JPH07111739A - Charger - Google Patents

Charger

Info

Publication number
JPH07111739A
JPH07111739A JP25268793A JP25268793A JPH07111739A JP H07111739 A JPH07111739 A JP H07111739A JP 25268793 A JP25268793 A JP 25268793A JP 25268793 A JP25268793 A JP 25268793A JP H07111739 A JPH07111739 A JP H07111739A
Authority
JP
Japan
Prior art keywords
charging
battery
circuit
voltage
supplementary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25268793A
Other languages
Japanese (ja)
Other versions
JP3328025B2 (en
Inventor
Takeshi Yoshida
毅 吉田
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP25268793A priority Critical patent/JP3328025B2/en
Publication of JPH07111739A publication Critical patent/JPH07111739A/en
Application granted granted Critical
Publication of JP3328025B2 publication Critical patent/JP3328025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a safely and effectively supplementary charger for a nickel- hydrogen storage battery, etc. CONSTITUTION:The charger comprises a power source circuit 1, a boosting charging circuit 2, a VCO circuit 7, a counter 8, a supplementary charging circuit 3, a switching circuit 4 for switching boosting charging and supplementary charging circuits, a temperature sensor 5, and a controller 9 for controlling operations of the boosting charging, supplementary charging circuits, the counter and the switching circuit. It starts supplementary charging when a battery voltage is a predetermined value or less and the temperature falls within a predetermined range, supplementarily charges to a time until clocks of a period responsive to the battery voltage generated from the circuit 7 reach a predetermined number, and supplementarily charges at a time responsive to a discharging degree of the battery 6.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は補充電機能を有する充電
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device having a supplementary charging function.
【0002】[0002]
【従来の技術】近年、電池を電源とする装置では、マン
ガン乾電池に代表される充電不可能な1次電池から、次
第にニッケルカドミウム蓄電池や小型鉛シール蓄電池に
代表される、充電して何度も繰り返し使用できる2次電
池が多く使用されるようになってきている。前記2次電
池は1次電池よりもエネルギー密度が低いために、1次
電池と同じ電池容量を得たいときはより大きな電池を使
う必要があった。そのため2次電池についてはたゆまな
く高容量化が図られてきた。ところが、最近になってニ
ッケルカドミウム蓄電池や小型鉛シール蓄電池よりもは
るかに高容量を得ることができるニッケル水素蓄電池が
開発されてきた。このニッケル水素蓄電池は、陽極にニ
ッケル、陰極に水素吸蔵合金を使用し、従来のニッケル
カドミウム蓄電池よりも50〜100%多い電池容量が
得られる。しかし、ニッケル水素蓄電池は、ニッケルカ
ドミウム蓄電池よりも自己放電が大きく、また過充電を
行うと性能が速く劣化するという問題点がある。
2. Description of the Related Art In recent years, in devices using a battery as a power source, non-rechargeable primary batteries typified by manganese dry batteries are gradually being recharged typified by nickel cadmium storage batteries and small lead-seal storage batteries. Secondary batteries, which can be used repeatedly, have come to be widely used. Since the secondary battery has a lower energy density than the primary battery, it is necessary to use a larger battery to obtain the same battery capacity as the primary battery. Therefore, secondary batteries have been continuously improved in capacity. However, recently, a nickel-hydrogen storage battery has been developed that can obtain a much higher capacity than nickel-cadmium storage batteries and small lead-sealed storage batteries. This nickel-hydrogen storage battery uses nickel for the anode and hydrogen storage alloy for the cathode, and a battery capacity 50 to 100% higher than that of the conventional nickel-cadmium storage battery can be obtained. However, the nickel-hydrogen storage battery has a problem that self-discharge is larger than that of the nickel-cadmium storage battery, and performance is deteriorated faster when overcharged.
【0003】以下、従来の充電装置を図面を使用して説
明する。図5は従来の充電装置のブロック図であり、1
は電源回路であり、電源は並列関係にある急速充電を行
う急速充電回路2と補充電回路3に与えられ、この急速
充電回路2と補充電回路3の切換を行う切換回路4を介
してニッケル水素高電池6に与えられて充電をするよう
になっている。ニッケル水素蓄電池6部には電池の温度
測定を行う温度センサー5が設けられ、電池電圧と電池
温度はその信号線13、14によって制御回路9に送ら
れるようになっている。そして制御回路9は急速充電回
路2と補充電回路3の動作を制御するようになってい
る。
A conventional charging device will be described below with reference to the drawings. FIG. 5 is a block diagram of a conventional charging device.
Is a power supply circuit, and the power supply is supplied to a quick charging circuit 2 and a supplementary charging circuit 3 which perform parallel rapid charging, and a nickel is supplied via a switching circuit 4 for switching between the rapid charging circuit 2 and the supplementary charging circuit 3. It is adapted to be charged by being supplied to the hydrogen high battery 6. The nickel-hydrogen storage battery 6 is provided with a temperature sensor 5 for measuring the temperature of the battery, and the battery voltage and the battery temperature are sent to the control circuit 9 through the signal lines 13 and 14. The control circuit 9 controls the operations of the quick charging circuit 2 and the auxiliary charging circuit 3.
【0004】図6は従来の充電装置を用いてニッケル水
素蓄電池の充電を行なったときの電池電圧・充電電流の
変化カーブを示し、図中のteは急速充電が終了する時
点、i1 は急速充電時の電流値、i2 は補充電時の電流
値である。
FIG. 6 shows a change curve of battery voltage / charge current when a nickel-metal hydride storage battery is charged using a conventional charging device. In the figure, te is a time point when the rapid charging is finished, and i 1 is a rapid charging time. The current value during charging, i 2 is the current value during supplementary charging.
【0005】以下、図5および図6を用いて従来の充電
装置の動作について説明する。この充電装置は電源回路
1に電源が入ると制御回路9が電池6の電圧を信号線1
3を通じて読み込み、また電池温度を温度センサー5、
信号線14を通じて読み込み、急速充電が可能な電圧と
温度であれば切り換え回路4を急速充電回路2の側に切
り換えて電流i1 で急速充電を開始する。電池電圧が一
定値を超えるか、電池温度の上昇率が一定値を超えたと
き(図4でteの時点)に急速充電は終了する。その後
は、制御回路9は切り換え回路4を補充電回路3の側に
切り換えて、電池の自己放電分の容量の減少を補う分の
補充電を電流i2 で行う。
The operation of the conventional charging device will be described below with reference to FIGS. 5 and 6. In this charging device, when the power supply circuit 1 is turned on, the control circuit 9 outputs the voltage of the battery 6 to the signal line 1
3, read the battery temperature, temperature sensor 5,
If it is read through the signal line 14 and the voltage and temperature allow the rapid charging, the switching circuit 4 is switched to the rapid charging circuit 2 side to start the rapid charging with the current i 1 . The rapid charging ends when the battery voltage exceeds a certain value or the rate of increase in the battery temperature exceeds a certain value (time te in FIG. 4). After that, the control circuit 9 switches the switching circuit 4 to the side of the auxiliary charging circuit 3 and performs the auxiliary charging with the current i 2 to compensate for the decrease in the capacity of the self-discharge of the battery.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
充電装置では、補充電を一定の電流値で行っているため
に、ニッケル水素蓄電池では過充電になりやすいという
欠点を有していた。すなわち、ニッケルカドミウム蓄電
池では極板やガス吸収特性の改良により、定電流で充電
を行っても、電流値が適切であれば電池としての性能が
劣化することは少なくなっているが、現状のニッケル水
素蓄電池では電流を増やせば過充電になり、減らせば自
己放電の率の方が多くなってしまい、過放電となってし
まう。また、電流が多いと電池の温度が異常に上昇する
という現象が発生し、不安全事故につながる可能性もあ
る。一方、市場では2次電池の容量アップの要求が根強
く、高容量を得られるニッケル水素蓄電池を安全に補充
電する方法が強く求められている。
However, the conventional charging device has a drawback that the nickel-hydrogen storage battery is likely to be overcharged because the auxiliary charging is performed at a constant current value. That is, in the nickel-cadmium storage battery, the performance as a battery is less likely to deteriorate if the current value is appropriate even if the battery is charged at a constant current by improving the electrode plate and gas absorption characteristics. In the case of a hydrogen storage battery, increasing the current results in overcharging, and decreasing the current results in a higher self-discharge rate, resulting in overdischarge. In addition, when the current is large, the temperature of the battery rises abnormally, which may lead to an unsafe accident. On the other hand, in the market, there is a strong demand for increasing the capacity of secondary batteries, and there is a strong demand for a method for safely supplementing a nickel-hydrogen storage battery that can provide a high capacity.
【0007】本発明は上記課題を解決し、ニッケル水素
蓄電池を安全かつ確実に補充電する手段を提供すること
を目的としている。
It is an object of the present invention to solve the above problems and provide a means for safely and reliably supplementing a nickel-hydrogen storage battery.
【0008】[0008]
【課題を解決するための手段】上記問題点を解決するた
めに第1の発明は充電装置に電源を供給する電源回路
と、急速充電を行う急速充電回路と、電池電圧に応じて
周期が変わるクロックを発生する電圧制御発振回路(以
後VCO回路と記す)と、VCO回路が発生するクロッ
クの数を計数するカウンタ回路と、カウンタ回路がリセ
ット後に一定数のクロックを計数するまでの時間に補充
電を行う補充電回路と、急速充電・補充電の回路を切り
替える切換回路と、電池温度を計測する温度センサー、
電池電圧・温度を読み込んで急速充電回路、補充電回
路、カウンタ回路、切換回路の動作を制御する制御回路
とを有する構成になっている。
In order to solve the above problems, a first aspect of the present invention is a power supply circuit for supplying power to a charging device, a quick charging circuit for performing quick charging, and a cycle changing according to a battery voltage. A voltage controlled oscillator circuit (hereinafter referred to as a VCO circuit) that generates a clock, a counter circuit that counts the number of clocks that the VCO circuit generates, and an auxiliary charge in the time until the counter circuit counts a fixed number of clocks after reset. , A switching circuit that switches between quick charging and auxiliary charging circuits, and a temperature sensor that measures the battery temperature,
It is configured to have a control circuit that reads the battery voltage and temperature and controls the operations of the quick charging circuit, the auxiliary charging circuit, the counter circuit, and the switching circuit.
【0009】また第2の発明は充電装置に電源を供給す
る電源回路と、急速充電を行う急速充電回路と、電池電
圧に応じてデューティ比と周期が変わるクロックを発生
するVCO回路と、VCO回路のクロック出力で充電電
流の制御を行う補充電回路と、急速充電・補充電の回路
を切り替える切換回路と、電池温度を計測する温度セン
サーと、電池電圧・温度を読み込んで急速充電回路、切
換回路の動作を制御する制御回路とを有する構成になっ
ている。
A second aspect of the invention is a power supply circuit for supplying power to a charging device, a quick charge circuit for performing quick charge, a VCO circuit for generating a clock whose duty ratio and cycle change according to a battery voltage, and a VCO circuit. The auxiliary charging circuit that controls the charging current with the clock output of the, the switching circuit that switches between the rapid charging and auxiliary charging circuits, the temperature sensor that measures the battery temperature, the rapid charging circuit that reads the battery voltage and temperature, the switching circuit And a control circuit for controlling the above operation.
【0010】[0010]
【作用】本発明は上記した構成により、第1の発明の充
電装置では電池電圧が一定値以下、電池温度が一定の範
囲内にある場合に補充電を開始し、VCOが発生する電
池電圧に応じた周期のクロックが一定数になるまでの時
間に補充電を行い、電池の放電具合に応じた時間の補充
電を行うこととなる。
According to the present invention, with the configuration described above, in the charging device of the first invention, when the battery voltage is below a certain value and the battery temperature is within a certain range, supplementary charging is started and the battery voltage generated by the VCO is The supplementary charge is performed during the time until the number of clocks of the corresponding cycle reaches a fixed number, and the supplemental charge is performed for the time according to the discharge condition of the battery.
【0011】また第2の発明の充電装置では、VCOが
発生する電池電圧に応じたデューティ比と周期のクロッ
クによって充電電流がパルス状に制御され、パルスを平
均した電気量が電池の放電具合に応じた補充電を行うこ
ととなる。
In the charging device of the second aspect of the invention, the charging current is controlled in pulses by a clock having a duty ratio and a cycle corresponding to the battery voltage generated by the VCO, and the amount of electricity obtained by averaging the pulses indicates the discharge condition of the battery. Compliant charging will be performed accordingly.
【0012】[0012]
【実施例】以下、本発明の実施例について、図面を参照
しながら説明する。図1は本発明の第1の発明の一実施
例の充電装置の構成を示すブロック図である。なお、従
来例として説明したものと同一構成部には、同じ符号を
付して説明する。図中の1は充電装置に電源を供給する
電源回路、2は急速充電を行う急速充電回路、3は補充
電を行う補充電回路、4は急速充電回路2と補充電回路
3の切換を行う切換回路、5は電池の温度測定を行なう
温度センサー、6はニッケル水素蓄電池、9は制御回
路、13は電池電圧検知の信号線、14は電池温度の信
号線であり、これらは従来のものと同じ構成である。本
実施例の特徴とするところは、電池電圧に応じて発生す
る周期を可変する電圧制御発振回路(VCO回路)7
と、VCO回路7のクロックの計数を行うカウンタ回路
8、カウンタ8が計数中に“H”レベル、リセット時・
カウンタのオーバーフロー時に“L”になるカウンタ出
力端子10、カウンタをリセットするリセット端子11
を備えたことにある。図中の12はVCO回路7からカ
ウンタ8に供給されるクロック出力、15は補充電回路
内にあって充電電流のON−OFFを行うFETであ
る。なお、制御回路9はカウンタ8の動作を制御するよ
うになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a charging device according to an embodiment of the first aspect of the present invention. The same components as those described as the conventional example will be described with the same reference numerals. In the figure, 1 is a power supply circuit for supplying power to the charging device, 2 is a quick charge circuit for performing quick charge, 3 is an auxiliary charge circuit for performing auxiliary charge, and 4 is switching between the quick charge circuit 2 and the auxiliary charge circuit 3. A switching circuit, 5 is a temperature sensor for measuring the temperature of the battery, 6 is a nickel-hydrogen storage battery, 9 is a control circuit, 13 is a signal line for detecting the battery voltage, and 14 is a signal line for the battery temperature. It has the same structure. The feature of the present embodiment is that a voltage controlled oscillator circuit (VCO circuit) 7 that varies the cycle generated according to the battery voltage is used.
And a counter circuit 8 that counts the clock of the VCO circuit 7, an "H" level while the counter 8 is counting, at the time of reset.
Counter output terminal 10 that becomes “L” when the counter overflows, reset terminal 11 that resets the counter
Is equipped with. In the figure, 12 is a clock output supplied from the VCO circuit 7 to the counter 8, and 15 is an FET in the auxiliary charging circuit for turning on / off the charging current. The control circuit 9 controls the operation of the counter 8.
【0013】図2は第2の発明の一実施例の充電装置の
構成を示すブロック図である。本実施例は特徴として電
池電圧に応じてデューティ比と周期が変わる、すなわち
電池電圧が高いときにはデューティ比が小さく周期が長
いクロックを発生し、逆に電池電圧が低いときにはデュ
ーティ比が大きく周期が長いクロックを発生する電圧制
御発振回路(VCO回路)16、電池6の電圧・温度を
読み込んで急速充電回路2・切換回路4の動作の制御を
行う制御回路17を備えた構成にある。
FIG. 2 is a block diagram showing the configuration of a charging device according to an embodiment of the second invention. The present embodiment is characterized in that the duty ratio and the cycle change according to the battery voltage, that is, when the battery voltage is high, a clock with a small duty ratio and a long cycle is generated, and conversely, when the battery voltage is low, the duty ratio is large and the cycle is long. The configuration includes a voltage controlled oscillator circuit (VCO circuit) 16 that generates a clock, and a control circuit 17 that reads the voltage and temperature of the battery 6 and controls the operations of the quick charging circuit 2 and the switching circuit 4.
【0014】図3は図1で示された充電装置でニッケル
水素蓄電池を充電した場合の電池の端子電圧・充電電流
の変化カーブを示したグラフであり、teは急速充電が
終了する時点、i1 は急速充電時の電流値、i2 は補充
電時の電流値、Vsは補充電を開始する電圧である。
FIG. 3 is a graph showing a change curve of the terminal voltage / charging current of the battery when the nickel-hydrogen storage battery is charged by the charging device shown in FIG. 1, where te is the time when the rapid charging is completed, i 1 is a current value at the time of rapid charging, i 2 is a current value at the time of auxiliary charging, and Vs is a voltage at which auxiliary charging is started.
【0015】図4は図2で示された充電装置でニッケル
水素蓄電池を充電した場合の電池の端子電圧・充電電流
の変化カーブを示したグラフである。以上のように構成
された充電装置について、以下図面を用いてその動作に
ついて説明する。
FIG. 4 is a graph showing a change curve of the terminal voltage and the charging current of the battery when the nickel-hydrogen storage battery is charged by the charging device shown in FIG. The operation of the charging device configured as described above will be described below with reference to the drawings.
【0016】まず第1の発明の充電装置の一実施例につ
いて図1,図3を用いて説明する。充電装置は電源回路
1によって充電電流および各ブロックの電源を得る。制
御回路9は電池電圧の信号線13と温度センサー5から
の信号線14によってニッケル水素蓄電池6の電圧と温
度を検知する。その電圧が充電すべき電圧になってお
り、電池温度が急速充電が可能な範囲内にある場合の
み、急速充電回路2を動作させ、同時に切換回路4を急
速充電回路側に切り替えて急速充電を開始する。この時
点は図2のグラフにおいて左端の時点にあたる。電池電
圧・温度が満充電の条件に合致した場合に、急速充電回
路2は急速充電を終了し、同時に制御回路9にその旨を
伝達する。制御回路9はそれを受けて切換回路4を補充
電回路3の側に切り替える。図2のグラフではteの時
点になる。この時点では電池6の電圧が十分に高いため
に、制御回路9はカウンタ8をリセット状態に設定して
おく。そのため、VCO回路7からクロックが供給され
てもカウンタ8の出力端子は“L”のままであり、補充
電回路3内のFET15はOFFとなって、補充電の電
流は電池6には流れない。その後、時間が経過して電池
6が自己放電して電池の電圧が図2においてVs以下に
なったとき、制御回路9は補充電を開始する。制御回路
9はカウンタ8のリセットを解除しカウンタは計数を開
始する。このとき、VCO回路7は電池電圧に応じてク
ロックの周波数を可変する。すなわち、電池電圧の上昇
が遅く(自己放電量が多いことを示す)電圧が低いとき
には周波数を低くして、カウンタ8がオーバーフローし
て補充電が終了するまでの時間を長くして補充電を十分
に行う。電池電圧の上昇が速く(自己放電量が少ないこ
とを示す)電圧がすぐに高くなるときには、VCO回路
7の発生するクロックの周波数が高くなり、カウンタ8
のオーバーフローまでの時間が短くなることで補充電の
時間が短くなり、過剰な補充電を行わず、電池6が過充
電になることを防ぐ。
First, an embodiment of the charging device of the first invention will be described with reference to FIGS. The charging device obtains a charging current and a power source for each block by the power supply circuit 1. The control circuit 9 detects the voltage and temperature of the nickel-hydrogen storage battery 6 through the signal line 13 for battery voltage and the signal line 14 from the temperature sensor 5. Only when the voltage is the voltage to be charged and the battery temperature is within the range where the rapid charging is possible, the rapid charging circuit 2 is operated, and at the same time, the switching circuit 4 is switched to the rapid charging circuit side to perform the rapid charging. Start. This time point corresponds to the leftmost time point in the graph of FIG. When the battery voltage and temperature match the conditions of full charge, the quick charge circuit 2 terminates the quick charge, and at the same time notifies the control circuit 9 of that fact. Control circuit 9 receives it and switches switching circuit 4 to auxiliary charging circuit 3 side. In the graph of FIG. 2, the time is te. Since the voltage of the battery 6 is sufficiently high at this point, the control circuit 9 sets the counter 8 in the reset state. Therefore, even if the clock is supplied from the VCO circuit 7, the output terminal of the counter 8 remains "L", the FET 15 in the auxiliary charging circuit 3 is turned off, and the auxiliary charging current does not flow to the battery 6. . After that, when time elapses and the battery 6 self-discharges and the battery voltage becomes Vs or less in FIG. 2, the control circuit 9 starts supplementary charging. The control circuit 9 releases the reset of the counter 8 and the counter starts counting. At this time, the VCO circuit 7 changes the frequency of the clock according to the battery voltage. That is, when the battery voltage rises slowly (indicating that the self-discharge amount is large) and the voltage is low, the frequency is lowered to lengthen the time until the counter 8 overflows and the supplementary charge is completed to sufficiently supplement the supplementary charge. To do. When the battery voltage rises quickly (indicating that the self-discharge amount is small) and becomes high immediately, the frequency of the clock generated by the VCO circuit 7 becomes high and the counter 8
By shortening the time until the overflow, the auxiliary charging time is shortened, the excessive auxiliary charging is not performed, and the battery 6 is prevented from being overcharged.
【0017】次に第2の発明の充電装置の一実施例につ
いて図2,図4を用いて説明する。急速充電の開始から
終了、切換回路の動作については第1の発明の充電装置
と全く同一の動作を行う。急速充電終了の時点は図3の
グラフではteの時点になる。この時点で、補充電回路
3の充電出力はクロック発生VCO回路16により補充
電回路3内のFET15がON−OFFされてパルス状
となっているがこの時点ではクロックのデューティ比が
小さく周期が長い(図3においてパルス列が疎の部分に
該当)ために、補充電回路3のパルス状充電出力を平均
した電気量は極めて少なく、電池6が過充電となること
はない。時間が経過して、自己放電が進み電池6の電圧
が低下してくるとVCO回路16の出力は次第にデュー
ティ比が大きく周期が長くなり(図3においてパルス列
が密の部分に該当)、補充電回路3のパルス状充電出力
を平均した電気量は多くなり、自己放電に見合っただけ
の補充電が行われる。補充電が進み、再び満充電に近づ
くと電池電圧が上昇してくるために、VCO回路16の
クロックは再びデューティ比が小さく周期が長くなっ
て、補充電回路3のパルス状充電出力を平均した電気量
は少なくなって過充電となることはない。このように電
池6の放電量に応じた電気量となるパルス状の補充電を
行うことにより、電池6が過充電になることを防ぐ。
Next, an embodiment of the charging device of the second invention will be described with reference to FIGS. The operation of the switching circuit from the start to the end of the rapid charging is exactly the same as that of the charging device of the first invention. The point of time when the rapid charging ends is the point of te in the graph of FIG. At this time, the charging output of the supplementary charging circuit 3 is in a pulse shape because the FET 15 in the supplementary charging circuit 3 is turned on and off by the clock generation VCO circuit 16, but at this time the duty ratio of the clock is small and the cycle is long. Since the pulse train corresponds to a sparse portion in FIG. 3, the average amount of electricity obtained by averaging the pulsed charging outputs of the auxiliary charging circuit 3 is extremely small, and the battery 6 will not be overcharged. As time goes by and self-discharge progresses and the voltage of the battery 6 decreases, the output of the VCO circuit 16 gradually has a large duty ratio and a long cycle (corresponding to the portion where the pulse train is dense in FIG. 3), and the auxiliary charging The amount of electricity obtained by averaging the pulsed charging output of the circuit 3 increases, and the auxiliary charging is performed in proportion to the self-discharge. Since the auxiliary charging progresses and the battery voltage rises when approaching the full charge again, the clock of the VCO circuit 16 has a small duty ratio and a long cycle, and the pulsed charging output of the auxiliary charging circuit 3 is averaged. The amount of electricity will not decrease and overcharge will not occur. In this way, by performing the pulse-shaped supplemental charging that provides the amount of electricity according to the amount of discharge of the battery 6, it is possible to prevent the battery 6 from being overcharged.
【0018】以上のように、第1の発明の一実施例の充
電装置では補充電を行う時間を、また第2の発明の一実
施例の充電装置ではパルス充電の平均電気量をそれぞれ
電池6の放電量に応じて可変することにより、安全・確
実に補充電を行うことができる。
As described above, in the charging device of the first embodiment of the invention, the time for supplementary charging is set, and in the charging device of the second embodiment of the invention, the average electric quantity of pulse charging is set to the battery 6 respectively. It is possible to perform safe and reliable supplementary charging by varying the discharge amount according to.
【0019】[0019]
【発明の効果】以上の各実施例の説明より明らかなよう
に、第1の発明の充電装置では、電池電圧が一定値以
下、電池温度が一定の範囲内にある場合に補充電を開始
し、VCO回路が発生する電池電圧に応じた周期のクロ
ックが一定数になるまでの時間に補充電を行い、電池の
放電具合に応じた時間の補充電を行うため、また第2の
発明の充電装置ではVCO回路が発生する電池電圧に応
じたデューティ比と周期のクロックによって充電電流が
パルス状に制御され、パルスを平均した電気量が電池の
放電具合に応じた補充電を行うため、ニッケル水素蓄電
池を安全かつ確実に補充電することが可能になるという
大きな効果があり、実用上有効な充電装置を提供する。
As is apparent from the above description of each embodiment, in the charging device of the first invention, supplementary charging is started when the battery voltage is below a certain value and the battery temperature is within a certain range. , In order to perform supplementary charge for a period of time until the number of clocks having a cycle corresponding to the battery voltage generated by the VCO circuit reaches a fixed number, and for supplementary charge for a period of time according to the discharge condition of the battery, and the charging of the second invention. In the device, the charging current is controlled in pulses by a clock having a duty ratio and a cycle corresponding to the battery voltage generated by the VCO circuit, and the amount of electricity averaged by the pulses performs supplementary charging according to the discharge condition of the battery. (EN) Provided is a practically effective charging device, which has a great effect that it is possible to supplementarily and safely charge a storage battery.
【0020】なお、実施例においては補充電回路の構成
要素としてFETを使用したが、充電電流の制御素子と
してトランジスタ、サイリスタ、電磁式リレーなど種々
の素子が使用できる。また、充電対象としてニッケル水
素蓄電池を取り挙げたが、金属リチウム蓄電池、リチウ
ムイオン蓄電池、ニッケルカドミウム蓄電池、ニッケル
亜鉛蓄電池、鉛蓄電池などの充電に応用できることは勿
論である。
Although the FET is used as a constituent element of the auxiliary charging circuit in the embodiments, various elements such as a transistor, a thyristor, and an electromagnetic relay can be used as a control element for the charging current. Further, although the nickel-hydrogen storage battery has been taken as an object to be charged, it is needless to say that it can be applied to the charging of a metal lithium storage battery, a lithium-ion storage battery, a nickel-cadmium storage battery, a nickel-zinc storage battery, a lead storage battery and the like.
【図面の簡単な説明】[Brief description of drawings]
【図1】第1の発明の一実施例の充電装置の構成を示す
ブロック図
FIG. 1 is a block diagram showing a configuration of a charging device according to an embodiment of the first invention.
【図2】第2の発明の一実施例の充電装置の構成を示す
ブロック図
FIG. 2 is a block diagram showing a configuration of a charging device according to an embodiment of the second invention.
【図3】図1で示された充電装置でニッケル水素蓄電池
を充電した場合の電池の端子電圧、充電電流の変化カー
ブを示したグラフ
3 is a graph showing a change curve of a terminal voltage and a charging current of a battery when a nickel-hydrogen storage battery is charged by the charging device shown in FIG.
【図4】図2で示された充電装置でニッケル水素蓄電池
を充電した場合の電池の端子電圧、充電電流の変化カー
ブを示したグラフ
FIG. 4 is a graph showing change curves of battery terminal voltage and charging current when a nickel-hydrogen storage battery is charged by the charging device shown in FIG.
【図5】従来の充電装置の構成を示すブロック図FIG. 5 is a block diagram showing a configuration of a conventional charging device.
【図6】図5の充電装置でニッケル水素蓄電池を充電し
た場合の電池の端子電圧、充電電流の変化カーブを示し
たグラフ
6 is a graph showing a change curve of a battery terminal voltage and a charging current when a nickel-hydrogen storage battery is charged by the charging device of FIG.
【符号の説明】[Explanation of symbols]
1 電源回路 2 急速充電回路 3 補充電回路 4 切換回路 5 温度センサー 6 ニッケル水素蓄電池 7 電圧制御発振回路(VCO回路) 8 カウンタ回路 9 制御回路 10 カウンタ出力端子 11 リセット端子 12 クロック出力 13 電池電圧検知の信号線 14 電池温度の信号線 16 電池電圧に応じてデューティ比と周期が変わる電
圧制御発振回路(VCO回路) 17 制御回路
1 Power Supply Circuit 2 Quick Charge Circuit 3 Auxiliary Charge Circuit 4 Switching Circuit 5 Temperature Sensor 6 Nickel Hydrogen Storage Battery 7 Voltage Control Oscillation Circuit (VCO Circuit) 8 Counter Circuit 9 Control Circuit 10 Counter Output Terminal 11 Reset Terminal 12 Clock Output 13 Battery Voltage Detection Signal line 14 battery temperature signal line 16 voltage controlled oscillator circuit (VCO circuit) 17 whose duty ratio and cycle change according to battery voltage 17 control circuit

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 電池を充電する充電装置であって、充電
    装置に電力を供給する電源手段と、充電装置に接続され
    た電池の電圧に応じて発生するクロックの周期が可変す
    る電圧制御発振手段と、前記電圧制御発振手段のクロッ
    ク出力の計数を行うカウンタ手段と、前記カウンタ手段
    のオーバーフロー出力に接続されて電池と電源手段の接
    続・切断を行うスイッチ手段とを備え、前記カウンタ手
    段のオーバーフロー出力で電池充電を制御するようにし
    たことを特徴とする充電装置。
    1. A charging device for charging a battery, comprising: a power supply means for supplying electric power to the charging device; and a voltage controlled oscillating means for varying a cycle of a clock generated according to a voltage of a battery connected to the charging device. And counter means for counting the clock output of the voltage controlled oscillation means, and switch means for connecting / disconnecting the battery and the power supply means connected to the overflow output of the counter means, and the overflow output of the counter means A charging device characterized in that the battery charging is controlled by.
  2. 【請求項2】 電池を充電する充電装置であって、充電
    装置に電力を供給する電源手段と、充電装置に接続され
    た電池の電圧に応じて発生するクロックのデューティ比
    と周期が可変する電圧制御発振手段と、前記電圧制御発
    振手段のクロック出力に接続されて電池と電源手段の接
    続・切断を行うスイッチ手段とを備え、前記電圧制御発
    振手段のクロック出力で電池充電を制御するようにした
    ことを特徴とする充電装置。
    2. A charging device for charging a battery, the power source means supplying electric power to the charging device, and a voltage having a variable duty cycle and cycle of a clock generated according to the voltage of the battery connected to the charging device. A control oscillating means and a switch means connected to the clock output of the voltage controlled oscillating means for connecting and disconnecting the battery and the power source means are provided, and the battery output is controlled by the clock output of the voltage controlled oscillating means. A charging device characterized in that.
JP25268793A 1993-10-08 1993-10-08 Charging device Expired - Fee Related JP3328025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25268793A JP3328025B2 (en) 1993-10-08 1993-10-08 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25268793A JP3328025B2 (en) 1993-10-08 1993-10-08 Charging device

Publications (2)

Publication Number Publication Date
JPH07111739A true JPH07111739A (en) 1995-04-25
JP3328025B2 JP3328025B2 (en) 2002-09-24

Family

ID=17240848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25268793A Expired - Fee Related JP3328025B2 (en) 1993-10-08 1993-10-08 Charging device

Country Status (1)

Country Link
JP (1) JP3328025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259260A (en) * 2007-04-02 2008-10-23 Matsushita Electric Ind Co Ltd Charging method of power supply
CN102130476A (en) * 2010-01-18 2011-07-20 上海果壳电子有限公司 Electronic equipment quick-acting charging device based on dynamic switching and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259260A (en) * 2007-04-02 2008-10-23 Matsushita Electric Ind Co Ltd Charging method of power supply
CN102130476A (en) * 2010-01-18 2011-07-20 上海果壳电子有限公司 Electronic equipment quick-acting charging device based on dynamic switching and using method thereof

Also Published As

Publication number Publication date
JP3328025B2 (en) 2002-09-24

Similar Documents

Publication Publication Date Title
US20190222051A1 (en) Methods and systems for recharging a battery
JP3832660B2 (en) Charger
CN101267124B (en) Battery pack
JP4009537B2 (en) Charge control device, battery management system, battery pack, and secondary battery deterioration determination method using the same
US8350531B2 (en) Secondary battery charge control method and charge control circuit
US10340719B2 (en) Secondary battery charging method
US5229650A (en) Uniterruptible power system
JP2771036B2 (en) Method and apparatus for charging, defrosting and formatting a storage battery
US6373224B1 (en) Battery accumulating apparatus
EP2452413B1 (en) Battery charging method and apparatus
US8134342B2 (en) Method for pulsed charging of a battery in an autonomous system comprising a supercapacitance
US6037751A (en) Method and apparatus for charging batteries
US6137265A (en) Adaptive fast charging of lithium-ion batteries
US4238721A (en) System and method for charging electrochemical cells in series
US5637981A (en) Method for charging a secondary battery and charger used therefor using constant current and constant voltage
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
US4308493A (en) Charging of alkaline storage batteries
TWI536702B (en) Method and apparatus for recharging a battery
US6337560B1 (en) Life cycle charging for batteries
US8330427B2 (en) Charge control circuit, and charging device and battery pack incorporated with the same
JP4135037B1 (en) Battery pack and battery pack charging / discharging method
US5237259A (en) Charging method for secondary battery
US3987352A (en) Method of charging storage battery in power supply system having another battery of larger capacity
US6081097A (en) Method for charging lithium secondary battery
US20020014879A1 (en) Method for charging battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20070712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090712

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130712

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees