JPH07113745A - Concentration detector for inorganic chemical containing aqueous solution - Google Patents

Concentration detector for inorganic chemical containing aqueous solution

Info

Publication number
JPH07113745A
JPH07113745A JP28004793A JP28004793A JPH07113745A JP H07113745 A JPH07113745 A JP H07113745A JP 28004793 A JP28004793 A JP 28004793A JP 28004793 A JP28004793 A JP 28004793A JP H07113745 A JPH07113745 A JP H07113745A
Authority
JP
Japan
Prior art keywords
light
aqueous solution
concentration
inorganic chemical
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28004793A
Other languages
Japanese (ja)
Other versions
JP3414804B2 (en
Inventor
Kunimitsu Tamura
邦光 田村
Norihiro Kiuchi
規博 木内
Isao Tazawa
勇夫 田澤
Kenichi Koizumi
健一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP28004793A priority Critical patent/JP3414804B2/en
Publication of JPH07113745A publication Critical patent/JPH07113745A/en
Application granted granted Critical
Publication of JP3414804B2 publication Critical patent/JP3414804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a concentration detector for inorganic chemical containing aqueous solution, which is formed in a simple structure and at a low cost to detect the concentration of inorganic chemical containing aqueous solution or the amount of water at a real time. CONSTITUTION:A detecting tube 20 is set up through both partition walls 3 of a pipe-shaped maintframe 2. A projector 5 and a receiver 6 are provided opposing each other across the detecting tube 20. The projector 5 is provided with a light source 5A to generate a specified wavelength band of near infrared light, 0.75mum-2.5mum, which is photoabsorbed by water, and the receiver 6 is formed with a light detector 6A to detect light from the projector 5 which is transmitted through inorganic chemical containing aqueous solution flowing in the detecting tube 20. The quantity of light detected by the light detector 6A is converted into an electric signal via a detection circuit 9 and a controller and displayed as the amount of water or the concentration of the aqueous solution by a display or output as a print by a printer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般には、種々の無機
薬品含有水溶液の濃度検出装置に関するものであり、特
に、半導体製造プロセス或はLSI製造プロセスなどに
て排液ラインを介して排出される洗浄液、エッチング除
去液、レジスト剥離液などの濃度をリアルタイムにて検
出しそして監視するのに利用することのできる無機薬品
含有水溶液の濃度検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to an apparatus for detecting the concentration of various inorganic chemicals-containing aqueous solutions, and in particular, it is discharged through a drain line in a semiconductor manufacturing process or an LSI manufacturing process. The present invention relates to a concentration detecting device for an aqueous solution containing an inorganic chemical, which can be used to detect and monitor the concentrations of a cleaning liquid, an etching removing liquid, a resist stripping liquid, etc. in real time.

【0002】[0002]

【従来の技術】例えば、半導体製造プロセス或はLSI
製造プロセスなどにては、Siウェハの洗浄、Al、S
i或はSiO2 のエッチング除去、更にはレジスト剥離
のためなどに、硫酸(H2 SO4 )、塩酸(HCl)、
硝酸(HNO3 )フッ化水素酸(HF)、バッファード
フッ酸(BHF)、アンモニア(NH4 OH)などの無
機薬品含有水溶液が使用され、使用済み水溶液は、例え
ばクリーンルーム内の上記薬品の処理槽から排液ライン
を介して外部排液タンクへと排出される。クリーンルー
ム内の処理槽は、排液送出後、水洗される。そのため
に、排液ラインを通り外部排液タンクに貯留される排液
の濃度は種々に変動する。
2. Description of the Related Art For example, a semiconductor manufacturing process or an LSI
In the manufacturing process, cleaning of Si wafer, Al, S
For removing i or SiO 2 by etching, and for removing resist, etc., sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl),
An aqueous solution containing inorganic chemicals such as nitric acid (HNO 3 ), hydrofluoric acid (HF), buffered hydrofluoric acid (BHF), and ammonia (NH 4 OH) is used. It is drained from the tank to the external drain tank via the drain line. The treatment tank in the clean room is washed with water after the drainage is delivered. Therefore, the concentration of the drainage liquid stored in the external drainage tank through the drainage line varies variously.

【0003】外部排液タンク内に送出された排液の中、
高濃度排液は、排液処理業者に引き取られて処理され、
一方、90〜99%が水とされるような低濃度の排液
は、工場内にて中和処理を行ない、下水処理され、又は
清浄水として河川などに放水される。
Of the drainage delivered into the external drainage tank,
High-concentration drainage is collected by a drainage treatment company and processed.
On the other hand, a low-concentration drainage such that 90 to 99% is water is subjected to neutralization treatment in the factory, sewage treatment, or discharged as clean water to a river or the like.

【0004】従って、排液ラインを介して外部排液タン
クへと送出される排液の濃度をリアルタイムに検出しそ
して監視することが極めて重要である。
Therefore, it is extremely important to detect and monitor in real time the concentration of the effluent delivered to the external drain tank via the drain line.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、本発明
者の知る限りにおいて、この目的に適った、即ち、無機
薬品含有水溶液の濃度をリアルタイムにて検出すること
のできる装置は見当たらない。
However, as far as the present inventor is aware, there is no apparatus suitable for this purpose, that is, capable of detecting the concentration of the aqueous solution containing an inorganic chemical in real time.

【0006】本発明の目的は、リアルタイムにて無機薬
品含有水溶液の水の量又は濃度を検出することができ、
しかも構成が簡単で、低価格の、無機薬品含有水溶液の
濃度検出装置を提供することである。
The object of the present invention is to detect the amount or concentration of water in an aqueous solution containing an inorganic chemical in real time,
Moreover, it is an object of the present invention to provide a low-cost concentration detecting device for an aqueous solution containing an inorganic chemical, which has a simple structure.

【0007】本発明の他の目的は、半導体製造プロセス
或はLSI製造プロセスなどにて排液ラインを介して排
出される洗浄液、エッチング除去液、レジスト剥離液な
どの水の量又は濃度をリアルタイムにて検出しそして監
視するのに利用することのできる無機薬品含有水溶液の
濃度検出装置を提供することである。
Another object of the present invention is to realize in real time the amount or concentration of water such as a cleaning liquid, an etching removal liquid and a resist stripping liquid which are discharged through a drain line in a semiconductor manufacturing process or an LSI manufacturing process. It is an object of the present invention to provide a concentration detecting device for an aqueous solution containing an inorganic chemical, which can be used for detecting and monitoring the temperature.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成するべく多くの研究実験を行なった。
The present inventor has conducted many research experiments to achieve the above object.

【0009】先ず、本発明者は、無機薬品含有水溶液と
して濃塩酸及び濃硫酸を蒸留水で希釈することにより、
酸濃度0%、2.5%、5%、7.5%、10%に調製
し、水分濃度として100%、97.5%、95%、9
2.5%、90%の試料を得、そして、従来の近赤外分
析器にて、これら試料の吸収スペクトルを測定した。そ
の結果が、図4及び図5に示される。この吸収スペクト
ルより、塩酸及び硫酸含有水溶液においては、波長1.
48μm及び1.9μm付近にて水による顕著な光吸収
が認められ、又、その光吸収は、水分濃度が極めて高い
にもかかわらずその濃度により測定可能な程度、変化す
ることが分かった。
First, the present inventor dilutes concentrated hydrochloric acid and concentrated sulfuric acid with distilled water as an aqueous solution containing an inorganic chemical,
The acid concentration was adjusted to 0%, 2.5%, 5%, 7.5%, 10%, and the water concentration was 100%, 97.5%, 95%, 9%.
2.5% and 90% samples were obtained and the absorption spectra of these samples were measured with a conventional near infrared analyzer. The results are shown in FIGS. 4 and 5. From this absorption spectrum, the wavelength of 1.
It was found that remarkable light absorption by water was observed in the vicinity of 48 μm and 1.9 μm, and that the light absorption changed measurablely depending on the water concentration even though the water concentration was extremely high.

【0010】この結果を踏まえて、次に、本発明者は、
石英ガラスからなる透明中空管セル中に上記試料を流動
させ、そしてこの中空管セルの軸線に対して直交する方
向に投光部と受光部とを対向配置して、投光部より波長
1.48μmの近赤外光を中空管セルに投射し、受光部
にて中空管セル中を流動する試料を通過した光の量を測
定した。その結果を図6に示す。
Based on this result, the present inventor next
The sample is made to flow in a transparent hollow tube cell made of quartz glass, and a light projecting section and a light receiving section are arranged so as to face each other in a direction orthogonal to the axis of the hollow tube cell. Near-infrared light of 1.48 μm was projected onto the hollow tube cell, and the amount of light passing through the sample flowing in the hollow tube cell at the light receiving portion was measured. The result is shown in FIG.

【0011】図6から、受光部により検出された光量と
水分濃度(又は酸濃度)との間には相関係数が0.99
47とされるような良好な相関性があることが分かっ
た。
From FIG. 6, there is a correlation coefficient of 0.99 between the amount of light detected by the light receiving section and the water concentration (or acid concentration).
It was found that there is a good correlation such as 47.

【0012】本発明は、このような本発明者の新規な知
見に基づき成されたものである。
The present invention was made based on such novel findings of the present inventor.

【0013】要約すれば、本発明は、内側流通路を無機
薬品含有水溶液が流動し得る検出管と、水が光吸収する
特定波長帯の近赤外光を前記検出管の軸線方向に対して
直交する方向に投光する投光部と、前記投光部から投光
され、そして前記検出管内を流動する前記水溶液を透過
した光を感知する受光部と、前記受光部で感知した光量
を電気信号に変換する検出回路部と、前記検出回路部か
らの電気信号を演算処理して前記水溶液の水の量又は濃
度を求める制御部とを有することを特徴とする無機薬品
含有水溶液の濃度検出装置である。
In summary, according to the present invention, a detection tube in which an aqueous solution containing an inorganic chemical can flow in an inner flow passage, and near-infrared light in a specific wavelength band, which is absorbed by water, with respect to the axial direction of the detection tube. A light projecting unit for projecting light in a perpendicular direction, a light receiving unit for sensing light transmitted from the aqueous solution flowing from the light projecting unit and flowing in the detection tube, and an amount of light sensed by the light receiving unit are electrically converted. A concentration detecting device for an aqueous solution containing an inorganic chemical, comprising: a detection circuit unit for converting into a signal; and a control unit for calculating an electric signal from the detection circuit unit to obtain the amount or concentration of water in the aqueous solution. Is.

【0014】好ましくは、前記検出管は、弗素樹脂にて
形成された円管とされる。特に好ましくは、弗素樹脂
は、四弗化エチレン−六弗化プロピレン共重合樹脂であ
り、検出管の内径をD1 、外径をD0 とした時、D1
0 ≧0.5とされる。
Preferably, the detection tube is a circular tube made of fluorine resin. Particularly preferably, the fluororesin is a tetrafluoroethylene-hexafluoropropylene copolymer resin, where D 1 / D 0 where D 1 is the inner diameter and D 0 is the outer diameter of the detection tube.
D 0 ≧ 0.5.

【0015】[0015]

【実施例】以下、本発明に係る無機薬品含有水溶液の濃
度検出装置を図面に則して更に詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The concentration detecting apparatus for an aqueous solution containing an inorganic chemical according to the present invention will be described in more detail below with reference to the drawings.

【0016】図1〜図3に、本発明に係る無機薬品含有
水溶液の濃度検出装置の一実施例を示す。本実施例によ
れば、本発明の濃度検出装置は、半導体製造プロセスの
排液ライン又はバイパスラインに設置されるものとして
説明する。従って、無機薬品含有水溶液は、例えば、硫
酸(H2 SO4 )、塩酸(HCl)、硝酸(HNO3
フッ化水素酸(HF)、バッファードフッ酸(BH
F)、アンモニア(NH4OH)などとされる。
1 to 3 show an embodiment of the concentration detecting apparatus for an aqueous solution containing an inorganic chemical according to the present invention. According to the present embodiment, the concentration detecting device of the present invention will be described as being installed in a drain line or a bypass line of a semiconductor manufacturing process. Therefore, an aqueous solution containing an inorganic chemical is, for example, sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), nitric acid (HNO 3 ).
Hydrofluoric acid (HF), buffered hydrofluoric acid (BH
F), ammonia (NH 4 OH), etc.

【0017】本発明の濃度検出装置は、排液ラインの途
中に直接に、或は排液ラインにバイパスラインを設けて
そこに一体的に設置される。従って、図1、図2に示す
ように、本発明の濃度検出装置1は、排液ラインなどに
接続するためのパイプ状の本体部分2を有する。排液ラ
インなどには、上述のような腐食性の強い無機薬品含有
水溶液が流されるので、本体部分2は、高い耐薬品性を
示す弗素樹脂にて作製するのが好適である。弗素樹脂と
しては、PFA(四弗化エチレン−パーフロロアルキル
ビニルエーテル共重合樹脂)、FEP(四弗化エチレン
−六弗化プロピレン共重合樹脂)、ETFE(四弗化エ
チレン−エチレン共重合樹脂)、ECTFE(三弗化塩
化エチレン−エチレン共重合樹脂)、PTFE(四弗化
エチレン樹脂)、PCTFE(三弗化塩化エチレン樹
脂)、PVdF(弗化ビニリデン樹脂)、VDF(弗化
ビニル樹脂)などを好適に使用することができる。
The concentration detecting device of the present invention is installed directly in the drainage line or integrally with the drainage line by providing a bypass line. Therefore, as shown in FIGS. 1 and 2, the concentration detecting device 1 of the present invention has a pipe-shaped main body portion 2 for connecting to a drain line or the like. Since the above-described aqueous solution containing an inorganic chemical having a strong corrosiveness is flowed through the drain line or the like, the main body portion 2 is preferably made of a fluororesin showing high chemical resistance. As the fluorine resin, PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin), FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin), ETFE (tetrafluoroethylene-ethylene copolymer resin), ECTFE (trifluoroethylene chloride-ethylene copolymer resin), PTFE (tetrafluoroethylene resin), PCTFE (trifluoroethylene chloride resin), PVdF (vinylidene fluoride resin), VDF (vinyl fluoride resin), etc. It can be used preferably.

【0018】本実施例では、本体部分2は、排液ライン
などに接続するために、その両端部2Aは幾分大きくさ
れているが、本体部分2はこの構成に限定されるもので
はない。本体部分2の大略中央部に、互いに平行に隔壁
3が形成される。この隔壁3の大略中心部には中心孔3
Aが穿設され、この両中心孔3Aに嵌合して細長の検出
管20が設置される。隔壁3の中心孔3Aと検出管20
とは溶接により一体的に固定される。
In the present embodiment, the main body portion 2 has its both ends 2A made somewhat larger in order to connect to the drain line or the like, but the main body portion 2 is not limited to this configuration. Partition walls 3 are formed substantially parallel to each other in the substantially central portion of the main body portion 2. A central hole 3 is formed in the center of the partition wall 3.
A is bored, and the elongated detection tube 20 is installed by fitting into both the center holes 3A. Center hole 3A of partition wall 3 and detection tube 20
And are integrally fixed by welding.

【0019】検出管20は、これに限定されるものでは
ないが、内、外形共に円形とされる中空管、即ち、円管
とするのが好適である。又、上述のような無機薬品含有
水溶液に対する耐久性の点から、本体部分2と同様に、
弗素樹脂にて形成するのが好適であるが、特に、後で説
明する理由から、FEP(四弗化エチレン−六弗化プロ
ピレン共重合樹脂)が好適である。
The detection tube 20 is not limited to this, but is preferably a hollow tube whose inner and outer shapes are circular, that is, a circular tube. Further, from the viewpoint of durability against the above-mentioned aqueous solution containing an inorganic chemical, like the main body portion 2,
It is preferably formed of a fluorine resin, but FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin) is particularly preferable for the reason described later.

【0020】又、検出管20は、その内径をD1 、外径
をD0 とした時、D1 /D0 ≧0.5とするのが好まし
い。この点についても又、後で詳しく説明する。
[0020] The detection tube 20, the inner diameter D 1, when the outer diameter is D 0, preferably in the D 1 / D 0 ≧ 0.5. This point will also be described in detail later.

【0021】本体部分2の、前記両隔壁3にて仕切られ
た空間部分には、検出管20を挟んで検出管20の軸線
に対し直交する方向に対向して投光部5と、受光部6と
が設けられる。投光部5は、水が光吸収する特定波長帯
の近赤外光、即ち、0.75μm〜2.5μmの光を発
生する光源5Aを備えており、近赤外光を検出管20の
軸線方向に対して直交する方向に投光する。この光源5
Aを含む空間部は、その外側開口部に蓋7が適合され
る。この蓋7も又、弗素樹脂にて形成することができ、
本体部分2に溶接により一体に固定するのが好ましい。
In the space portion of the main body portion 2 which is partitioned by the both partition walls 3, the light projecting portion 5 and the light receiving portion are arranged so as to face each other across the detection tube 20 in a direction orthogonal to the axis of the detection tube 20. And 6 are provided. The light projecting unit 5 includes a light source 5A that generates near-infrared light in a specific wavelength band that is absorbed by water, that is, light of 0.75 μm to 2.5 μm. Light is projected in a direction orthogonal to the axial direction. This light source 5
The space including A has a lid 7 fitted to its outer opening. This lid 7 can also be made of fluorine resin,
It is preferable to fix the body portion 2 integrally by welding.

【0022】このような光源5Aとしては種々のものを
使用し得るが、例えば、発光波長域が1.1〜1.6μ
mのInP/InGaAsP(InP系)のような発光
ダイオード、又は1.1〜1.67μmのInP/In
GaAsP(InP系)半導体レーザダイオードなどを
好適に使用することができる。場合によっては、0.1
6〜2.0μmの波長の光を発するキセノンランプ(パ
ルス波タイプを含む)も、分光フィルターを併用するこ
とにより投光部5の光源5Aとして用いることができ
る。
Various kinds of light sources may be used as the light source 5A, but the light emission wavelength range is 1.1 to 1.6 μm, for example.
m light emitting diode such as InP / InGaAsP (InP series), or 1.1 to 1.67 μm InP / In
A GaAsP (InP based) semiconductor laser diode or the like can be preferably used. In some cases, 0.1
A xenon lamp (including a pulse wave type) that emits light having a wavelength of 6 to 2.0 μm can also be used as the light source 5A of the light projecting unit 5 by also using a spectral filter.

【0023】一方、受光部6には、投光部5からの、検
出管20内を流動する水溶液を透過した光を感知する光
検出器6Aが配置される。光検出器6Aとしては、波長
感度域が0.8〜1.8μmのGeフォトダイオード、
0.8〜1.7μmのGeアバランシェフォトダイオー
ド、0.7〜1.7μmのInGaAs−pinフォト
ダイオード、1.0〜1.6μmのGe−pinフォト
ダイオード、1.0〜3.6μmのPbS光導電素子、
1.0〜3.1μmのInAs光起電力素子、1.0〜
5.5μmのZnSb光起電力素子などを使用すること
ができる。
On the other hand, the light receiving section 6 is provided with a photodetector 6A for sensing the light transmitted from the light projecting section 5 through the aqueous solution flowing in the detection tube 20. As the photodetector 6A, a Ge photodiode having a wavelength sensitivity range of 0.8 to 1.8 μm,
0.8-1.7 μm Ge avalanche photodiode, 0.7-1.7 μm InGaAs-pin photodiode, 1.0-1.6 μm Ge-pin photodiode, 1.0-3.6 μm PbS Photoconductive element,
1.0-3.1 μm InAs photovoltaic element, 1.0-
A 5.5 μm ZnSb photovoltaic element or the like can be used.

【0024】本実施例によると、この受光部6の外側開
口部を囲包して、本体部分2に一体に環状の壁8が形成
され、この内側に、検出回路部9が取り付けられる。検
出回路部9は、受光部6で感知した光量を電気信号に変
換する電子回路を有する。
According to the present embodiment, an annular wall 8 is formed integrally with the main body portion 2 so as to surround the outer opening of the light receiving portion 6, and the detection circuit portion 9 is attached to the inside thereof. The detection circuit unit 9 has an electronic circuit that converts the amount of light detected by the light receiving unit 6 into an electric signal.

【0025】本実施例では、この電子回路としては、本
出願人が提案した特開平4−324328号公報に開示
されるような、受光部5で検出した光量を周波数変換す
る電圧検出回路を好適に用いることができる。この電圧
検出回路について図7、図8を参照して簡単に説明す
る。
In the present embodiment, as this electronic circuit, a voltage detection circuit for frequency-converting the light quantity detected by the light receiving section 5 as disclosed in JP-A-4-324328 proposed by the present applicant is suitable. Can be used for. This voltage detection circuit will be briefly described with reference to FIGS. 7 and 8.

【0026】図7は、この電圧検出回路21の基本構成
を示すブロック図である。本実施例では、受光部6の光
検出器6AとしてのホトダイオードPDと直列にコンデ
ンサCを接続し、入射する光の光量に比例してホトダイ
オードPDから出力される電流IP をコンデンサCに蓄
積し、電圧VC に変換する。この充電電圧VC を電圧検
出回路21で検出して予め設定された基準電圧と比較
し、充電電圧が基準電圧に達すると、電圧検出回路21
は出力信号レベルを変化させる。この信号レベルの変化
により、コンデンサCに蓄積された電荷を放電させ、再
びこのコンデンサCにホトダイオードPDからの出力電
流IP の蓄積を開始させる。このようにして、検出回路
部9、即ち電圧検出回路21からは、受光部6が受光し
た光強度に応じた周波数信号が出力される。
FIG. 7 is a block diagram showing the basic structure of the voltage detection circuit 21. In the present embodiment, a capacitor C is connected in series with a photodiode PD as a photodetector 6A of the light receiving section 6, and a current I P output from the photodiode PD is accumulated in the capacitor C in proportion to the amount of incident light. , Voltage V C. The charging voltage V C is detected by the voltage detection circuit 21 and compared with a preset reference voltage. When the charging voltage reaches the reference voltage, the voltage detection circuit 21
Changes the output signal level. Due to this change in the signal level, the electric charge accumulated in the capacitor C is discharged, and the accumulation of the output current I P from the photodiode PD is started in the capacitor C again. In this way, the detection circuit unit 9, that is, the voltage detection circuit 21, outputs a frequency signal according to the light intensity received by the light receiving unit 6.

【0027】図8は、図7に示す電圧検出回路21のよ
り具体的な一例を示すもので、ホトダイオードPDとコ
ンデンサCとはアナログスイッチ23を介して直列に接
続し、入射する光の光量に比例してホトダイオードPD
を流れる電流IP をアナログスイッチ23を介してコン
デンサCに蓄積し、電圧VC に変換する構成とされる。
又、このコンデンサCに蓄積される電圧VC は、C−M
OS型の第1及び第2の2つのシュミットインバータ2
4及び25を直列に接続した電圧検出部21で検出され
る。この電圧検出回路の動作は、当業者には、先の特開
平4−324328号公報を参照すると容易に理解し得
るので、これ以上の説明は省略する。
FIG. 8 shows a more specific example of the voltage detection circuit 21 shown in FIG. 7, in which the photodiode PD and the capacitor C are connected in series via the analog switch 23, and the amount of incident light is adjusted. Photodiode PD proportionally
The current I P flowing through the capacitor is stored in the capacitor C via the analog switch 23 and converted into the voltage V C.
The voltage V C stored in the capacitor C is C−M
Two OS-type first and second Schmitt inverters 2
It is detected by the voltage detector 21 in which 4 and 25 are connected in series. The operation of this voltage detection circuit can be easily understood by those skilled in the art with reference to the above-mentioned Japanese Patent Application Laid-Open No. 4-324328, so further description will be omitted.

【0028】このようにして光量に応じて変換された検
出回路部9からの周波数信号は、図3を参照すると理解
されるように、制御部10の演算計測手段にて、演算処
理され、排液の濃度(水分濃度又は酸濃度)に応じたパ
ルス数に変換される。制御部10からのこの出力パルス
は、表示部11へと送信され、無機薬品含有水溶液の水
の量又は濃度として、ディスプレー装置にて表示される
か、或はプリンタにて印字して出力される。所望に応じ
て、表示部11には警報装置を備え、排液が規定濃度と
なった時、警報を発するように構成することも可能であ
る。
As will be understood with reference to FIG. 3, the frequency signal from the detection circuit section 9 thus converted according to the light quantity is arithmetically processed by the arithmetic and measurement means of the control section 10 and is discharged. The number of pulses is converted according to the concentration of the liquid (water concentration or acid concentration). This output pulse from the control unit 10 is transmitted to the display unit 11 and displayed as the amount or concentration of the water of the aqueous solution containing the inorganic chemical on the display device or printed and output by the printer. . If desired, the display unit 11 may be provided with an alarm device so as to issue an alarm when the drainage reaches a specified concentration.

【0029】次に、上述のように構成される濃度検出装
置における、検出管について更に説明する。
Next, the detection tube in the concentration detecting device constructed as described above will be further described.

【0030】本発明に使用する検出管20は、投光部5
からの、水が光吸収する特定波長帯の近赤外光、即ち、
0.75μm〜2.5μmの光線を通過させ得るもので
あれば、任意の材料を使用し得るが、上述したように、
測定対象物が、硫酸(H2 SO4 )、塩酸(HCl)、
硝酸(HNO3 )フッ化水素酸(HF)、バッファード
フッ酸(BHF)、アンモニア(NH4 OH)などの極
めて腐食性の強い無機薬品含有水溶液であるので、現在
のところ弗素樹脂が好適である。
The detection tube 20 used in the present invention is a light projecting section 5.
From the near-infrared light of a specific wavelength band, which is absorbed by water,
Any material may be used as long as it can pass a light beam having a wavelength of 0.75 μm to 2.5 μm.
The measurement target is sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl),
Since it is an aqueous solution containing inorganic chemicals such as nitric acid (HNO 3 ), hydrofluoric acid (HF), buffered hydrofluoric acid (BHF), and ammonia (NH 4 OH), which are extremely corrosive, fluororesin is currently preferred. is there.

【0031】ところが、弗素樹脂は、一般にその成型性
が極めて悪く、通常、原材料ブロックを切削加工するこ
とにより任意の形状とされる。しかしながら、一般に、
切削加工を行なえば、製品の表面平滑性が粗となり、光
線が散乱され透過率が低下する傾向にある。従って、弗
素樹脂を機械加工して検出管20を作製することは好ま
しくない。そのために、透明の弗素樹脂板材を使用し、
型取りした各板部材を溶接することにより断面が矩形の
検出管20を作製することは可能ではあるが、その製造
工程は煩雑で且つ困難であり、又、使用においても、外
部からの衝撃に弱いという欠点がある。
However, the fluororesin generally has extremely poor moldability and is usually formed into an arbitrary shape by cutting the raw material block. However, in general,
If cutting is performed, the surface smoothness of the product becomes rough, light rays are scattered, and the transmittance tends to decrease. Therefore, it is not preferable to fabricate the detection tube 20 by machining the fluororesin. For that purpose, use transparent fluororesin board,
Although it is possible to manufacture the detection tube 20 having a rectangular cross section by welding the plate members that have been modeled, the manufacturing process thereof is complicated and difficult, and even in use, it is not affected by external impact. It has the drawback of being weak.

【0032】本発明者の研究実験の結果によれば、弗素
樹脂でも、FEP(四弗化エチレン−六弗化プロピレン
共重合樹脂)ならば、上記近赤外光に対して極めて透過
性が良く(ガラスと同程度)、溶接性にも優れており、
しかも、成型加工により断面が円形の中空管、即ち、円
管を作製し得ることが分かった。従って、検出管20と
しては、FEP(四弗化エチレン−六弗化プロピレン共
重合樹脂)製の円管が極めて好適である。しかしなが
ら、本発明の検出管20は、これに限定されるものでは
なく、ガラス管に弗素樹脂コーティングしたものも使用
することができ、場合によっては、上述のように問題は
あるものの、透明の弗素樹脂板材を使用して作製した断
面が矩形の検出管20も使用することができる。
According to the results of the research and experiment conducted by the present inventor, even in the case of the fluorine resin, if it is FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin), it has a very good transparency to the near infrared light. (Similar to glass), excellent in weldability,
Moreover, it has been found that a hollow tube having a circular cross section, that is, a circular tube can be produced by molding. Therefore, as the detection tube 20, a circular tube made of FEP (tetrafluoroethylene-hexafluoropropylene copolymer resin) is extremely suitable. However, the detection tube 20 of the present invention is not limited to this, and a glass tube coated with a fluororesin can also be used. In some cases, although there is a problem as described above, transparent fluorine is used. It is also possible to use a detection tube 20 having a rectangular cross section that is manufactured by using a resin plate material.

【0033】次に、検出管20として円管を使用した場
合について更に説明する。
Next, the case where a circular tube is used as the detection tube 20 will be further described.

【0034】検出管20の寸法は、排液の濃度などによ
り種々に変更することができるが、本実施例では、検出
管20としては、外径2〜10mm、内径1〜8mmの
円形中空管が好適である。
The size of the detection tube 20 can be variously changed according to the concentration of the drainage, etc., but in the present embodiment, the detection tube 20 has a circular hollow shape having an outer diameter of 2 to 10 mm and an inner diameter of 1 to 8 mm. Tubes are preferred.

【0035】ただ、以下に説明する実施例においては、
検出管20は、屈折率が1.35とされるFEPにて作
製され、外径(DO )が5mmとされ、内径(DI )は
種々の寸法とされた。又、無機薬品含有水溶液(被検出
物)としては種々の濃度の硫酸を用いたが、その屈折率
(nS )は、その濃度に対応して1.33〜1.43の
範囲内で変動するものであった。
However, in the embodiment described below,
The detection tube 20 was manufactured by FEP having a refractive index of 1.35, an outer diameter (D O ) of 5 mm, and an inner diameter (D I ) of various sizes. Although sulfuric acid having various concentrations was used as the aqueous solution containing the inorganic chemical (detection object), its refractive index (n S ) varied within the range of 1.33 to 1.43 corresponding to the concentration. It was something to do.

【0036】なお、投光部5の光源5Aとしては、In
p/InGaAsP発光ダイオードを使用し、受光部6
の光検出器6Aとしては、InGaAs−pinフォト
ダイオードを使用した。
As the light source 5A of the light projecting section 5, In
p / InGaAsP light emitting diode is used, and the light receiving part 6
An InGaAs-pin photodiode was used as the photodetector 6A.

【0037】次に、検出管20の形状、即ち、内径(D
I )と外径(DO )の比(DI /DO )、及び検出管2
0の屈折率(nC )と被検出物の屈折率(nS )との関
係について考察する。
Next, the shape of the detection tube 20, that is, the inner diameter (D
I ) to outer diameter (D O ) ratio (D I / D O ), and detector tube 2
The relationship between the refractive index (n C ) of 0 and the refractive index (n S ) of the object to be detected will be considered.

【0038】・検出管20の内径(DI )と外径(D
O )による影響:
The inner diameter (D I ) and outer diameter (D) of the detection tube 20
O ) impact:

【0039】図9に、投光部5から検出管20を通って
受光部6へと入射する光路の状態を示す。この図9に示
す実施例にて、検出管20は、外径(DO )が5mm、
内径(DI )が2.5mmとされ、即ち、内径(DI
と外径(DO )の比(DI /DO )が0.5とされるも
のであった。
FIG. 9 shows the state of the optical path from the light projecting section 5 through the detection tube 20 to the light receiving section 6. In the embodiment shown in FIG. 9, the detection tube 20 has an outer diameter (D O ) of 5 mm,
The inner diameter (D I ) is set to 2.5 mm, that is, the inner diameter (D I )
The outer diameter (D O ) ratio (D I / D O ) was 0.5.

【0040】図9にて、実線で示す光路は、検出管20
内の被検出物中を通過する光路であり、破線で示す光路
は、検出管20中のみを通過する光路である。
In FIG. 9, the optical path indicated by the solid line is the detection tube 20.
The optical path that passes through the inside of the object to be detected, and the optical path shown by the broken line is the optical path that passes only through the detection tube 20.

【0041】この実施例においては、投光部5から検出
管20を通って受光部5へと入射した光は、その受光部
5において、図10に示すような光強度(光量或は照
度)分布を示すことが分かった。即ち、実線で示される
光路を進む光、即ち、被検出物の濃度情報を含む光と、
破線で示される光路を進む光、即ち、被検出物の濃度情
報を含まない光とは、完全に分離して捉えることがで
き、しかも、図11に示すように、特に、被検出物の濃
度情報を含む光強度は、被検出物の濃度と共に明瞭に変
化するが、被検出物の濃度情報を含まない光強度は実質
的に一定であることが分かる。
In this embodiment, the light incident from the light projecting section 5 through the detecting tube 20 to the light receiving section 5 has a light intensity (light amount or illuminance) as shown in FIG. It was found to show a distribution. That is, the light traveling along the optical path shown by the solid line, that is, the light containing the concentration information of the detected object,
The light traveling along the optical path indicated by the broken line, that is, the light that does not include the concentration information of the detected substance can be completely separated and captured, and as shown in FIG. It can be seen that the light intensity containing information clearly changes with the concentration of the detected substance, but the light intensity not including the concentration information of the detected substance is substantially constant.

【0042】従って、この実施例では、受光部6での信
号処理において、被検出物の濃度情報を含まない光強度
は、DCノイズ成分として処理することができ、信号処
理が容易となる。
Therefore, in this embodiment, in the signal processing in the light receiving section 6, the light intensity not including the density information of the object to be detected can be processed as the DC noise component, and the signal processing becomes easy.

【0043】更に、図9に一点鎖線にて示すように、検
出管20と受光部6との間に遮光板100を配置するこ
とにより、被検出物の濃度情報を含まない光部分、即
ち、DCノイズ成分を完全に遮断することもできる。
Further, as shown by the alternate long and short dash line in FIG. 9, by disposing the light shielding plate 100 between the detection tube 20 and the light receiving portion 6, the light portion which does not include the concentration information of the object to be detected, that is, It is also possible to completely block the DC noise component.

【0044】図12は、図9と同様の図であるが、検出
管20は、外径(DO )が5mm、内径(DI )が1.
5mm、即ち、内径(DI )と外径(DO )の比(DI
/DO )が0.3とされる。この実施例においては、実
線で示される光路を進む光、即ち、被検出物の濃度情報
を含む光の範囲が小さくなり、一方、破線で示される光
路を進む光、即ち、被検出物の濃度情報を含まない光の
範囲が広がっている。この状態では、両者を分離するこ
とが困難となってくる。
FIG. 12 is a view similar to FIG. 9, but the detection tube 20 has an outer diameter (D O ) of 5 mm and an inner diameter (D I ) of 1.
5 mm, that is, the ratio of the inner diameter (D I ) to the outer diameter (D O ) (D I
/ D O ) is set to 0.3. In this embodiment, the range of the light traveling along the optical path indicated by the solid line, that is, the range of light containing the concentration information of the detected object is reduced, while the light traveling along the optical path indicated by the broken line, that is, the concentration of the detected object. The range of light that does not contain information is expanding. In this state, it becomes difficult to separate the two.

【0045】図13は、図9と同様の図であるが、検出
管は、外径(DO )が5mm、内径(DI )が4.0m
m、即ち、内径(DI )と外径(DO )の比(DI /D
O )が0.8とされる。この実施例においては、実線で
示される光路を進む光、即ち、被検出物の濃度情報を含
む光の範囲が広がり、一方、破線で示される光路を進む
光、即ち、被検出物の濃度情報を含まない光の範囲がな
くなる。従って、この実施例では、被検出物の濃度情報
を含まない光強度、即ち、DCノイズ成分を実質的に排
除することができる。
FIG. 13 is a view similar to FIG. 9, except that the detector tube has an outer diameter (D O ) of 5 mm and an inner diameter (D I ) of 4.0 m.
m, that is, the ratio of the inner diameter (D I ) to the outer diameter (D O ) (D I / D
O ) is set to 0.8. In this embodiment, the light traveling along the optical path indicated by the solid line, that is, the range of light containing the concentration information of the detected object is expanded, while the light traveling along the optical path indicated by the broken line, that is, the concentration information of the detected object. The range of light that does not include is eliminated. Therefore, in this embodiment, the light intensity not including the concentration information of the detected object, that is, the DC noise component can be substantially eliminated.

【0046】しかしながら、検出管20の内径(DI
を大きくすると、検出管20の被検出物中を通過する光
の減衰量が大きくなり、受光部6での受光量が小さくな
り、受光部6を構成する光検出器6Aの感度の向上、検
出回路部9の高性能化といった問題が発生する。
However, the inner diameter (D I ) of the detection tube 20
When is increased, the amount of attenuation of the light passing through the object to be detected in the detection tube 20 is increased, the amount of light received by the light receiving unit 6 is decreased, and the sensitivity of the photodetector 6A constituting the light receiving unit 6 is improved and the detection is performed. There arises a problem that the circuit unit 9 has higher performance.

【0047】以上説明したように、検出管20は、内径
(DI )と外径(DO )の比(DI/DO )が0.5以
上とされることが極めて好適である。もっとも、内径
(DI)の最大値は、実際に使用する検出管20に要求
される機械的強度の面から、或は、上述したように、受
光部6を構成する光検出器6Aの感度及び検出回路部9
の性能の点から自ら制約があり、通常、内径(DI )と
外径(DO )の比(DI/DO )は、0.8以下とされ
るのが好適である。
As described above, it is extremely preferable that the detection tube 20 has a ratio (D I / D O ) of the inner diameter (D I ) and the outer diameter (D O ) of 0.5 or more. However, the maximum value of the inner diameter (D I ) depends on the mechanical strength required for the detection tube 20 actually used, or as described above, the sensitivity of the photodetector 6A constituting the light receiving unit 6 And detection circuit section 9
There are themselves limitations in terms of performance, usually, the inner diameter (D I) and the ratio of the outer diameter (D O) (D I / D O) is suitably be 0.8 or less.

【0048】上記各実施例の説明にて、投光部5から検
出管20へと入射する光線は、平行光であるとして説明
したが、図14に示すように、本発明者らの研究実験の
結果によると、平行光線の場合と、角度±10°程度の
斜め光線の場合とでは、個々の光路は異なるが、実線で
示される光路を進む光と、破線で示される光路を進む光
との全体の分布傾向は実質的に同じであり、角度±10
°程度の斜め光線を使用した場合にも同様の作用効果を
奏し得ることが分かった。
In the description of each of the above-described embodiments, the light rays incident on the detection tube 20 from the light projecting portion 5 are described as being parallel light rays. However, as shown in FIG. According to the result, although the individual light paths are different between the parallel light rays and the oblique light rays with an angle of about ± 10 °, there are light traveling along the light path indicated by the solid line and light traveling along the light path indicated by the broken line. The distribution tendency of the whole is substantially the same, the angle ± 10
It was found that the same operational effect can be obtained even when an oblique light beam of about ° is used.

【0049】・検出管の屈折率(nC )と被検出物の屈
折率(nS )による影響:
The influence of the refractive index (n C ) of the detector tube and the refractive index (n S ) of the object to be detected:

【0050】検出管20の屈折率(nC )と被検出物の
屈折率(nS )とは実質的に同じであることが好まし
く、この場合には、図9〜図14に関連して説明した如
くに、投光部5から検出管20へと入射した光は、検出
管20とその中を流動する被検出物とによるレンズ効果
により集光し、内径(DI )と外径(DO )の比(DI
/DO )が0.5以上とされる限りにおいては、実線で
示される光路を進む光、即ち、被検出物の濃度情報を含
む光と、破線で示される光路を進む光、即ち、被検出物
の濃度情報を含まない光とは、完全に分離して捉えるこ
とができる。
It is preferable that the refractive index (n C ) of the detection tube 20 and the refractive index (n S ) of the object to be detected are substantially the same, and in this case, with reference to FIGS. 9 to 14. As described above, the light that has entered the detection tube 20 from the light projecting unit 5 is condensed by the lens effect of the detection tube 20 and the object to be detected flowing in the detection tube 20, and the inner diameter (D I ) and the outer diameter ( Ratio of D O ) (D I
/ D O ) is 0.5 or more, the light traveling along the optical path indicated by the solid line, that is, the light containing the concentration information of the object to be detected, and the light traveling along the optical path indicated by the broken line, that is, the object The light that does not include the concentration information of the detected substance can be completely separated and captured.

【0051】本発明者の研究実験の結果、被検出物の濃
度情報を含む光と、被検出物の濃度情報を含まない光と
を完全に分離して捉えるためには、検出管の屈折率(n
C )と被検出物の屈折率(nS )との差(nC −nS
は、+0.15〜−0.10とされることが重要である
ことが分かった。
As a result of the research and experiment conducted by the present inventor, in order to completely separate and capture the light containing the concentration information of the detected substance and the light not containing the concentration information of the detected substance, the refractive index of the detection tube is determined. (N
C ) and the refractive index (n S ) of the object to be detected (n C −n S )
Has been found to be important to be +0.15 to −0.10.

【0052】従って、検出管20として、屈折率が1.
35とされるFEPにて作製され、又、無機薬品含有水
溶液(被検出物)として、半導体製造プロセス或はLS
I製造プロセスなどにて使用される硫酸(H2 SO
4 )、塩酸(HCl)、硝酸(HNO3 )フッ化水素酸
(HF)、バッファードフッ酸(BHF)、アンモニア
(NH4 OH)などが使用される限りにおいて、これら
水溶液の屈折率(nS )は、1.33〜1.43で変動
するものであるので、上記条件は充分に満足するもので
ある。
Therefore, the detection tube 20 has a refractive index of 1.
35 manufactured by FEP, and used as an inorganic chemical-containing aqueous solution (detection object) in the semiconductor manufacturing process or LS.
I Sulfuric acid (H 2 SO used in manufacturing processes, etc.
4 ), hydrochloric acid (HCl), nitric acid (HNO 3 ), hydrofluoric acid (HF), buffered hydrofluoric acid (BHF), ammonia (NH 4 OH), etc. Since S ) varies from 1.33 to 1.43, the above conditions are sufficiently satisfied.

【0053】[0053]

【発明の効果】以上の如くに構成される本発明の無機薬
品含有水溶液の濃度検出装置は、検出管の内側流通路を
流れる無機薬品含有水溶液に、水が光吸収する特定波長
帯の近赤外光を投光し、そして水溶液を透過した光の光
量からこの水溶液の濃度を計測する構成とされるので、
リアルタイムにて無機薬品含有水溶液の水の量又は濃度
を検知することができ、しかも構成が簡単で、低価格で
あるという特長を有する。又、本発明の濃度検出装置
は、半導体製造プロセス或はLSI製造プロセスなどに
て排液ラインを介して排出される洗浄液、エッチング除
去液、レジスト剥離液などの水の量又は濃度をリアルタ
イムにて検出しそして監視するのに利用することができ
る。
According to the concentration detecting apparatus for an aqueous solution containing an inorganic chemical of the present invention, which is constructed as described above, the aqueous solution containing an inorganic chemical flowing in the inner flow passage of the detection tube has a near-red light of a specific wavelength band in which water absorbs light. Since it is configured to project external light and measure the concentration of this aqueous solution from the amount of light transmitted through the aqueous solution,
It has the features that the amount or concentration of water in the aqueous solution containing an inorganic chemical can be detected in real time, and that the configuration is simple and the cost is low. Further, the concentration detecting device of the present invention is capable of measuring the amount or concentration of water such as a cleaning liquid, an etching removal liquid, and a resist stripping liquid discharged through a drain line in a semiconductor manufacturing process or an LSI manufacturing process in real time. It can be used to detect and monitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る無機薬品含有水溶液の濃度検出装
置の一実施例の断面図である。
FIG. 1 is a sectional view of an embodiment of a concentration detecting device for an aqueous solution containing an inorganic chemical according to the present invention.

【図2】図1の線II−IIに取った断面図である。2 is a cross-sectional view taken along the line II-II in FIG.

【図3】本発明に係る無機薬品含有水溶液の濃度検出装
置の全体構成図である。
FIG. 3 is an overall configuration diagram of a concentration detecting device for an aqueous solution containing an inorganic chemical according to the present invention.

【図4】塩酸の吸収スペクトル図である。FIG. 4 is an absorption spectrum diagram of hydrochloric acid.

【図5】硫酸の吸収スペクトル図である。FIG. 5 is an absorption spectrum diagram of sulfuric acid.

【図6】硫酸及び塩酸の濃度と、本発明の濃度検出装置
における吸光度との関係を示す図である。
FIG. 6 is a diagram showing the relationship between the concentrations of sulfuric acid and hydrochloric acid and the absorbance in the concentration detector of the present invention.

【図7】投光部、受光部及び検出回路部の関係を示す一
実施例の構成図である。
FIG. 7 is a configuration diagram of an embodiment showing a relationship between a light projecting unit, a light receiving unit, and a detection circuit unit.

【図8】電圧検出回路の詳細を示す図である。FIG. 8 is a diagram showing details of a voltage detection circuit.

【図9】投光部から検出管を通って受光部へと入射する
光路の状態を示す図である。
FIG. 9 is a diagram showing a state of an optical path from a light projecting unit to a light receiving unit through a detection tube.

【図10】受光部における光強度分布を示す図である。FIG. 10 is a diagram showing a light intensity distribution in a light receiving section.

【図11】被検出物の劣化と共に変動する受光部におけ
る光強度分布を示す図である。
FIG. 11 is a diagram showing a light intensity distribution in a light receiving unit that varies with deterioration of an object to be detected.

【図12】投光部から検出管を通って受光部へと入射す
る光路の状態を示す図である。
FIG. 12 is a diagram showing a state of an optical path from a light projecting unit to a light receiving unit through a detection tube.

【図13】投光部から検出管を通って受光部へと入射す
る光路の状態を示す図である。
FIG. 13 is a diagram showing a state of an optical path from a light projecting unit to a light receiving unit through a detection tube.

【図14】投光部から検出管を通って受光部へと入射す
る光路の状態を示す図である。
FIG. 14 is a diagram showing a state of an optical path from a light projecting portion to a light receiving portion through a detection tube.

【符号の説明】[Explanation of symbols]

2 パイプ状本体部分 3 隔壁 5 投光部 6 受光部 9 検出回路部 10 制御部 11 表示部 20 検出管 2 Pipe-shaped main body part 3 Partition wall 5 Light emitting part 6 Light receiving part 9 Detection circuit part 10 Control part 11 Display part 20 Detection tube

フロントページの続き (72)発明者 小泉 健一 埼玉県戸田市新曽南三丁目17番35号 株式 会社共石製品技術研究所内Front Page Continuation (72) Inventor Kenichi Koizumi, 3-17-35, Shinzonan, Toda City, Saitama Prefecture

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内側流通路を無機薬品含有水溶液が流動
し得る検出管と、水が光吸収する特定波長帯の近赤外光
を前記検出管の軸線方向に対して直交する方向に投光す
る投光部と、前記投光部から投光され、そして前記検出
管内を流動する前記水溶液を透過した光を感知する受光
部と、前記受光部で感知した光量を電気信号に変換する
検出回路部と、前記検出回路部からの電気信号を演算処
理して前記水溶液の水の量又は濃度を求める制御部とを
有することを特徴とする無機薬品含有水溶液の濃度検出
装置。
1. A detection tube in which an aqueous solution containing an inorganic chemical can flow through an inner flow passage, and near-infrared light in a specific wavelength band, which is absorbed by water, is projected in a direction orthogonal to the axial direction of the detection tube. A light projecting section, a light receiving section that senses light that is projected from the light projecting section and that has passed through the aqueous solution flowing in the detection tube, and a detection circuit that converts the amount of light sensed by the light receiving section into an electrical signal. And a controller for calculating the amount or concentration of water in the aqueous solution by arithmetically processing an electric signal from the detection circuit unit.
【請求項2】 前記検出管は、弗素樹脂にて形成された
円管である請求項1の無機薬品含有水溶液の濃度検出装
置。
2. The concentration detecting device for an aqueous solution containing an inorganic chemical according to claim 1, wherein the detecting tube is a circular tube made of a fluororesin.
【請求項3】 前記弗素樹脂は、四弗化エチレン−六弗
化プロピレン共重合樹脂である請求項2の無機薬品含有
水溶液の濃度検出装置。
3. The concentration detecting device for an aqueous solution containing an inorganic chemical according to claim 2, wherein the fluororesin is a tetrafluoroethylene-hexafluoropropylene copolymer resin.
【請求項4】 前記検出管は、その内径をD1 、外径を
0 とした時、D1/D0 ≧0.5とされる請求項3の
無機薬品含有水溶液の濃度検出装置。
4. The concentration detecting device for an aqueous solution containing an inorganic chemical according to claim 3, wherein D 1 / D 0 ≧ 0.5 when the inner diameter of the detection tube is D 1 and the outer diameter thereof is D 0 .
JP28004793A 1993-10-13 1993-10-13 Concentration detection device for aqueous solutions containing inorganic chemicals Expired - Fee Related JP3414804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28004793A JP3414804B2 (en) 1993-10-13 1993-10-13 Concentration detection device for aqueous solutions containing inorganic chemicals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28004793A JP3414804B2 (en) 1993-10-13 1993-10-13 Concentration detection device for aqueous solutions containing inorganic chemicals

Publications (2)

Publication Number Publication Date
JPH07113745A true JPH07113745A (en) 1995-05-02
JP3414804B2 JP3414804B2 (en) 2003-06-09

Family

ID=17619560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28004793A Expired - Fee Related JP3414804B2 (en) 1993-10-13 1993-10-13 Concentration detection device for aqueous solutions containing inorganic chemicals

Country Status (1)

Country Link
JP (1) JP3414804B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
USRE37926E1 (en) 1996-02-21 2002-12-10 Idec Izumi Corporation Apparatus and method for detecting transparent substances
JP2009300337A (en) * 2008-06-16 2009-12-24 Kyokko Denki Kk Fluid detection sensor
JP2012127004A (en) * 2012-02-13 2012-07-05 Hirama Rika Kenkyusho:Kk Device for managing etchant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37926E1 (en) 1996-02-21 2002-12-10 Idec Izumi Corporation Apparatus and method for detecting transparent substances
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
JP2009300337A (en) * 2008-06-16 2009-12-24 Kyokko Denki Kk Fluid detection sensor
JP2012127004A (en) * 2012-02-13 2012-07-05 Hirama Rika Kenkyusho:Kk Device for managing etchant

Also Published As

Publication number Publication date
JP3414804B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
US5903006A (en) Liquid concentration detecting apparatus
US5411709A (en) Gas detector
CN102803935B (en) Fluorometric sensor
KR101733714B1 (en) Detector
US4775794A (en) Process and apparatus for measurement of light-absorbable components dissolved in liquids
KR102448715B1 (en) Sensor combining dust sensor and gas sensor
JP2529656Y2 (en) Impeller flow meter
US5936250A (en) Ultraviolet toxic gas point detector
US4513087A (en) Reversible optical waveguide vapor sensor
JP3414804B2 (en) Concentration detection device for aqueous solutions containing inorganic chemicals
US5630987A (en) Method and apparatus for the measurement of pollutants in liquids
WO2023004423A1 (en) Fluorescence and scatter and absorption spectroscopic apparatus with a sapphire tube and method for analyzing inline low level hydrocarbon in a flow medium
AU2002310007B2 (en) Optical turbidimeter with a lens tube
JPH1137936A (en) Liquid concentration detector
CN112229810A (en) Portable ozone gas monitoring system by ultraviolet absorption method
EP1086353A4 (en) Method and apparatus for determining processing chamber cleaning or wafer etching endpoint
JP6652697B2 (en) Residual chlorine measurement system and program
JPH09101260A (en) In-line type instrument for measuring impurity concentration of solution
JP2887819B2 (en) Gas detector
KR20210099951A (en) VOC Sensing PID Gas Sensor Device
JPS5927250A (en) Measurement of residual chlorine
JPH0772072A (en) Apparatus for detecting concentration of particle in liquid
JPH05240770A (en) Particle counter
JP3966851B2 (en) Light scattering particle counter
JPH0712726A (en) Optical device for measuring transmitted light

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees