサと前記台車の下面に設けられた平坦性測量センサからなることを特徴とする請求項1 Wherein said level survey unit, according to claim 1, characterized in that it consists of flatness surveying sensor provided on the lower surface of the line-type optical sensor and the carriage provided on the carriage
    記載の不陸測量装置。 Uneven surface surveying apparatus according.
JP27433793A 1993-11-02 1993-11-02 Unevenness survey system Pending JPH07128051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27433793A JPH07128051A (en) 1993-11-02 1993-11-02 Unevenness survey system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27433793A JPH07128051A (en) 1993-11-02 1993-11-02 Unevenness survey system

Publications (1)

Publication Number Publication Date
JPH07128051A true JPH07128051A (en) 1995-05-19

Family

ID=17540258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27433793A Pending JPH07128051A (en) 1993-11-02 1993-11-02 Unevenness survey system

Country Status (1)

Country Link
JP (1) JPH07128051A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098397A (en) * 2004-09-03 2006-04-13 Seikitokyu Kogyo Co Ltd System and apparatus for measuring road-surface conditions
JP2013535671A (en) * 2010-07-29 2013-09-12 ファロ テクノロジーズ インコーポレーテッド Device for optically scanning and measuring the surrounding environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098397A (en) * 2004-09-03 2006-04-13 Seikitokyu Kogyo Co Ltd System and apparatus for measuring road-surface conditions
USRE45854E1 (en) 2006-07-03 2016-01-19 Faro Technologies, Inc. Method and an apparatus for capturing three-dimensional data of an area of space
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
US9074883B2 (en) 2009-03-25 2015-07-07 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9417316B2 (en) 2009-11-20 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US8896819B2 (en) 2009-11-20 2014-11-25 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US9009000B2 (en) 2010-01-20 2015-04-14 Faro Technologies, Inc. Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers
US10060722B2 (en) 2010-01-20 2018-08-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US10281259B2 (en) 2010-01-20 2019-05-07 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
US9329271B2 (en) 2010-05-10 2016-05-03 Faro Technologies, Inc. Method for optically scanning and measuring an environment
US9684078B2 (en) 2010-05-10 2017-06-20 Faro Technologies, Inc. Method for optically scanning and measuring an environment
JP2013535671A (en) * 2010-07-29 2013-09-12 ファロ テクノロジーズ インコーポレーテッド Device for optically scanning and measuring the surrounding environment
US9417056B2 (en) 2012-01-25 2016-08-16 Faro Technologies, Inc. Device for optically scanning and measuring an environment
US9618620B2 (en) 2012-10-05 2017-04-11 Faro Technologies, Inc. Using depth-camera images to speed registration of three-dimensional scans
US9739886B2 (en) 2012-10-05 2017-08-22 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9746559B2 (en) 2012-10-05 2017-08-29 Faro Technologies, Inc. Using two-dimensional camera images to speed registration of three-dimensional scans
US9372265B2 (en) 2012-10-05 2016-06-21 Faro Technologies, Inc. Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
US10203413B2 (en) 2012-10-05 2019-02-12 Faro Technologies, Inc. Using a two-dimensional scanner to speed registration of three-dimensional scan data
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10175037B2 (en) 2015-12-27 2019-01-08 Faro Technologies, Inc. 3-D measuring device with battery pack

Similar Documents

Publication Publication Date Title
JP4095881B2 (en) Evaluation method of road surface plan
EP1439371B1 (en) Road shape data preparation method
JP3395874B2 (en) Moving vehicles
CN101228059B (en) Parking apparatus and method used for vehicle
CA2145431C (en) Vehicle position determining apparatus
AU656827B2 (en) Wheel alignment system
US6314341B1 (en) Method of recording trajectory data and sensor data for a manually-driven vehicle
JP3812463B2 (en) Direction detecting device and self-propelled cleaner equipped with the same
CA1295737C (en) Apparatus for displaying travel path
JP3851342B2 (en) Method and apparatus for non-contact measurement of road or rail distortion
US4130362A (en) Apparatus for determining steering positions of the front wheels of a vehicle
JP3493521B2 (en) Self-propelled skateboard
CN1122856C (en) Method for measuring guide track
US7845878B1 (en) Smoothness indicator
US20070100496A1 (en) Robot system, method and computer program product
US6397164B1 (en) Device for determining the wheel and/or axle geometry of motor vehicles
FI96138C (en) Apparatus and method for measuring and straightening of the track
US5753808A (en) Self-compensating rolling weight deflectometer
JP2572968B2 (en) Induction method of autonomous vehicles
Bonnifait et al. Design and experimental validation of an odometric and goniometric localization system for outdoor robot vehicles
CN101218127B (en) Parking device
JP2005230032A (en) Autonomous running robot cleaner
US20020166248A1 (en) Method and apparatus for track geometry measurement
US4811228A (en) Method of navigating an automated guided vehicle
AU2008202485B2 (en) Automotive road milling machine, in particular large milling machine