JPH07103884A - Optical ct - Google Patents

Optical ct

Info

Publication number
JPH07103884A
JPH07103884A JP27300193A JP27300193A JPH07103884A JP H07103884 A JPH07103884 A JP H07103884A JP 27300193 A JP27300193 A JP 27300193A JP 27300193 A JP27300193 A JP 27300193A JP H07103884 A JPH07103884 A JP H07103884A
Authority
JP
Japan
Prior art keywords
light
transmitting
light receiving
optical fiber
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27300193A
Other languages
Japanese (ja)
Inventor
Yoshio Tsunasawa
義夫 綱沢
Yukihisa Wada
幸久 和田
Kan Nakamura
完 中村
Hideo Eda
英雄 江田
Yasunobu Ito
康展 伊藤
Ichiro Oda
一郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Research Association of Medical and Welfare Apparatus
Original Assignee
Technology Research Association of Medical and Welfare Apparatus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Research Association of Medical and Welfare Apparatus filed Critical Technology Research Association of Medical and Welfare Apparatus
Priority to JP27300193A priority Critical patent/JPH07103884A/en
Publication of JPH07103884A publication Critical patent/JPH07103884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate detection in a detection system connected with a light receiving point where the relative positional relationship with a light transmitting point varies. CONSTITUTION:Optical fibers are arranged annularly through a switch 12 at the light receiving part 10 disposed around a specimen 2. High speed photomultiplexer tubes 14, same in number as the light receiving ends at the light receiving part 10, are disposed at a detecting system section. The light receiving parts of the photomultiplexer tubes 14 are arranged annularly so that they are coupled optically with the outlets of optical fibers arranged annularly at the light receiving part while opposing thereto. A dimmer 18 is disposed at the light receiving part of each photomultiplexer tube 14 which is connected, at the post-stage thereof, with a time/voltage converter 20 and a peak analyzer 22 detects the time response waveform of received light pulse outputted from the time/voltage converter 20. A data processing section 24 collects output signal from the peak analyzer 22 and calculates an internal CT image of the specimen 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は可視又は近赤外光を生体
などの被検体に照射し、その透過光や反射光(散乱光を
含む)を検出して被検体内の情報を非破壊的に得る光C
Tに関するものである。
BACKGROUND OF THE INVENTION The present invention irradiates a subject such as a living body with visible or near-infrared light and detects transmitted light or reflected light (including scattered light) to nondestructive information in the subject. Light C
It is related to T.

【0002】[0002]

【従来の技術】光CTでは測定光を被検体の周囲の1点
から照射し、被検体内を透過又は反射した光を被検体の
周囲で受光する。照射点を被検体の周囲にわたって移動
させるが、例えばn点から順次送光し、n点で受光すれ
ば、n2個のデータを得ることができ、これにより内部
の断層像を計算することができる。
2. Description of the Related Art In optical CT, measurement light is emitted from one point around the subject, and light transmitted or reflected inside the subject is received around the subject. Although the irradiation point is moved around the subject, if, for example, light is sequentially transmitted from the n point and is received at the n point, n 2 data can be obtained, and thereby the internal tomographic image can be calculated. it can.

【0003】被検体内の情報を得るための光走査の1つ
の方法としては、被検体の一方向から測定光を扇形に走
査して照射し、その測定光の出射位置を被検体の周囲で
移動させていく方法がある。他の方法としては測定光を
被検体を含む範囲内で平行移動させ、その測定光を被検
体の周囲で移動させていく方法もある。
One method of optical scanning for obtaining information in the subject is to scan and irradiate the subject with measuring light in one direction from one direction, and the emission position of the measuring light is measured around the subject. There is a way to move it. As another method, there is also a method in which the measurement light is moved in parallel within a range including the subject, and the measurement light is moved around the subject.

【0004】しかし、これらの方法は測定光の送光部又
はさらには受光部も機械的に移動させていく必要があ
る。また送光部の送光端を被検体に接触した状態で移動
させることはできないため、送光端が被検体から離れた
位置に置かれることになり、被検体内の断層像を正確に
計算するのが容易ではない。
However, in these methods, it is necessary to mechanically move the light-transmitting portion for measuring light or the light-receiving portion. In addition, since the light-transmitting end of the light-transmitting unit cannot be moved while it is in contact with the subject, the light-transmitting end is placed at a position away from the subject, and the tomographic image inside the subject can be calculated accurately. Not easy to do.

【0005】[0005]

【発明が解決しようとする課題】被検体の周囲での光走
査機構に機械的に移動する部分をなくして被検体の周囲
から順次測定光を照射できるようにした光CTとして、
被検体の周囲に配置された複数個の送光端を有し、その
送光端から被検体への送光動作が一定の順序に切り換え
られて行なわれる送光部と、被検体の周囲で送光端の間
に1個ずつ配置された受光端を有する光ファイバ受光部
とを備えた図1に示されるものが検討されている。
As a light CT in which the measurement light can be sequentially irradiated from the periphery of the subject by eliminating the mechanically moving portion in the optical scanning mechanism around the subject,
A plurality of light-transmitting ends arranged around the subject, and a light-transmitting part that performs light-transmitting operations from the light-transmitting end to the subject in a fixed order, and around the subject. An optical fiber light receiving unit having light receiving ends arranged one by one between light transmitting ends is being considered.

【0006】図1は本発明が対象とする光CTの送光部
と受光部の一例を表わしたものである。被検体2の周囲
に送光部の光ファイバの送光端I1〜Inが配置され、
送光端の間に1個ずつの受光端O1〜Onが配置されて
いる。送光端からは送光パルスによって測定光が順次送
光され、全ての受光端で受光される。測定手順は、まず
送光端I1からパルス光を被検体2に照射し、被検体2
を透過し又は被検体2内で反射した光を全ての受光端O
1〜Onで同時に並列で受光することによりn個の受光
信号を得る。
FIG. 1 shows an example of a light-transmitting section and a light-receiving section of an optical CT, which is the object of the present invention. The light-transmitting ends I 1 to In of the optical fibers of the light-transmitting unit are arranged around the subject 2.
One light receiving end O 1 to On is arranged between the light transmitting ends. Measuring light is sequentially transmitted from the light-transmitting end by light-transmitting pulses, and is received by all the light-receiving ends. The measurement procedure is as follows. First, the subject 2 is irradiated with pulsed light from the light transmitting end I 1 ,
All the light receiving ends O
By receiving light simultaneously in parallel at 1 to On, n light receiving signals are obtained.

【0007】次に、送光部を1ステップ進めて、すなわ
ち送光端I2から光パルスを被検体2に照射し、全ての
受光端O1〜Onで受光する。これを繰り返して送光端
1〜Inまでn個の送光部を切り換えたn回の測定に
より、合計でn2個の受光信号を得ることができ、これ
から計算により断層像を求めることができる。各受光端
で受光した光は光ファイバを経て検出系に導かれる。検
出系は一例としては入射光を減光する減光器、その減光
器を経た光を検出する検出器、及びその検出器による光
子検出時間を検出する時間電圧変換器を少なくとも備え
ている。
Next, the light transmitting unit is advanced by one step, that is, the light pulse is irradiated from the light transmitting end I 2 to the subject 2 and all the light receiving ends O 1 to On receive the light. By repeating this process and measuring n times by switching the n light-transmitting sections from the light-transmitting ends I 1 to In, it is possible to obtain a total of n 2 light-receiving signals, from which a tomographic image can be obtained by calculation. it can. The light received at each light receiving end is guided to the detection system through the optical fiber. As an example, the detection system includes at least a dimmer that dims the incident light, a detector that detects the light that has passed through the dimmer, and a time-voltage converter that detects the photon detection time by the detector.

【0008】図2(A)に示されるように、例えば被検
体2が直径100mmの球体であるとすると、送光点A
に近いa点(送光点からの距離は例えば20mm)で受
光する場合と、最も離れたb点(送光点からの距離は1
00mm)で受光する場合とでは、受光パルスの持続時
間が大幅に異なる。例えば図2(B)に示されるよう
に、100mm離れた点b点では送光パルス発生後0〜
20ナノ秒の範囲を測定する必要があるのに対し、20
mm離れたa点ではわずか0〜2ナノ秒の範囲を測定す
る必要がある。またa点ではピーク高さが高く、b点で
はピーク高さの低い時間応答曲線が得られる。図2
(B)の縦軸は受光される光の相対的な強度を表わして
いる。このように、送光点と受光点との間の距離によっ
て、得られる時間応答曲線のピーク高さ、持続時間が大
幅に異なる。
As shown in FIG. 2A, assuming that the object 2 is a sphere having a diameter of 100 mm, the light transmitting point A
When the light is received at point a (the distance from the light transmitting point is, for example, 20 mm) that is close to
The duration of the light-receiving pulse is significantly different from the case of receiving light at 00 mm). For example, as shown in FIG. 2 (B), at a point b separated by 100 mm, 0 to 0 after the light transmission pulse is generated.
Whereas it is necessary to measure the range of 20 nanoseconds,
It is necessary to measure a range of only 0 to 2 nanoseconds at a point separated by mm. Further, a time response curve having a high peak height at point a and a low peak height at point b is obtained. Figure 2
The vertical axis of (B) represents the relative intensity of the received light. In this way, the peak height and duration of the obtained time response curve greatly differ depending on the distance between the light transmitting point and the light receiving point.

【0009】微弱な光を検出する方法として受光した光
信号を減光器を介して高速光電子増倍管でパルス信号に
変換し、その検出したパルス信号を時間電圧変換器(T
AC;Time-to-Amplitude Comverter)と波高分析器を
用いて、いわゆる時間相関単一光子検出法により検出す
る方法が知られている。しかし、TACはダイナミック
レンジが狭く、図2におけるa点とb点での検出信号の
ように、時間応答曲線のピーク高さや持続時間が大幅に
異なる光の検出に適用することができない。
As a method for detecting weak light, a received optical signal is converted into a pulse signal by a high-speed photomultiplier tube via a dimmer, and the detected pulse signal is converted into a time-voltage converter (T
There is known a method of detecting by a so-called time-correlated single photon detection method using an AC (Time-to-Amplitude Comverter) and a pulse height analyzer. However, the TAC has a narrow dynamic range and cannot be applied to the detection of light having significantly different peak heights and durations of the time response curve, such as the detection signals at the points a and b in FIG.

【0010】そこで、本発明の第1の目的は、図1に示
されるような光走査部を備えた光CTで、送光点を順次
切り換えていった場合に送光点との相対的な位置関係が
変化する受光点につながる検出系で検出するのを容易に
することである。本発明の第2の目的は、受光系にTA
Cのようなダイナミックレンジの狭い素子を含む場合に
も測定できるようにすることである。
Therefore, a first object of the present invention is an optical CT provided with an optical scanning unit as shown in FIG. 1, in which the light sending points are switched relative to each other when the light sending points are sequentially switched. It is to facilitate detection by a detection system connected to a light receiving point whose positional relationship changes. A second object of the present invention is to provide a light receiving system with TA
This is to enable measurement even when an element having a narrow dynamic range such as C is included.

【0011】[0011]

【課題を解決するための手段】本発明は、被検体の周囲
に配置された複数個の送光端を有し、その送光端から被
検体への送光動作が一定の順序に切り換えられて行なわ
れる送光部と、被検体の周囲に配置された複数個の受光
端を有する光ファイバ受光部と、受光端と同数の検出系
を有し、各受光端により受光された光をそれぞれの検出
系で検出する検出系部と、光ファイバ受光部と検出系部
との間に配置され、光ファイバ受光部の光出射端と検出
系部の光入射端とをそれぞれ環状に配列し、その光ファ
イバ受光部の光出射端と検出系部の光入射端とを一対一
に対向させて光学的に結合するとともに、各検出系に結
合された光ファイバ受光部の各受光端と送光部の送光動
作中の送光端との相対的位置関係が保たれるように、送
光部による送光端からの送光の切換えに対応して光ファ
イバ受光部の光ファイバと検出系部との結合関係を順次
切り換える切換え部とを備えた光CTである。
The present invention has a plurality of light-transmitting ends arranged around a subject, and the light-transmitting operations from the light-transmitting ends to the subject are switched in a fixed order. Has a plurality of light-receiving ends arranged around the subject, and a detection system of the same number as the light-receiving ends, each of which receives light received by each light-receiving end. The detection system part to be detected by the detection system, is arranged between the optical fiber light receiving part and the detection system part, and the light emitting end of the optical fiber light receiving part and the light incident end of the detection system part are arranged in an annular shape, respectively, The light emitting end of the optical fiber light receiving part and the light incident end of the detection system part are opposed to each other and optically coupled, and at the same time, each light receiving end of the optical fiber light receiving part coupled to each detection system is transmitted. The light-transmitting end by the light-transmitting part is maintained so that the relative positional relationship with the light-transmitting end during the light-sending operation An optical CT with a sequentially switching switching unit coupling relationship between the optical fiber and the detection system of the optical fiber receiving portion in response to switching of al of transmission light.

【0012】好ましい態様では、検出系部の各検出系
は、入射光を減光する減光器、その減光器を経た光を検
出する検出器、及び送光端からの送光時からその検出器
による光子検出までの時間を電圧として出力する時間電
圧変換器を少なくとも備え、減光器の減光率、検出器の
感度及び時間電圧変換器の時間分解能のうちの少なくと
も1つが送光部の送光動作中の送光端との相対的位置関
係に応じて設定又は選定されている。
In a preferred embodiment, each of the detection systems of the detection system section includes a dimmer for dimming incident light, a detector for detecting light passing through the dimmer, and a detector for transmitting light from a light transmitting end. At least one of a time-voltage converter that outputs the time until the photon detection by the detector is output as a voltage, and at least one of the extinction ratio of the dimmer, the sensitivity of the detector, and the time resolution of the time-voltage converter is a light transmitting unit. Is set or selected according to the relative positional relationship with the light-transmitting end during the light-transmitting operation.

【0013】[0013]

【作用】切換え部を導入することによって、送光点が移
動してもそれに対応して光ファイバ受光部の光ファイバ
と検出系部の検出系との結合関係が順次同期して切り換
えられて、各検出系は送光端と受光端の間の距離が特定
のもののみを受け持つ。したがって、近距離用の検出に
は時間分解に優れた高速の光電子増倍管、時間電圧変換
器が用いられ、遠距離用には時間分解能は低くても高感
度の検出系を選定することができる。検出系に、入射光
を減光する減光器、その減光器を経た光を検出する検出
器、及び送光端からの送光時からその検出器による光子
検出までの時間を電圧として出力する時間電圧変換器を
備えた場合には、各測定系をそれぞれの送光端と受光端
の間の距離に最適な条件に設定しておけば、ダイナミッ
クレンジの狭い時間電圧変換器であっても測定を行なう
ことができる。
By introducing the switching unit, the coupling relationship between the optical fiber of the optical fiber light receiving unit and the detection system of the detection system unit can be sequentially switched in synchronization with the movement of the light transmitting point. Each detection system is only responsible for a specific distance between the light-transmitting end and the light-receiving end. Therefore, a high-speed photomultiplier tube with excellent time resolution and a time-voltage converter are used for short-distance detection, and a high-sensitivity detection system with low time resolution can be selected for long-distance detection. it can. Output to the detection system as a voltage, the dimmer that dims the incident light, the detector that detects the light that has passed through the dimmer, and the time from the sending of light from the sending end to the detection of photons by the detector. When equipped with a time-voltage converter, the measurement system should be set to the optimal conditions for the distance between the light-transmitting end and the light-receiving end, so that the time-voltage converter has a narrow dynamic range. Can also make measurements.

【0014】[0014]

【実施例】一実施例が適用される装置での被検体に接触
する送光部と光ファイバ受光部は図1に概略的に示され
るものである。図3は一実施例の全体を示したものであ
る。送光部は先端が被検体2に接触して被検体2の周囲
に配置された送光端となる送光側光ファイバ4と、近赤
外でピコ秒のパルスレーザ光を発生するパルスレーザ装
置6と、パルスレーザ装置6からのレーザ光を送光側光
ファイバ4に順次切り換えて導く送光側ファイバ切換え
器8とを備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A light transmitting section and an optical fiber light receiving section which contact an object in an apparatus to which one embodiment is applied is schematically shown in FIG. FIG. 3 shows the whole one embodiment. The light-transmitting section has a light-transmitting side optical fiber 4 serving as a light-transmitting end arranged around the subject 2 with its tip in contact with the subject 2, and a pulse laser for generating picosecond pulse laser light in the near infrared. A device 6 and a light-transmitting-side fiber switch 8 for sequentially switching and guiding the laser light from the pulse laser device 6 to the light-transmitting-side optical fiber 4 are provided.

【0015】光ファイバ受光部10はその先端が被検体
2と接触し、送光側光ファイバ4の間に1本ずつの受光
側光ファイバがくるように配置された光ファイバを備え
ている。光ファイバ受光部10の光ファイバの他端は切
換え器12によって、後で具体的に説明される図4や図
5に示されるように、環状に配列されている。
The optical fiber light receiving portion 10 is provided with an optical fiber whose tip is in contact with the subject 2 and one light receiving side optical fiber is provided between the light transmitting side optical fibers 4. The other end of the optical fiber of the optical fiber light receiving unit 10 is arranged in a ring shape by the switch 12 as shown in FIGS. 4 and 5 which will be specifically described later.

【0016】検出系部には光ファイバ受光部10の受光
端と同数(nとする)の高速光電子増倍管14が設けら
れ、光電子増倍管14の受光部が、切換え器12で光フ
ァイバ受光部10の環状に配列された光ファイバ出射端
と対向して光学的に結合するように環状に配列されてい
る。各光電子増倍管14の受光部には減光器18が配置
されており、光電子増倍管14に入射する光を減光す
る。光電子増倍管14で発生した1個の光電子パルスの
到達時間を電圧値に換算するために、各光電子増倍管1
4には時間電圧変換器20が接続されている。時間電圧
変換器20に接続された波高分析器22は、多数回(例
えば108回)にわたる光電子の到達時間の統計的分布
を出力するので、これが該当する「送・受光部対」に対
する時間応答波形となる。24は波高分析器22の出力
であるn個の時間応答波形を集め、被検体2の内部の断
層像を計算するデータ処理部である。
The detection system section is provided with the same number (n) of high-speed photomultiplier tubes 14 as the light-receiving ends of the optical fiber light-receiving section 10. The light-receiving section of the photomultiplier tube 14 is connected to the optical fiber by the switching unit 12. The light receiving portions 10 are arranged in a ring shape so as to face and optically couple with the emission ends of the optical fibers arranged in a ring shape. A light reducer 18 is arranged in the light receiving portion of each photomultiplier tube 14 to diminish the light entering the photomultiplier tube 14. In order to convert the arrival time of one photoelectron pulse generated in the photomultiplier tube 14 into a voltage value, each photomultiplier tube 1
A time-voltage converter 20 is connected to 4. Since the wave height analyzer 22 connected to the time-voltage converter 20 outputs a statistical distribution of arrival times of photoelectrons over a large number of times (for example, 10 8 times), the time response for the corresponding “transmitter / receiver pair” is output. It becomes a waveform. A data processing unit 24 collects n time response waveforms output from the wave height analyzer 22 and calculates a tomographic image inside the subject 2.

【0017】n個の光電子増倍管14を配列順に14−
1〜14−nとしたとき、光電子増倍管14−1〜14
−nのそれぞれは送光端I1が動作中のときはその動作
中の送光端I1と特定の位置関係にある光ファイバ受光
部10のそれぞれの光ファイバと結合されて、それぞれ
の光ファイバの受光端からの光を検出する。動作中の送
光端がI1からI2に切り換えたとき、光電子増倍管14
−1〜14−nのそれぞれに結合される光ファイバ受光
部10の光ファイバが送光端I1が動作中と同じか又は
それに近い位置関係を保つように、切換え器12が光フ
ァイバ受光部10の光ファイバと光電子増倍管14−1
〜14−nとの結合関係を1ステップ分切り換える。送
光端I1〜Inの切換えに応じて光ファイバ受光部10
の光ファイバと光電子増倍管14−1〜14−nとの結
合関係が順次切り換えられていく。
The n photomultiplier tubes 14 are arranged 14-
1-14-n, photomultiplier tubes 14-1-14
Each of -n is coupled with each optical fiber of the optical fiber light receiving unit 10 having a specific positional relationship with the operating light transmitting end I 1 when the light transmitting end I 1 is operating, The light from the light receiving end of the fiber is detected. When the transmitting end in operation is switched from I 1 to I 2 , the photomultiplier tube 14
-1 to 14-n, the switch 12 is arranged so that the optical fibers of the optical fiber light receiving unit 10 maintain the same positional relationship as the light transmitting end I 1 is in operation or close thereto. 10 optical fibers and photomultiplier tube 14-1
The connection relationship with 14 to 14-n is switched by one step. The optical fiber light receiving unit 10 is switched according to the switching of the light transmitting ends I 1 to In.
The coupling relationship between the optical fiber and the photomultiplier tubes 14-1 to 14-n is sequentially switched.

【0018】図2で説明したように、送光点に対して受
光点の距離が異なるときは、例えばaとbのように、得
られる時間応答波形の強度と持続時間が大幅に異なる。
aの場合はピークの光強度が強いので光子のカウントレ
ートを減らすために減光器の減光率を大きくするととも
に、パルスが短いので時間電圧変換器20の時間分解能
を上げる。逆にbの場合は、減光率を小さくし、時間電
圧変換器20の時間分解能を下げ、すなわち時間電圧変
換器20の時間分解幅を広げて、高感度になるように設
定する。減光器18と時間電圧変換器20はそれぞれが
受光する光の送光端と受光端の相対的位置関係に対応し
た減光率と時間分解能に設定しておく。また、光電子増
倍管14はそれぞれの受光する光に応じた感度のものを
選定しておく。
As described with reference to FIG. 2, when the distance between the light-transmitting point and the light-receiving point is different, the intensity and duration of the obtained time response waveform are significantly different, as in a and b, for example.
In the case of a, since the peak light intensity is strong, the extinction ratio of the dimmer is increased in order to reduce the photon count rate, and since the pulse is short, the time resolution of the time-voltage converter 20 is increased. On the other hand, in the case of b, the extinction rate is reduced, the time resolution of the time-voltage converter 20 is lowered, that is, the time resolution width of the time-voltage converter 20 is widened, and high sensitivity is set. The dimmer 18 and the time-voltage converter 20 are set to the dimming rate and time resolution corresponding to the relative positional relationship between the light-transmitting end and the light-receiving end of the light received by each. Further, the photomultiplier tube 14 is selected so as to have sensitivity according to the light received by each.

【0019】時間電圧変換器20のトリガー信号として
は、例えばパルスレーザ装置6を発振させるときの駆動
回路からのパルス信号を用いる。このパルス信号は光パ
ルス発生と正確に対応した電気パルスであり、時間電圧
変換器20に与えられ、時間電圧変換器20のスタート
入力となる。送光側光ファイバ4の1つの送光端からの
光パルスにより、受光端を経て光電子増倍管14が光子
を検出し、光電子パルスが発生すると時間電圧変換器2
0はトリガ信号とこの光電子パルスとの時間差に比例す
る電圧をパルスとして出力する。波高分析器22はこの
電圧パルスの電圧分布を統計的に集計する。
As the trigger signal of the time-voltage converter 20, for example, a pulse signal from a drive circuit when the pulse laser device 6 is oscillated is used. This pulse signal is an electric pulse that corresponds exactly to the generation of an optical pulse, is applied to the time-voltage converter 20, and becomes the start input of the time-voltage converter 20. When the photomultiplier tube 14 detects a photon through the light receiving end by the light pulse from one light sending end of the light sending side optical fiber 4, and the photoelectron pulse is generated, the time-voltage converter 2
0 outputs a voltage proportional to the time difference between the trigger signal and this photoelectron pulse as a pulse. The wave height analyzer 22 statistically collects the voltage distribution of this voltage pulse.

【0020】時間相関単一光子検出法では波高分析器2
2に集計される多数回繰返し測定時の光子の到着時刻の
分布がそのまま時間応答波形となる。例えばパルスレー
ザ装置6を5MHzで20秒間測定するとすれば、10
8回の繰返し測定がn個のチャンネルで並列に行なわ
れ、その時の光子の到達時間の分布曲線が各受光端O1
〜Onでの受光信号の時間応答波形として並列に得られ
ることになる。
In the time-correlated single photon detection method, the pulse height analyzer 2
The distribution of the arrival times of photons at the time of repeated measurement, which is tabulated in 2, becomes the time response waveform as it is. For example, if the pulse laser device 6 is measured at 5 MHz for 20 seconds, 10
Eight repeated measurements are performed in parallel on n channels, and the distribution curve of the arrival time of photons at that time is shown at each light receiving end O 1
It will be obtained in parallel as a time response waveform of the received light signal at ~ On.

【0021】1つの送光端I1での測定が終ると、パル
スレーザ装置6からの光パルスを被検体2に照射する送
光端をファイバ切換え器8で1ステップ進め、送光端I
2から光パルスを被検体2に照射して上記と同様に受光
端O1〜Onの受光信号からn個の時間応答波形を得
る。これを繰り返すことにより、送光端I1〜Inまで
のn個の送光端を切り換えたn回の測定により、合計で
2個の時間応答波形が得られる。データ処理部24で
はそのn2個の時間応答波形から計算で被検体2内の断
層像を求める。
When the measurement at one light-transmitting end I 1 is completed , the light-transmitting end for irradiating the subject 2 with the light pulse from the pulse laser device 6 is advanced by one step by the fiber switching device 8, and the light-transmitting end I
An optical pulse is applied to the subject 2 from 2 to obtain n time response waveforms from the light receiving signals of the light receiving ends O 1 to On in the same manner as described above. By repeating this, a total of n 2 time response waveforms can be obtained by measuring n times by switching the n light emitting ends from the light transmitting ends I 1 to In. The data processing unit 24 obtains a tomographic image inside the subject 2 by calculation from the n 2 time response waveforms.

【0022】次に、切換え器12の具体例を示す。図4
は第1の例である。一端部が被検体2に接触する受光端
となっている光ファイバ受光部10の光ファイバの他端
が回転円板30の円周上に配列されている。回転円板3
0に配列された光ファイバの端面に対向して光電子増倍
管14が環状に配列され、光電子増倍管14の各受光部
には減光器として減光フィルタ18が配置されている。
減光フィルタ18と光電子増倍管14は固定されてお
り、減光フィルタ18は各光電子増倍管14に対してそ
れぞれ異なる減光率を有するように設定されている。
Next, a concrete example of the switch 12 will be described. Figure 4
Is the first example. The other end of the optical fiber of the optical fiber light receiving unit 10 whose one end is a light receiving end that contacts the subject 2 is arranged on the circumference of the rotating disk 30. Rotating disk 3
The photomultiplier tubes 14 are arranged in a ring shape so as to face the end faces of the optical fibers arranged in 0, and a neutral density filter 18 is arranged as a light attenuator in each light receiving portion of the photomultiplier tube 14.
The neutral density filter 18 and the photomultiplier tube 14 are fixed, and the neutral density filter 18 is set so that each photomultiplier tube 14 has a different neutral density.

【0023】減光フィルタ18の減光率と光電子増倍管
14につながる時間電圧変換器の感度(時間分解能)
が、被検体2における送光点と受光点の間の距離に応じ
て設定された状態になっている。送光側光ファイバ4に
よる動作中の送光点がI1,I2,……と順次切り換える
のに同期して、回転円板30は各光電子増倍管14への
入射光が送光点と受光点の相対的位置関係を保つように
1ステップずつ回転させられていく。その結果、減光フ
ィルタ18より後段の各検出系は、送光点と受光点の間
の距離が一定した信号を受光することになり、所要の機
能を果たすことができる。送光点がI1〜Inと1周す
るとき、切換え器の円板30も1周する。このとき円板
30に取りつけられた光ファイバ10が二重以上に捩じ
れないようにするためには、1回転ごとの往復運動にす
ればよい。
The extinction ratio of the neutral density filter 18 and the sensitivity (time resolution) of the time-voltage converter connected to the photomultiplier tube 14.
Is set according to the distance between the light transmitting point and the light receiving point in the subject 2. In synchronism with the switching of the light-sending point in operation by the light-sending-side optical fiber 4 to I 1 , I 2 , ... In sequence, the rotating disk 30 causes the light incident on each photomultiplier tube 14 to be the light-sending point. Are rotated step by step so that the relative positional relationship between the light receiving point and the light receiving point is maintained. As a result, each detection system subsequent to the neutral density filter 18 receives a signal with a constant distance between the light transmitting point and the light receiving point, and can perform a required function. When the light-sending point makes one round with I 1 to In, the disk 30 of the switch also makes one round. At this time, in order to prevent the optical fiber 10 attached to the disk 30 from being twisted more than double, it is sufficient to make a reciprocating motion for each rotation.

【0024】図5は切換え器12の他の例を表わしたも
のである。図5では、光電子増倍管14とその各受光部
に配置された減光フィルタ18を固定しておく。受光側
光ファイバ10の光出射端部を閉じられた一列のチェー
ン32によって連結し、光電子増倍管14の受光部に減
光フィルタ18を介して対向するように配置する。光電
子増倍管14と減光フィルタ18は図5(A)ではチェ
ーンで連結された光ファイバ10の光出射端に対向する
ように紙面垂直方向に配置されている。この例でも送光
端がI1からInと順次切り換えられるのに伴って、チ
ェーン32で連結された光ファイバ10の光出射端が順
次1ステップずつ移動させられる。この方式は回転円板
を用いるよりもスペースが少なくてすむ利点がある。
FIG. 5 shows another example of the switch 12. In FIG. 5, the photomultiplier tube 14 and the neutral density filter 18 arranged in each light receiving portion thereof are fixed. The light emitting ends of the light-receiving side optical fibers 10 are connected by a closed chain of chains 32 and arranged so as to face the light-receiving part of the photomultiplier tube 14 via the neutral density filter 18. In FIG. 5A, the photomultiplier tube 14 and the neutral density filter 18 are arranged in the direction perpendicular to the paper surface so as to face the light emitting end of the optical fiber 10 connected by a chain. Also in this example, the light emitting end of the optical fiber 10 connected by the chain 32 is sequentially moved step by step as the light transmitting end is sequentially switched from I 1 to In. This method has the advantage that it requires less space than using a rotating disk.

【0025】図4や図5では受光部に減光フィルタ18
が配置された光電子増倍管14の受光側の直前に切換え
器30,32が配置されている。しかし、減光フィルタ
18の光入射側にも光ファイバを配置し、切換え器をそ
の光ファイバと光ファイバ10の中間の位置に配置する
ようにしてもよい。
In FIGS. 4 and 5, the neutral density filter 18 is provided in the light receiving portion.
Switchers 30 and 32 are arranged immediately in front of the light receiving side of the photomultiplier tube 14 in which is arranged. However, an optical fiber may be arranged on the light incident side of the neutral density filter 18, and the switch may be arranged at a position intermediate between the optical fiber and the optical fiber 10.

【0026】[0026]

【発明の効果】本発明では受光側光ファイバと検出系と
の光学的結合を順次切り換えていくので、切換え部以降
の検出系は固定して専用化できる。そのため、各検出系
はそれぞれの送光点と受光点の距離に応じた出力信号に
最適な仕様のものを用いることができる。また、検出系
が固定でよいので、全ての検出系は同じものである必要
がなく、送光点と受光点の間の距離が短い光を検出する
検出系には低感度で高速の光電子増倍管を用い、送光点
と受光点の間の距離が長い光を検出する検出系には高感
度でやや低速の光電子増倍管を選定することができる。
時間電圧変換器についてもそれぞれの検出光にあった特
性のものを選定することができる。受光側光ファイバの
切換えは順次O1,O2,……On−1,On,O1
2,……と循環的に行なわれるので、切換え部の機構
は比較的簡単なものですむ。
According to the present invention, the optical coupling between the light-receiving side optical fiber and the detection system is sequentially switched, so that the detection system after the switching unit can be fixed and dedicated. Therefore, each detection system can use the one having the optimum specifications for the output signal according to the distance between each light transmitting point and each light receiving point. Also, since the detection system can be fixed, all detection systems do not have to be the same, and a low-sensitivity, high-speed photoelectron amplification is used for a detection system that detects light with a short distance between the light-transmitting point and the light-receiving point. A photomultiplier tube with high sensitivity and slightly low speed can be selected as a detection system that uses a double tube and detects light having a long distance between a light transmitting point and a light receiving point.
As the time-voltage converter, it is possible to select one having a characteristic suitable for each detection light. Switching of the optical fibers on the receiving side is carried out in order of O 1 , O 2 , ... On- 1 , On, O 1 ,
Since it is carried out cyclically as O 2 , ..., the mechanism of the switching unit is relatively simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における送光部と受光部の一例を示す概
略平面図である。
FIG. 1 is a schematic plan view showing an example of a light transmitting unit and a light receiving unit according to the present invention.

【図2】図1の送光部と受光部における光パルスの伝搬
状態を示したものであり、(A)は被検体部の概略平面
断面図、(B)は送光点に近い受光点と遠い受光点での
受光光信号を示す図である。
2A and 2B show propagation states of optical pulses in the light transmitting unit and the light receiving unit in FIG. 1, in which FIG. 2A is a schematic plan sectional view of the object portion, and FIG. 2B is a light receiving point close to the light transmitting point. It is a figure which shows the received light optical signal in the light receiving point far from.

【図3】一実施例を概略的に示すブロック図である。FIG. 3 is a block diagram schematically showing an embodiment.

【図4】一実施例における切換え部の第1の例を示す図
であり、(A)は回転円板部を示す平面図、(B)は側
面図である。
4A and 4B are diagrams showing a first example of a switching unit in one embodiment, FIG. 4A is a plan view showing a rotating disc portion, and FIG. 4B is a side view.

【図5】一実施例における切換え部の第2の例を示す図
であり、(A)は平面図、(B)は側面図である。
5A and 5B are diagrams showing a second example of the switching unit in one embodiment, FIG. 5A being a plan view and FIG. 5B being a side view.

【符号の説明】[Explanation of symbols]

2 被検体 4 送光側光ファイバ 6 パルスレーザ装置 8 送光側光ファイバ切換え器 10 受光側光ファイバ 12 切換え部 14 光電子増倍管 18 減光器 20 時間電圧変換器 22 波高分析器 24 データ処理部 30 回転円板 32 チェーン 2 specimen 4 light-transmitting side optical fiber 6 pulse laser device 8 light-transmitting side optical fiber switching unit 10 light-receiving side optical fiber 12 switching unit 14 photomultiplier tube 18 dimmer 20-hour voltage converter 22 wave height analyzer 24 data processing Part 30 rotating disk 32 chain

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 英雄 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (72)発明者 伊藤 康展 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 (72)発明者 小田 一郎 京都府京都市中京区西ノ京桑原町1番地 株式会社島津製作所三条工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Eda Inventor Hideo Eda 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Sanjo Factory Sanjo Factory (72) Inventor Yasushi Ito 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto Prefecture Kyoto Stock Company Shimadzu Sanjo factory (72) Inventor Ichiro Oda 1 Nishinokyo Kuwabara-cho, Nakagyo-ku, Kyoto-shi, Kyoto Shimazu Corporation Sanjo factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検体の周囲に配置された複数個の送光
端を有し、その送光端から被検体への送光動作が一定の
順序に切り換えられて行なわれる送光部と、 被検体の周囲に配置された複数個の受光端を有する光フ
ァイバ受光部と、 前記受光端と同数の検出系を有し、各受光端により受光
された光をそれぞれの検出系で検出する検出系部と、 光ファイバ受光部と検出系部との間に配置され、光ファ
イバ受光部の光出射端と検出系部の光入射端とをそれぞ
れ環状に配列し、その光ファイバ受光部の光出射端と検
出系部の光入射端とを一対一に対向させて光学的に結合
するとともに、各検出系に結合された光ファイバ受光部
の各受光端と送光部の送光動作中の送光端との相対的位
置関係が保たれるように、送光部による送光端からの送
光の切換えに対応して光ファイバ受光部の光ファイバと
検出系部との結合関係を順次切り換える切換え部と、を
備えた光CT。
1. A light-transmitting section having a plurality of light-transmitting ends arranged around a subject, wherein light-transmitting operations from the light-transmitting ends to the subject are switched in a fixed order. An optical fiber light receiving unit having a plurality of light receiving ends arranged around the subject, and a detection system having the same number as the light receiving ends, and detecting light received by each light receiving end by each detection system. It is arranged between the system part and the optical fiber light receiving part and the detection system part, and the light emitting end of the optical fiber light receiving part and the light incident end of the detection system part are arranged in an annular shape, respectively, and the light of the optical fiber light receiving part is arranged. The emitting end and the light-incident end of the detection system section are opposed to each other one-to-one and are optically coupled, and at the same time, the respective light-receiving ends of the optical fiber light-receiving sections coupled to the respective detection systems and the light-transmitting section Switching the light emission from the light emitting end by the light transmitting unit so that the relative positional relationship with the light emitting end is maintained. An optical CT including a switching unit that sequentially switches the coupling relationship between the optical fiber of the optical fiber light receiving unit and the detection system unit.
【請求項2】 前記検出系部の各検出系は、入射光を減
光する減光器、その減光器を経た光を検出する検出器、
及び送光端からの送光時からその検出器による光子検出
までの時間を電圧として出力する時間電圧変換器を少な
くとも備え、減光器の減光率、検出器の感度及び時間電
圧変換器の時間分解能のうちの少なくとも1つが送光部
の送光動作中の送光端との相対的位置関係に応じて設定
又は選定されている請求項1に記載の光CT。
2. Each of the detection systems of the detection system section includes a dimmer for dimming incident light, a detector for detecting light passing through the dimmer,
And at least a time-voltage converter that outputs, as a voltage, the time from the light transmission from the light-transmitting end to the photon detection by the detector, the extinction ratio of the dimmer, the sensitivity of the detector, and the time-voltage converter The optical CT according to claim 1, wherein at least one of the time resolutions is set or selected according to a relative positional relationship with a light-transmitting end of the light-transmitting unit during a light-transmitting operation.
JP27300193A 1993-10-04 1993-10-04 Optical ct Pending JPH07103884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27300193A JPH07103884A (en) 1993-10-04 1993-10-04 Optical ct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27300193A JPH07103884A (en) 1993-10-04 1993-10-04 Optical ct

Publications (1)

Publication Number Publication Date
JPH07103884A true JPH07103884A (en) 1995-04-21

Family

ID=17521770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27300193A Pending JPH07103884A (en) 1993-10-04 1993-10-04 Optical ct

Country Status (1)

Country Link
JP (1) JPH07103884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
JP2007082608A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Sample analysis apparatus
CN103016466A (en) * 2012-12-24 2013-04-03 中联重科股份有限公司 Hydraulic oil supply unit, hydraulic power unit and oil supply control method of hydraulic oil supply unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018755A1 (en) * 1995-11-17 1997-05-29 Hitachi, Ltd. Instrument for optical measurement of living body
GB2311854A (en) * 1995-11-17 1997-10-08 Hitachi Ltd Instrument for optical measurement of living body
GB2311854B (en) * 1995-11-17 2000-03-22 Hitachi Ltd Optical measurement instrument for living body
JP2007082608A (en) * 2005-09-20 2007-04-05 Fujifilm Corp Sample analysis apparatus
CN103016466A (en) * 2012-12-24 2013-04-03 中联重科股份有限公司 Hydraulic oil supply unit, hydraulic power unit and oil supply control method of hydraulic oil supply unit

Similar Documents

Publication Publication Date Title
US7535555B2 (en) Distance measurement device and distance measurement method
CN106994984B (en) Laser acousto-magnetic steel rail surface defect rapid flaw detection system and method
CN112083364A (en) Microwave field and temperature field array type quantitative test system and method
GB2194334A (en) An apparatus for optically measuring a three-dimensional object
US7599065B2 (en) Specimen analysis system obtaining characteristic of specimen by diffusion approximation
CN109444947B (en) X-ray radiation flow diagnosis system
JPH07103884A (en) Optical ct
JPH06160033A (en) Measuring method of diameter
WO1983004107A1 (en) Electron-optical wide band signal measurement system
US3449945A (en) Optical scanning systems for photoelectric tonometers
JPH07103885A (en) Optical ct
US20040181143A1 (en) Imaging of a region in a scattering medium
JPH08166341A (en) Optical ct
JP3294148B2 (en) Laser ultrasonic flaw detector
JP3280742B2 (en) Defect inspection equipment for glass substrates
CN209132156U (en) Optical coherence tomography based on digital micromirror device
CN111879756A (en) Breakdown spectrum detection system and method based on annular magnetic confinement technology
CN110058249A (en) Optical measuring device and measuring method
JPH0262806B2 (en)
CN115517633B (en) Image forming apparatus
JPH09173324A (en) Measuring instrument
KR20050022585A (en) System for defect-detection in plate using a laser excitation typed lamb wave
JPH0783790A (en) Inspecting apparatus for optical fiber
JP2776127B2 (en) Distance measuring device
SU1587340A1 (en) Photoelectric flaw detector