JPH07107677A - Cleaner for secondary battery - Google Patents

Cleaner for secondary battery

Info

Publication number
JPH07107677A
JPH07107677A JP5268413A JP26841393A JPH07107677A JP H07107677 A JPH07107677 A JP H07107677A JP 5268413 A JP5268413 A JP 5268413A JP 26841393 A JP26841393 A JP 26841393A JP H07107677 A JPH07107677 A JP H07107677A
Authority
JP
Japan
Prior art keywords
voltage
charging
secondary battery
output
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5268413A
Other languages
Japanese (ja)
Inventor
Takao Kurebayashi
孝夫 紅林
Sadao Kaiya
禎夫 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Nagano Japan Radio Co Ltd
A&T Battery Corp
Original Assignee
Japan Radio Co Ltd
Nagano Japan Radio Co Ltd
A&T Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd, Nagano Japan Radio Co Ltd, A&T Battery Corp filed Critical Japan Radio Co Ltd
Priority to JP5268413A priority Critical patent/JPH07107677A/en
Publication of JPH07107677A publication Critical patent/JPH07107677A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To charge a secondary battery completely by raising its charging rate, and to reduce the cost by a simple circuit structure. CONSTITUTION:In a secondary battery charger 1 for charging a nonaqueous secondary battery by the use of a carbonaceous material which can be doped with lithium ions or dedoped as a negative electrode active substance, an output voltage correcting circuit 2 is provided. It has a charge current vs. output voltage characteristic which raises (or lowers) output voltage Vo corresponding to the increase (or decrease) of charge current Io, so that especially, impressed voltage Vb to the body Bo of a secondary battery excluding the resistance component Rm connected in series is approximately constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は負極活物質としてリチウ
ムイオンをドープ又は脱ドープし得る炭素質材料を用い
た非水系二次電池を充電するための二次電池の充電装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery charging device for charging a non-aqueous secondary battery using a carbonaceous material capable of doping or dedoping lithium ions as a negative electrode active material.

【0002】[0002]

【従来技術及び課題】従来、負極活物質としてリチウム
イオンをドープ又は脱ドープし得る炭素質材料を用いた
非水系二次電池を充電するに際し、出力する充電電流I
oの大きさ又は出力電圧Voの大きさを一定に制御する
とともに、出力電圧Voが一定となる領域における充電
電流Ioの大きさが、予め設定した設定値まで減少した
なら充電を終了させるようにした二次電池の充電装置
は、例えば、特開平5−111184号公報で知られて
いる。なお、この場合の充電電流Io対出力電圧Vo特
性を図5に示す。
2. Description of the Related Art Conventionally, when charging a non-aqueous secondary battery using a carbonaceous material that can be doped or dedoped with lithium ions as a negative electrode active material, a charging current I to be output is output.
The magnitude of o or the magnitude of the output voltage Vo is controlled to be constant, and the charging is terminated when the magnitude of the charging current Io in the area where the output voltage Vo is constant decreases to a preset value. The secondary battery charging device is known from, for example, Japanese Patent Laid-Open No. 5-111184. The charging current Io vs. output voltage Vo characteristic in this case is shown in FIG.

【0003】ところで、この種の非水系二次電池は過電
圧に弱いため、通常、二次電池の電池ケース内には保護
回路を組込んで電池の保護を図っている。しかし、この
場合、二次電池本体に保護回路が直列に接続されること
になり、充電装置の出力電圧Voを必要とする充電電圧
に設定しても、保護回路の抵抗分により電圧降下が発生
し、図5に示すように、二次電池本体に印加される実際
の印加電圧Vbは出力電圧Voよりも低くなる。なお、
電圧降下の大きさは充電電流Ioの大きさに依存し、充
電初期から中期においては充電電流Ioが大きくなるた
め、電圧降下は大きくなるとともに、充電後期において
は充電電流Ioが小さくなるため、電圧降下は小さくな
る。
By the way, since this type of non-aqueous secondary battery is vulnerable to overvoltage, a protection circuit is usually incorporated in the battery case of the secondary battery to protect the battery. However, in this case, the protection circuit is connected in series to the secondary battery body, and even if the output voltage Vo of the charging device is set to the required charging voltage, a voltage drop occurs due to the resistance of the protection circuit. However, as shown in FIG. 5, the actual applied voltage Vb applied to the secondary battery main body becomes lower than the output voltage Vo. In addition,
The magnitude of the voltage drop depends on the magnitude of the charging current Io. Since the charging current Io increases from the initial charging period to the middle charging period, the voltage drop increases and the charging current Io decreases in the latter charging period. The descent will be small.

【0004】このように、この種の非水系二次電池で
は、充電時における二次電池本体に対する印加電圧Vb
が必要とする充電電圧よりも全体に低くなるとともに、
充電後期では充電電流Ioの減少に伴って、二次電池本
体への印加電圧Vbは次第に高くなる。したがって、二
次電池の保護回路を作動させないためにも、安全率を見
込んで、ある程度低い印加電圧Vbにおいて充電を終了
せざるを得ず、充電率の低下を来す問題があった。
As described above, in this type of non-aqueous secondary battery, the applied voltage Vb to the secondary battery main body during charging is
Is lower than the charging voltage required by the
In the latter half of charging, the applied voltage Vb to the secondary battery main body gradually increases as the charging current Io decreases. Therefore, even if the protection circuit of the secondary battery is not activated, the safety factor must be taken into consideration and the charging must be terminated at a somewhat low applied voltage Vb, which causes a problem that the charging factor is lowered.

【0005】本発明はこのような従来技術に存在する課
題を解決したものであり、二次電池の充電率を高めるこ
とにより完全充電を達成できるとともに、簡易な回路構
成により低コストに実現できる二次電池の充電装置の提
供を目的とする。
The present invention has solved the problems existing in the prior art as described above. It is possible to achieve full charge by increasing the charging rate of the secondary battery and to realize it at low cost with a simple circuit configuration. The purpose is to provide a charging device for a secondary battery.

【0006】[0006]

【課題を解決するための手段】本発明は負極活物質とし
てリチウムイオンをドープ又は脱ドープし得る炭素質材
料を用いた非水系二次電池を充電するための二次電池の
充電装置1を構成するに際して、特に、直列に接続され
る抵抗分Rmを除く二次電池本体Boに対する印加電圧
Vbが略一定となるように、充電電流Ioの増加(又は
減少)に対応して出力電圧Voを高く(又は低く)する
充電電流対出力電圧特性を有する出力電圧補正回路2を
具備することを特徴とする。
The present invention comprises a secondary battery charging device 1 for charging a non-aqueous secondary battery using a carbonaceous material capable of doping or dedoping lithium ions as a negative electrode active material. In doing so, in particular, the output voltage Vo is increased corresponding to the increase (or decrease) of the charging current Io so that the applied voltage Vb to the secondary battery body Bo excluding the resistance component Rm connected in series becomes substantially constant. An output voltage correction circuit 2 having a charging current vs. output voltage characteristic to (or lower) is provided.

【0007】この場合、出力電圧補正回路2はアースラ
イン側出力部4nと充電回路本体3のアースライン5n
間に接続した電流検出抵抗6と、ホットライン側出力部
4pと充電回路本体3のアースライン5n間に接続した
電圧検出抵抗部7と、電圧検出抵抗部7から検出した第
一検出電圧V1と電流検出抵抗6の端子電圧に対応して
変化する第二検出電圧V2をコンパレータ9の入力部に
付与することにより、コンパレータ9の出力部に第一検
出電圧V1と第二検出電圧V2の偏差に基づく制御電圧
Vcを得る制御電圧生成部8と、制御電圧Vcに基づい
てホットライン5pに流れる電流を制御する出力制御部
10を備えて構成できる。また、電圧検出抵抗部7は直
列接続した一対の分圧抵抗7a、7bにより構成し、分
圧抵抗7aと7b同士の接続部7cから第一検出電圧V
1を検出することができる。
In this case, the output voltage correction circuit 2 includes the ground line side output section 4n and the ground line 5n of the charging circuit body 3.
The current detection resistor 6 connected between them, the voltage detection resistor unit 7 connected between the hot line side output unit 4p and the ground line 5n of the charging circuit body 3, and the first detection voltage V1 detected from the voltage detection resistor unit 7. By applying the second detection voltage V2, which changes corresponding to the terminal voltage of the current detection resistor 6, to the input section of the comparator 9, the output section of the comparator 9 has a difference between the first detection voltage V1 and the second detection voltage V2. A control voltage generation unit 8 that obtains a control voltage Vc based on the control voltage Vc and an output control unit 10 that controls the current flowing through the hot line 5p based on the control voltage Vc can be provided. The voltage detection resistor unit 7 is composed of a pair of voltage dividing resistors 7a and 7b connected in series, and the first detection voltage V is supplied from the connecting portion 7c between the voltage dividing resistors 7a and 7b.
1 can be detected.

【0008】[0008]

【作用】本発明に係る二次電池の充電装置1によれば、
出力電圧補正回路2を備えるため、出力電圧補正回路2
に基づく充電電流Io対出力電圧Vo特性により、出力
電圧Voは充電電流Ioの増加(又は減少)に対応して
高く(又は低く)なる。したがって、当該充電装置1に
二次電池を接続して充電を行えば、充電初期〜中期は充
電電流Ioが大きくなり、二次電池本体Boに直列に接
続される抵抗分Rmによる電圧降下が大きくなるため、
出力電圧補正回路2により出力電圧Voが高められると
ともに、充電後期には充電電流Ioが小さくなり、抵抗
分Rmによる電圧降下が小さくなるため、出力電圧補正
回路2により出力電圧Voが低くなるように電圧降下分
が補正される。これにより、充電電流Ioが増減しても
二次電池本体Boに対する印加電圧Vbは略一定に維持
される。
According to the secondary battery charging device 1 of the present invention,
Since the output voltage correction circuit 2 is provided, the output voltage correction circuit 2
Due to the charging current Io vs. output voltage Vo characteristic based on, the output voltage Vo becomes higher (or lower) corresponding to the increase (or decrease) of the charging current Io. Therefore, if a secondary battery is connected to the charging device 1 and charging is performed, the charging current Io becomes large in the initial to middle stages of charging, and the voltage drop due to the resistance Rm connected in series to the secondary battery main body Bo is large. Because,
Since the output voltage Vo is increased by the output voltage correction circuit 2 and the charging current Io is decreased in the latter half of charging and the voltage drop due to the resistance component Rm is decreased, the output voltage Vo is decreased by the output voltage correction circuit 2. The voltage drop is corrected. As a result, the applied voltage Vb to the secondary battery body Bo is maintained substantially constant even if the charging current Io increases or decreases.

【0009】この場合、出力電圧補正回路2の具体的構
成によれば、まず、電圧検出抵抗部7、即ち、直列接続
した一対の分圧抵抗7a、7b同士の接続部7cから
は、出力電圧に対応した第一検出電圧V1が検出され、
制御電圧生成部8におけるコンパレータ9の非反転入力
部に付与される。また、電流検出抵抗6には充電電流I
oに対応した端子電圧Vsが発生し、この端子電圧Vs
に対応して変化する第二検出電圧V2はコンパレータ9
の反転入力部に付与される。これにより、コンパレータ
9の出力部には第一検出電圧V1と第二検出電圧V2の
偏差に基づく制御電圧Vcを得、この制御電圧Vcは出
力制御部10に付与される。そして、制御電圧Vcに基
づいてホットライン5pに流れる電流が制御される。し
たがって、充電電流Ioが増加して端子電圧Vsが上昇
すれば、これに伴って第二検出電圧V2が高くなり、制
御電圧Vcに基づく出力制御部10の機能により出力電
圧Voが高くなるように制御される。
In this case, according to the specific configuration of the output voltage correction circuit 2, first, the output voltage is output from the voltage detection resistor portion 7, that is, the connection portion 7c between the pair of voltage dividing resistors 7a and 7b connected in series. The first detection voltage V1 corresponding to
It is applied to the non-inverting input section of the comparator 9 in the control voltage generation section 8. Further, the charging current I is applied to the current detection resistor 6.
A terminal voltage Vs corresponding to o is generated, and this terminal voltage Vs
The second detection voltage V2 that changes corresponding to
Is added to the inverting input section of. As a result, a control voltage Vc based on the deviation between the first detection voltage V1 and the second detection voltage V2 is obtained at the output part of the comparator 9, and this control voltage Vc is given to the output control part 10. Then, the current flowing through the hot line 5p is controlled based on the control voltage Vc. Therefore, when the charging current Io increases and the terminal voltage Vs rises, the second detection voltage V2 rises accordingly, so that the output voltage Vo rises due to the function of the output control unit 10 based on the control voltage Vc. Controlled.

【0010】[0010]

【実施例】次に、本発明に係る好適な実施例を挙げ、図
面に基づき詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments according to the present invention will be described in detail with reference to the drawings.

【0011】まず、本発明に係る充電装置1により充電
を行うことができる二次電池Bについて、図2を参照し
て説明する。
First, a secondary battery B which can be charged by the charging device 1 according to the present invention will be described with reference to FIG.

【0012】二次電池Bは非水系であり、原理的にはセ
パレータSを介した正極活物質Yと負極活物質Xを有
し、正極活物質Yにおける集電体Ypが正(+)極、負
極活物質Xにおける集電体Xpが負(−)極となる。
The secondary battery B is a non-aqueous system, and in principle has a positive electrode active material Y and a negative electrode active material X via a separator S, and the current collector Yp in the positive electrode active material Y is a positive (+) electrode. The current collector Xp in the negative electrode active material X becomes a negative (−) electrode.

【0013】正極活物質Yは、リチウムイオン(L
+)を脱ドープ又はドープし得る物質であればよく、
リチウムコバルト酸化物、例えば、LiXCoYZ
2(ただし、MはAl、In、Snの中から選択した少
なくとも一種の金属、また、X、Y、Zは各々0<X≦
1.1、0.5<Y≦1、Z≦0.1の数をそれぞれ表
す。)、LiXCoO2(0<X≦1)、LiXCoYNi
Z2(0<X≦1、Y+Z=1)、リチウムニッケル酸
化物、例えば、LiXNiO2(0<X≦1)、リチウム
マンガン酸化物、例えば、LiXMnO2、LiXMn2
4(0<X≦1)、LiCoXMn2-X4(0<X≦0.
5)、リチウムクロム酸化物、例えば、LiXCr38
(0<X≦1)、LiCrO2、リチウムバナジウム酸
化物、例えば、LiX25(0<X≦1)、LiX6
13、Li1+X38、リチウムモリブデン酸化物、例
えば、LiXMoO3、リチウムモリブデン二硫化物、例
えば、LiXMoS2、リチウムチタン酸化物、例えば、
LiXTi24、リチウムチタン硫化物、例えば、LiX
Ti22等を利用する。なお、特に、好ましいのはリチ
ウムコバルト酸化物、リチウムマンガン酸化物である。
The positive electrode active material Y is a lithium ion (L
i + ), as long as it is a substance capable of dedoping or doping,
Lithium cobalt oxide, such as Li X Co Y M Z O
2 (where M is at least one metal selected from Al, In and Sn, and X, Y and Z are each 0 <X ≦
1.1, 0.5 <Y ≦ 1, Z ≦ 0.1, respectively. ), Li X CoO 2 (0 <X ≦ 1), Li X Co Y Ni
Z O 2 (0 <X ≦ 1, Y + Z = 1), lithium nickel oxide such as Li X NiO 2 (0 <X ≦ 1), lithium manganese oxide such as Li X MnO 2 , Li X Mn 2 O
4 (0 <X ≦ 1), LiCo X Mn 2-X O 4 (0 <X ≦ 0.
5), lithium chrome oxides such as Li X Cr 3 O 8
(0 <X ≦ 1), LiCrO 2 , lithium vanadium oxide, for example, Li X V 2 O 5 (0 <X ≦ 1), Li X V 6
O 13 , Li 1 + X V 3 O 8 , lithium molybdenum oxide, for example, Li X MoO 3 , lithium molybdenum disulfide, for example, Li X MoS 2 , lithium titanium oxide, for example,
Li X Ti 2 O 4 , lithium titanium sulfide, for example, Li X
Ti 2 S 2 or the like is used. In addition, especially preferable are lithium cobalt oxide and lithium manganese oxide.

【0014】一方、負極活物質Xは、リチウムイオン
(Li+)をドープ又は脱ドープし得る炭素質材料、例
えば、グラファイト、熱分解炭素、ピッチコークス、ニ
ードルコークス、石油コークス、有機高分子の焼成体
(フェノール樹脂、フラン樹脂、ポリアクリロニトリル
等の焼成体)等を利用する。
On the other hand, the negative electrode active material X is a carbonaceous material capable of being doped or dedoped with lithium ions (Li + ), for example, graphite, pyrolytic carbon, pitch coke, needle coke, petroleum coke, organic polymer firing. The body (phenol resin, furan resin, polyacrylonitrile, etc.) is used.

【0015】正極活物質Yと負極活物質Xはそれぞれ粒
子状とし、金属箔を用いた集電体YpとXpにそれぞれ
塗工する。そして、セパレータSを介して渦巻状に巻回
し、さらに、電池缶Kに収容してリード線を取付けると
ともに、電解質溶液L(非水質)を含浸し封止する。
The positive electrode active material Y and the negative electrode active material X are each in the form of particles and are applied to the current collectors Yp and Xp using a metal foil, respectively. Then, it is spirally wound through the separator S, further housed in the battery can K and attached with lead wires, and impregnated with the electrolyte solution L (non-aqueous) and sealed.

【0016】なお、非水系電解質溶液Lにおける電解質
は、例えば、LiClO4、LiAsF6、LiPF6
LiBF4、CH3SO3Li、CF3SO3Li、(CF3
SO22NLi等のリチウム塩のいずれか一種又は二種
以上を混合して使用する。また、電解質溶液Lの溶媒
は、例えば、プロピレンカーボネ−ト、エチレンカーボ
ネート、ジメチルカーボネート、ジエチルカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、2−
メチルテトラヒドロフラン、1,3−ジオキソラン、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトリル、ギ酸メチル、ギ酸エチル、酢酸メチル、酢
酸エチル等のいずれか一種又は二種以上を混合して使用
する。
The electrolyte in the non-aqueous electrolyte solution L is, for example, LiClO 4 , LiAsF 6 , LiPF 6 ,
LiBF 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3
Any one kind or a mixture of two or more kinds of lithium salts such as SO 2 ) 2 NLi is used. The solvent of the electrolyte solution L is, for example, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-
Any one kind or a mixture of two or more kinds of methyltetrahydrofuran, 1,3-dioxolane, sulfolane, methylsulfolane, acetonitrile, propionitrile, methyl formate, ethyl formate, methyl acetate, ethyl acetate and the like is used.

【0017】さらに、セパレータSは、ポリエチレン、
ポリプロピレン等のポリオレフィンの微多孔膜の一種又
は二種以上の貼合わせ膜、ポリオレフィン、ポリエステ
ル、ポリアミド、セルロース等の不織布の単独膜又は前
記微多孔膜との貼合わせ膜を使用する。なお、特に、好
ましいのはポリエチレン製の微多孔膜である。
Further, the separator S is made of polyethylene,
One or two or more kinds of laminating films of polyolefin microporous film such as polypropylene, a single film of non-woven fabric of polyolefin, polyester, polyamide, cellulose or the like or a laminating film with the microporous film is used. A polyethylene microporous film is particularly preferable.

【0018】次に、このような非水系二次電池の充電に
用いて好適な本実施例に係る充電装置1の構成につい
て、図1を参照して説明する。
Next, the configuration of the charging device 1 according to this embodiment, which is suitable for charging such a non-aqueous secondary battery, will be described with reference to FIG.

【0019】図1において、1は充電装置、Bは充電装
置1に接続した二次電池である。充電装置1には交流入
力部21a、21b、交流入力部21a、21bに供給
された交流入力を整流し、かつ平滑して直流を出力する
充電回路本体3、充電回路本体3の出力側に接続する出
力電圧補正回路2を有する安定化回路22を備える。な
お、安定化回路22には通常定電流回路を含むが、本実
施例では省略されている。また、4pはホットライン側
出力部、4nはアースライン側出力部であり、ホットラ
イン側出力部4p及びアースライン側出力部4nに二次
電池Bが接続される。なお、二次電池Bは二次電池本体
Boと保護回路を内蔵し、二次電池本体Boには保護回
路の抵抗分Rmが直列に接続される。
In FIG. 1, 1 is a charging device, and B is a secondary battery connected to the charging device 1. Connected to the charging device 1 is an AC input unit 21a, 21b, a charging circuit body 3 that rectifies and smoothes the AC input supplied to the AC input unit 21a, 21b, and outputs DC, and an output side of the charging circuit body 3. The stabilization circuit 22 having the output voltage correction circuit 2 for The stabilizing circuit 22 usually includes a constant current circuit, but it is omitted in this embodiment. Further, 4p is a hot line side output section, 4n is an earth line side output section, and the secondary battery B is connected to the hot line side output section 4p and the earth line side output section 4n. The secondary battery B has a built-in secondary battery body Bo and a protection circuit, and the resistance component Rm of the protection circuit is connected in series to the secondary battery body Bo.

【0020】次に、本実施例に係る充電装置1に備える
出力電圧補正回路2の構成について、具体的に説明す
る。出力電圧補正回路2において、10は出力制御部で
あり、制御トランジスタ23、24を備える。制御トラ
ンジスタ23のコレクタは充電回路本体3側のホットラ
イン5pに接続するとともに、エミッタはホットライン
側出力部4pに接続する。また、制御トランジスタ24
のコレクタは制御トランジスタ23のベースに接続する
とともに、制御トランジスタ24のエミッタはアースラ
イン5nに接続する。なお、Raは制御トランジスタ2
3のエミッタ−ベース間に接続したバイアス抵抗を示
す。
Next, the configuration of the output voltage correction circuit 2 provided in the charging device 1 according to this embodiment will be specifically described. In the output voltage correction circuit 2, 10 is an output control unit, which includes control transistors 23 and 24. The collector of the control transistor 23 is connected to the hot line 5p on the charging circuit body 3 side, and the emitter is connected to the hot line side output section 4p. In addition, the control transistor 24
Is connected to the base of the control transistor 23, and the emitter of the control transistor 24 is connected to the ground line 5n. Ra is the control transistor 2
3 shows a bias resistor connected between the emitter and the base of FIG.

【0021】また、アースライン側出力部4nは電流検
出抵抗6を介して充電回路本体3側のアースライン5n
に接続する。一方、ホットライン側出力部4pと充電回
路本体3側のアースライン5n間には電圧検出抵抗部7
を接続する。電圧検出抵抗部7は直列接続した一対の分
圧抵抗7aと7bにより構成する。他方、8は制御電圧
生成部であり、コンパレータ9を備える。コンパレータ
9の非反転入力部は分圧抵抗7aと7b同士の接続部7
cに接続するとともに、コンパレータ9の反転入力部と
アースライン側出力部4n間には定電圧ダイオード25
を接続する。そして、コンパレータ9の出力部は制御ト
ランジスタ24のベースに接続する。
The earth line side output unit 4n is connected to the earth line 5n on the charging circuit body 3 side via the current detection resistor 6.
Connect to. On the other hand, the voltage detection resistor unit 7 is provided between the hot line side output unit 4p and the ground line 5n on the charging circuit body 3 side.
Connect. The voltage detection resistor unit 7 is composed of a pair of voltage dividing resistors 7a and 7b connected in series. On the other hand, 8 is a control voltage generation unit, which includes a comparator 9. The non-inverting input part of the comparator 9 is a connecting part 7 between the voltage dividing resistors 7a and 7b.
A constant voltage diode 25 is connected between the inverting input part of the comparator 9 and the ground line side output part 4n
Connect. The output of the comparator 9 is connected to the base of the control transistor 24.

【0022】なお、電流検出抵抗6の抵抗値Rsの大き
さ及び分圧抵抗7a、7bの大きさにより、充電電流I
oが増減しても、直列に接続される抵抗分Rmを除く二
次電池本体Boへの印加電圧Vbが略一定となるように
設定できる。
The charging current I depends on the size of the resistance value Rs of the current detection resistor 6 and the sizes of the voltage dividing resistors 7a and 7b.
Even if o increases or decreases, the applied voltage Vb to the secondary battery main body Bo excluding the resistance component Rm connected in series can be set to be substantially constant.

【0023】次に、本実施例に係る充電装置1の動作に
ついて、図1、図3及び図4を参照して説明する。
Next, the operation of the charging device 1 according to this embodiment will be described with reference to FIGS. 1, 3 and 4.

【0024】充電装置1よる充電電流Io対出力電圧V
o及び印加電圧Vb特性は、図4に示すようになる。即
ち、同図から明らかなように、充電電流Ioが増加すれ
ば、これに対応して充電装置1の出力電圧Voも高くな
るが、二次電池本体Boに印加される印加電圧Vbはほ
ぼ一定に維持される。したがって、充電電流Ioが零の
ときに、二次電池本体Boに必要な本来の印加電圧Vb
を設定しておけば、二次電池本体Boに対して常に正規
の電圧を付与できる。
Charging current Io vs. output voltage V of the charging device 1
The o and applied voltage Vb characteristics are as shown in FIG. That is, as is apparent from the figure, when the charging current Io increases, the output voltage Vo of the charging device 1 also increases correspondingly, but the applied voltage Vb applied to the secondary battery body Bo is substantially constant. Maintained at. Therefore, when the charging current Io is zero, the original applied voltage Vb required for the secondary battery main body Bo is required.
By setting, the regular voltage can be always applied to the secondary battery body Bo.

【0025】よって、充電時における充電初期〜中期の
期間は、図3に示すように充電電流Isによる定電流充
電領域となる。この領域では充電の進行に伴って、出力
電圧Vo及び印加電圧Vbは次第に上昇し、最終的には
図4に示すように、出力電圧Voは最大電圧Vomに達
するとともに、印加電圧Vbも最大電圧Vbmに達す
る。なお、最大電圧Vbmは二次電池本体Boに対する
最大許容印加電圧である。一方、最大電圧Vbmに達す
れば、定電圧制御領域に移行し、これに伴って充電電流
Ioは図3に示すように次第に低下する。また、前記抵
抗分Rmによる電圧降下も低下するが、同時に、出力電
圧Voも図4に示すように低下し、印加電圧Vbは最大
電圧Vbmに保持される。そして、充電電流Ioが予め
設定した設定値まで減少したなら充電を終了させる。な
お、図3において仮想線は従来装置(図5の特性)を用
いた場合を示すが、従来装置による印加電圧はVbrで
示すように、本発明による印加電圧Vbmよりも低くな
るとともに、これに伴って充電電流もIorで示すよう
に減少点が早まり、充電率が低下する。しかし、本発明
に係る充電装置1では充電率を飛躍的に高めることがで
き、実験値では1時間後の充電率を概ね85%から95
%に向上させることができた。
Therefore, during the charging from the initial charging period to the middle charging period, as shown in FIG. 3, the constant current charging region is the charging current Is. In this region, the output voltage Vo and the applied voltage Vb gradually increase with the progress of charging, and finally, as shown in FIG. 4, the output voltage Vo reaches the maximum voltage Vom and the applied voltage Vb also reaches the maximum voltage. Reach Vbm. The maximum voltage Vbm is the maximum allowable voltage applied to the secondary battery body Bo. On the other hand, when the maximum voltage Vbm is reached, the voltage shifts to the constant voltage control region, and accordingly, the charging current Io gradually decreases as shown in FIG. Further, the voltage drop due to the resistance component Rm also decreases, but at the same time, the output voltage Vo also decreases as shown in FIG. 4, and the applied voltage Vb is held at the maximum voltage Vbm. Then, if the charging current Io has decreased to a preset value, charging is terminated. In FIG. 3, the phantom line shows the case where the conventional device (characteristic of FIG. 5) is used, but the applied voltage by the conventional device becomes lower than the applied voltage Vbm according to the present invention as indicated by Vbr, and Along with this, the charging current also has an earlier decreasing point as indicated by Ior, and the charging rate decreases. However, in the charging device 1 according to the present invention, the charging rate can be dramatically increased, and the experimental value shows that the charging rate after 1 hour is approximately 85% to 95%.
Could be improved to%.

【0026】なお、この場合、出力電圧補正回路2にお
いては、充電電流Ioの増加(又は減少)により電流検
出抵抗6の端子電圧Vsの大きさが高く(又は低く)な
り、第二検出電圧V2を大きく(又は小さく)するよう
に作用する。この結果、コンパレータ9の出力部には第
一検出電圧V1と第二検出電圧V2の偏差に基づく制御
電圧Vcを得、この制御電圧Vcは出力制御部10にお
ける制御トランジスタ24のベースに付与される。これ
により、制御トランジスタ23及び24が制御され、出
力電圧Voを高く(又は低く)するようにホットライン
5pに流れる電流を制御する。この際、電流検出抵抗6
の抵抗値Rsは、前記抵抗分Rmによる影響が排される
条件に設定されているため、当該抵抗分Rmによる電圧
降下はキャンセルされ、充電電流Ioの増減に影響され
ることなく、二次電池本体Boに対する印加電圧Vbの
変動を抑制できる。
In this case, in the output voltage correction circuit 2, the terminal voltage Vs of the current detection resistor 6 becomes higher (or lower) due to the increase (or decrease) of the charging current Io, and the second detection voltage V2. To increase (or decrease). As a result, a control voltage Vc based on the deviation between the first detection voltage V1 and the second detection voltage V2 is obtained at the output part of the comparator 9, and this control voltage Vc is given to the base of the control transistor 24 in the output control part 10. . As a result, the control transistors 23 and 24 are controlled, and the current flowing through the hot line 5p is controlled so as to increase (or decrease) the output voltage Vo. At this time, the current detection resistor 6
Since the resistance value Rs of the secondary battery is set to the condition that the influence of the resistance component Rm is eliminated, the voltage drop due to the resistance component Rm is canceled, and the secondary battery is not affected by the increase or decrease of the charging current Io. The fluctuation of the applied voltage Vb with respect to the main body Bo can be suppressed.

【0027】以上、実施例について詳細に説明したが、
本発明はこのような実施例に限定されるものではない。
例えば、抵抗分Rmは二次電池の保護回路によるものを
挙げたが、接続コード自身の抵抗分等も包含する概念で
ある。また、電圧検出抵抗部は単一抵抗の使用を妨げる
ものではない。さらにまた、電流検出抵抗は定電流回路
を構成する場合の電流検出用に兼用できる。その他、細
部の回路構成、手法等において本発明の要旨を逸脱しな
い範囲で任意に変更できる。
The embodiment has been described in detail above.
The present invention is not limited to such an embodiment.
For example, although the resistance component Rm is based on the protection circuit of the secondary battery, it is a concept including the resistance component of the connection cord itself. Further, the voltage detection resistor section does not prevent the use of a single resistor. Furthermore, the current detection resistor can also be used for current detection when forming a constant current circuit. In addition, the detailed circuit configuration and method may be arbitrarily changed without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】このように、本発明は負極活物質として
リチウムイオンをドープ又は脱ドープし得る炭素質材料
を用いた非水系二次電池を充電するための二次電池の充
電装置において、特に、直列に接続される抵抗分を除く
二次電池本体に対する印加電圧が略一定となるように、
充電電流の増加(又は減少)に対応して出力電圧を高く
(又は低く)する充電電流対出力電圧特性を有する出力
電圧補正回路を具備するため、二次電池の充電率を高め
ることにより完全充電を達成できるとともに、簡易な回
路構成により低コストに実現できるという顕著な効果を
奏する。
As described above, the present invention relates to a secondary battery charging device for charging a non-aqueous secondary battery using a carbonaceous material capable of being doped or dedoped with lithium ions as a negative electrode active material, , So that the applied voltage to the main body of the secondary battery, excluding the resistance connected in series, is approximately constant,
Equipped with an output voltage correction circuit that has a charging current vs. output voltage characteristic that raises (or lowers) the output voltage in response to an increase (or decrease) in the charging current, thus increasing the charging rate of the secondary battery to achieve full charging. And a remarkable effect that it can be realized at a low cost with a simple circuit configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る充電装置のブロック回路図、FIG. 1 is a block circuit diagram of a charging device according to the present invention,

【図2】非水系二次電池の原理構成図、FIG. 2 is a principle configuration diagram of a non-aqueous secondary battery,

【図3】同充電装置による充電特性図、FIG. 3 is a charging characteristic diagram of the charging device,

【図4】同充電装置による負荷電流対出力電圧(印加電
圧)特性図、
FIG. 4 is a characteristic diagram of load current vs. output voltage (applied voltage) by the same charging device,

【図5】従来の技術に係る充電装置による負荷電流対出
力電圧(印加電圧)特性図、
FIG. 5 is a characteristic diagram of load current vs. output voltage (applied voltage) by a charging device according to a conventional technique,

【符号の説明】[Explanation of symbols]

1 充電装置 2 出力電圧補正回路 3 充電回路本体 4p ホットライン側出力部 4n アースライン側出力部 5p ホットライン 5n アースライン 6 電流検出抵抗 7 電圧検出抵抗部 7a 分圧抵抗 7b 分圧抵抗 7c 接続部 8 制御電圧生成部 9 コンパレータ 10 出力制御部 B 二次電池 Bo 二次電池本体 Rm 抵抗分 Vb 印加電圧 Vo 出力電圧 Io 充電電流 V1 第一検出電圧 V2 第二検出電圧 Vc 制御電圧 1 Charging device 2 Output voltage correction circuit 3 Charging circuit main body 4p Hot line side output part 4n Earth line side output part 5p Hot line 5n Earth line 6 Current detection resistor 7 Voltage detection resistor part 7a Voltage dividing resistor 7b Voltage dividing resistor 7c Connection part 8 Control Voltage Generation Section 9 Comparator 10 Output Control Section B Secondary Battery Bo Secondary Battery Main Body Rm Resistance Vb Applied Voltage Vo Output Voltage Io Charging Current V1 First Detection Voltage V2 Second Detection Voltage Vc Control Voltage

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質としてリチウムイオンをドー
プ又は脱ドープし得る炭素質材料を用いた非水系二次電
池を充電するための二次電池の充電装置において、直列
に接続される抵抗分を除く二次電池本体に対する印加電
圧が略一定となるように、充電電流の増加(又は減少)
に対応して出力電圧を高く(又は低く)する充電電流対
出力電圧特性を有する出力電圧補正回路を具備すること
を特徴とする二次電池の充電装置。
1. A secondary battery charging device for charging a non-aqueous secondary battery using a carbonaceous material capable of being doped or dedoped with lithium ions as a negative electrode active material, wherein a resistance component connected in series is Exclude (or decrease) the charging current so that the applied voltage to the main body of the secondary battery is almost constant
A charging device for a secondary battery, comprising: an output voltage correction circuit having a charging current-output voltage characteristic that raises (or lowers) the output voltage in accordance with the above.
【請求項2】 出力電圧補正回路はアースライン側出力
部と充電回路本体のアースライン間に接続した電流検出
抵抗と、ホットライン側出力部と充電回路本体のアース
ライン間に接続した電圧検出抵抗部と、電圧検出抵抗部
から検出した第一検出電圧と電流検出抵抗の端子電圧に
対応して変化する第二検出電圧をコンパレータの入力部
に付与することにより、コンパレータの出力部に第一検
出電圧と第二検出電圧の偏差に基づく制御電圧を得る制
御電圧生成部と、制御電圧に基づいてホットラインに流
れる電流を制御する出力制御部を備えることを特徴とす
る請求項1記載の二次電池の充電装置。
2. The output voltage correction circuit comprises a current detection resistor connected between the ground line side output section and the ground line of the charging circuit body, and a voltage detection resistor connected between the hot line side output section and the ground line of the charging circuit body. Section, the first detection voltage detected from the voltage detection resistance section and the second detection voltage that changes corresponding to the terminal voltage of the current detection resistance are applied to the input section of the comparator, so that the first detection at the output section of the comparator The secondary circuit according to claim 1, further comprising: a control voltage generation unit that obtains a control voltage based on a deviation between the voltage and the second detection voltage, and an output control unit that controls a current flowing through the hot line based on the control voltage. Battery charger.
【請求項3】 電圧検出抵抗部は直列接続した一対の分
圧抵抗により構成し、分圧抵抗同士の接続部から第一検
出電圧を検出することを特徴とする請求項2記載の二次
電池の充電装置。
3. The secondary battery according to claim 2, wherein the voltage detection resistor section is composed of a pair of voltage dividing resistors connected in series, and the first detection voltage is detected from a connecting portion between the voltage dividing resistors. Charging device.
JP5268413A 1993-09-29 1993-09-29 Cleaner for secondary battery Pending JPH07107677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268413A JPH07107677A (en) 1993-09-29 1993-09-29 Cleaner for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268413A JPH07107677A (en) 1993-09-29 1993-09-29 Cleaner for secondary battery

Publications (1)

Publication Number Publication Date
JPH07107677A true JPH07107677A (en) 1995-04-21

Family

ID=17458139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268413A Pending JPH07107677A (en) 1993-09-29 1993-09-29 Cleaner for secondary battery

Country Status (1)

Country Link
JP (1) JPH07107677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795946A2 (en) * 1996-03-12 1997-09-17 SILICONIX Incorporated Rapid charging technique for lithium ion batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795946A2 (en) * 1996-03-12 1997-09-17 SILICONIX Incorporated Rapid charging technique for lithium ion batteries
EP0795946A3 (en) * 1996-03-12 1997-12-29 SILICONIX Incorporated Rapid charging technique for lithium ion batteries

Similar Documents

Publication Publication Date Title
US7482090B2 (en) Nonaqueous electrolyte secondary battery
US8859124B2 (en) Integrated circuit and battery pack using the same
CN102043132B (en) Battery pack and method for detecting degradation of battery
JP5544687B2 (en) State detection method for lithium ion secondary battery and state detection apparatus for lithium ion secondary battery
CN103326013B (en) Nonaqueous electrolyte battery and battery pack
US7791317B2 (en) Battery pack and method of calculating deterioration level thereof
KR101568110B1 (en) Charging control method for secondary cell and charging control device for secondary cell
JPH07220755A (en) Layer built lithium secondary battery
CN102237560A (en) Secondary battery charging method
JP2001176497A (en) Nonaqueous electrolyte secondary battery
US20010041285A1 (en) Electrode and battery using the same
JPWO2017013718A1 (en) Nonaqueous electrolyte battery and battery pack
JPH05111184A (en) Secondary battery charger and charging method
US6689508B2 (en) Nonaqueous electrolyte secondary cell and method of producing the same
JP4439226B2 (en) Nonaqueous electrolyte secondary battery
EP0973214A1 (en) Lithium secondary battery
JP2017059386A (en) Battery pack and charge control method
KR20170113085A (en) Lithium secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JPH07107677A (en) Cleaner for secondary battery
US10680235B2 (en) Method for producing electrode for lithium-ion secondary battery
JP3120198B2 (en) Rechargeable battery charger
JPH10257684A (en) Charge-discharge control device
JPH05111175A (en) Secondary battery charger
JP6658103B2 (en) Detection device and detection method