JPH07103506A - Air-conditioning device - Google Patents

Air-conditioning device

Info

Publication number
JPH07103506A
JPH07103506A JP6150899A JP15089994A JPH07103506A JP H07103506 A JPH07103506 A JP H07103506A JP 6150899 A JP6150899 A JP 6150899A JP 15089994 A JP15089994 A JP 15089994A JP H07103506 A JPH07103506 A JP H07103506A
Authority
JP
Japan
Prior art keywords
air
heat
fluid
passage
endothermic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6150899A
Other languages
Japanese (ja)
Inventor
Hisaaki Imaizumi
久朗 今泉
Kanichi Kadotani
▲かん▼一 門谷
Bunji Sotai
文治 早貸
Tetsuo Shiyakushi
徹夫 杓子
Toshihiko Matsumoto
利彦 松本
Genichirou Watanabe
弦一郎 渡辺
Toshihide Imamura
敏英 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP6150899A priority Critical patent/JPH07103506A/en
Priority to PCT/JP1995/000682 priority patent/WO1996001397A1/en
Priority to EP95914535A priority patent/EP0766049A4/en
Priority to KR1019960707626A priority patent/KR100242758B1/en
Priority to US08/750,596 priority patent/US5921088A/en
Publication of JPH07103506A publication Critical patent/JPH07103506A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the whole body of an air-conditioning device compact and light-weight and eliminate a vibration, and in addition, easily change the heat- exchanging capacity of an air cooling dehumidifier. CONSTITUTION:An air cooling dehumidifier 1 is arranged at a location at where a condensed water does not drop at an air blowing out port of an air channel 5. At the same time, an air conditioning device is equipped with a refrigerant circuit 7 of the air cooling dehumidifier 1, an endothermic passage 10 which is constituted in such a manner that respective passages of a plurality of exhaust heat plates with a fluid passage are made to communicate with each other and laminated, and an exhaust heat passage 11 which is constituted in such a manner that respective passages of a plurality of endothermic plates with a fluid passage are made to communicate with each other and laminated. Then, the refrigerant circuit 7 is connected to the endothermic passage 10 of a fluid- fluid heat-exchanger 9, which consists of the endothermic passage 10, exhaust heat passage 11 and a Peltier element 12 being inserted between respective endothermic plates and exhaust heat plates of the endothermic passage 10 and exhaust heat passage 11, and a cooling water circuit 20 is connected to the exhaust heat passage 11 of the fluid-fluid heat-exchanger 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体やガラス基板表
面に、これを回転させながら薬液を塗布する、いわゆる
スピンコーティング装置(以下スピンコータという)等
において、これの作業部(以下これをカップという)に
超恒温恒湿の空気を供給する空調装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a working portion (hereinafter referred to as a cup) of a so-called spin coating apparatus (hereinafter referred to as a spin coater) for coating a surface of a semiconductor or glass substrate with a chemical while rotating the surface. ) To an air conditioner that supplies super-constant temperature and humidity air.

【0002】[0002]

【従来の技術】この種の空調装置は、例えば、特開平2
−1113号公報(レジスト処理装置)や特開平4−1
39345号公報(恒温恒湿空気の供給方法及びその装
置)に示されているようになっている。そして上記前者
の従来例にあっては、吸入空気を冷却してこれの除湿を
行なう空気冷却除湿機と、この空気冷却除湿機にて除湿
された空気を所定の温度に加温する加熱機と、さらに、
この空気を所定の湿度に加湿する加湿機とからなってお
り、これの空気冷却除湿機には圧縮冷凍機が用いられて
おり、圧縮された冷媒をフィンを有するパイプ内を通し
て、フィンに接触する空気を冷却して除湿するようにし
ている。
2. Description of the Related Art An air conditioner of this type is disclosed, for example, in Japanese Patent Laid-Open No.
-1113 (resist processing apparatus) and Japanese Patent Laid-Open No. 4-1
As disclosed in Japanese Patent No. 39345 (a method and apparatus for supplying constant temperature and constant humidity air). In the former conventional example, an air cooling dehumidifier that cools intake air to dehumidify it, and a heater that heats the air dehumidified by the air cooling dehumidifier to a predetermined temperature. ,further,
It consists of a humidifier that humidifies this air to a predetermined humidity, and a compression refrigerator is used for this air cooling dehumidifier, and the compressed refrigerant passes through a pipe having fins and contacts the fins. The air is cooled to dehumidify it.

【0003】一方上記従来例の後者にあっては、吸入空
気を所定の湿度に加湿する加湿機と、この空気を冷却し
て除湿する空気冷却除湿機と、この湿度が調整された空
気を所定の温度に加温する加熱機と、これらに空気を送
給する送風機からなっており、これの空調機は空気冷却
除湿機と加湿機が大きく重いため、スピンコータとは別
置きでクリーンルーム内に設置され、断熱ダクト等を介
して超恒温恒湿の空気をカップ内に供給する使われ方が
なされている。
On the other hand, in the latter of the above-mentioned conventional examples, a humidifier for humidifying the intake air to a predetermined humidity, an air cooling dehumidifier for cooling the air to dehumidify it, and an air whose humidity has been adjusted are predetermined. It consists of a heater that heats up to the temperature of the above and a blower that sends air to these.The air conditioner of this is an air cooling dehumidifier and a humidifier, so it is installed in a clean room separately from the spin coater. It is used to supply super constant temperature and constant humidity air into the cup through a heat insulating duct or the like.

【0004】[0004]

【発明が解決しようとする課題】上記従来例の前者にあ
っては、除湿機が大きく、かつ重量が大きいという問題
があり、このため空調装置全体の大きさも大きくなって
しまうという問題があった。また装置の空調処理能力を
調整することができないので、無理に調整しようとする
と、風胴断面積を変えなければならなかった。さらに上
記装置の除湿機は圧縮機を用いていたので振動を伴い、
レジスト等のコーティングへの影響を避けるための対策
を要するという問題もあった。
The former of the above-mentioned conventional examples has a problem that the dehumidifier is large and heavy, which causes a problem that the size of the entire air conditioner is also increased. . Moreover, since the air conditioning processing capacity of the device cannot be adjusted, the wind tunnel cross-sectional area had to be changed in order to force adjustment. Furthermore, since the dehumidifier of the above device used a compressor, there was vibration,
There is also a problem that a measure is required to avoid the influence on the coating such as the resist.

【0005】一方上記従来例の後者にあっては、空調装
置の使い方では断熱ダクトに熱的外乱が入り、高精度の
調温調湿が困難である。また、スピンコータが高機能化
に伴い大型化する傾向にあり、空調装置とカップを結ぶ
ダクトは長くなる傾向で調温調湿の精度低下が懸念され
ている。さらにクリーンルーム内における空調装置の占
める床面積もクリーンルーム維持費が高価なため縮小化
の要求は増大している。
On the other hand, in the latter case of the above-mentioned conventional example, when the air conditioner is used, thermal disturbance is introduced into the heat insulating duct, and it is difficult to control the temperature and humidity with high accuracy. Further, the spin coater tends to increase in size as the function thereof becomes higher, and the duct connecting the air conditioner and the cup tends to become longer, and there is concern that the accuracy of temperature control and humidity control may deteriorate. Further, the floor area occupied by the air conditioner in the clean room is also required to be reduced because the clean room maintenance cost is high.

【0006】これらの問題点を解決するためには、空調
装置を小型化してスピンコータのカップ直上に設置せし
め、空調装置とカップの間を結ぶ断熱ダクトをなくする
とともに空調装置の床面積をなくせば良い。この点にお
いては、上記従来例として前者にあげた特開平2−11
13号公報に示される「レジスト処理装置」にそのアイ
ディアが見られる。
In order to solve these problems, the air conditioner is downsized and installed directly above the cup of the spin coater, the heat insulating duct connecting the air conditioner and the cup is eliminated, and the floor area of the air conditioner is eliminated. good. In this respect, the former Japanese Patent Laid-Open No. 2-11 mentioned above as the conventional example.
The idea can be seen in the "resist processing apparatus" shown in Japanese Patent No. 13 publication.

【0007】しかしこの場合、カップの直上で垂直層流
を流入させて除湿するために、結露水がウエハー上に落
ちて実用にならない。また除湿された空気は、その直下
の加湿器で加湿された後、さらにその下にある熱交換機
で加熱されるが、加熱機の直上に冷却機があるため輻射
熱等で除湿効率が悪くなる等の問題があった。
In this case, however, since the vertical laminar flow is introduced just above the cup to dehumidify, the condensed water falls on the wafer and is not practical. Also, the dehumidified air is humidified by a humidifier directly below it and then heated by a heat exchanger underneath it, but the dehumidification efficiency deteriorates due to radiant heat etc. because there is a cooler directly above the heater. There was a problem.

【0008】本発明は上記のことにかんがみなされたも
ので、結露水が風胴の空気吹き出し口より滴下すること
がなくなり、また従来の圧縮冷凍機を用いたものに比較
して小型化、軽量化を図れると共に、振動をもなくすこ
とができ、また熱効率よく空調できると共に超精密空調
が実現でき、さらに熱交換器の能力を容易に変えること
ができ、そしてさらにメンテナンスも容易に行なうこと
ができるようにした空調装置を提供することを目的とす
るものである。
The present invention has been made in view of the above points, and it is possible to prevent condensed water from dripping from the air outlet of the wind tunnel, and to reduce the size and weight as compared with the conventional compressor / refrigerator. In addition to being able to reduce the vibration, it is possible to heat-efficiently air-condition and realize ultra-precision air-conditioning, and it is possible to easily change the capacity of the heat exchanger, and also to easily perform maintenance. It is an object of the present invention to provide an air conditioner configured as described above.

【0009】上記目的を達成するために、本発明に係る
空調装置は、風胴5内に送風機4、加熱器3、加湿機2
及び空気−流体熱交換器6を用いた空気冷却除湿機1を
内装してなる空調装置において、上記空気冷却除湿機1
を、風胴5の空気吹き出し口5aに凝縮水が滴下しない
位置に配置した構成となっている。
In order to achieve the above object, the air conditioner according to the present invention is provided with a blower 4, a heater 3 and a humidifier 2 in a wind tunnel 5.
And an air-cooling dehumidifier 1 using an air-fluid heat exchanger 6 as an interior, in the air-cooling dehumidifier 1
Is arranged at a position where condensed water does not drip into the air outlet 5a of the wind tunnel 5.

【0010】そして上記風胴5を屈曲し、空気冷却除湿
機1と加熱機2とが風胴5内で正対しないように配置
し、また上記流体−流体熱交換器9の吸熱通路10と排
熱通路11とを、それぞれの通路14,18が直交する
ように、あるいは平行になるように積層配置し、かつこ
の両通路10,11間にペルチェ素子12を介装する。
The wind tunnel 5 is bent so that the air-cooling dehumidifier 1 and the heater 2 are arranged so as not to face each other in the wind tunnel 5, and the heat absorption passage 10 of the fluid-fluid heat exchanger 9 is arranged. The exhaust heat passage 11 is laminated so that the passages 14 and 18 are orthogonal to each other or parallel to each other, and a Peltier element 12 is interposed between the passages 10 and 11.

【0011】[0011]

【作 用】送風機4にて送風される空気は空気冷却除
湿機1にて除湿され、加熱機2にて加熱され、加湿機3
にて加湿されて所定の温湿度に空調され、このときの結
露水は風胴5の空気吹き出し口5aに滴下しない。そし
て上記空気冷却除湿機1では、吸熱して温度上昇した冷
媒は流体−流体熱交換器9の吸熱通路10を通る間に、
この流体−流体熱交換器9の排熱通路11を流れる冷却
水に排熱して冷却される。上記吸熱通路10と排熱通路
11間の熱交換は両者の間に介在したペルチェ素子12
を介して行なわれる。
[Operation] The air blown by the blower 4 is dehumidified by the air-cooling dehumidifier 1, heated by the heater 2, and heated by the humidifier 3.
Is humidified and air-conditioned to a predetermined temperature and humidity, and the dew condensation water at this time does not drip into the air outlet 5a of the wind tunnel 5. In the air-cooling dehumidifier 1, while the refrigerant that has absorbed heat and has increased in temperature passes through the heat absorption passage 10 of the fluid-fluid heat exchanger 9,
The cooling water flowing through the exhaust heat passage 11 of the fluid-fluid heat exchanger 9 is exhausted and cooled. The heat exchange between the heat absorption passage 10 and the exhaust heat passage 11 is performed by a Peltier element 12 interposed therebetween.
Through.

【0012】そしてこのとき、空気冷却装置1は加熱機
2からの輻射の影響が少なく、除湿効果の低下が防止さ
れる。また流体−流体熱交換器9は、これの内部を流れ
る冷媒と冷却水が、直交あるいは対向することにより、
効率よく熱交換される。
At this time, the air cooling device 1 is less affected by the radiation from the heater 2 and the dehumidifying effect is prevented from being lowered. Further, in the fluid-fluid heat exchanger 9, the refrigerant flowing inside the fluid and the cooling water are orthogonal or opposite to each other,
Heat is exchanged efficiently.

【0013】[0013]

【実 施 例】本発明の実施例を図面に基づいて説明す
る。図1は本発明に係る空調装置の概略的な構成を示す
もので、図中1は空気冷却除湿機、2は加熱機、3は加
湿機、4は送風機であり、これらは屈曲した風胴5内に
直列状に配置されており、送風機4で吸引された空気が
冷却除湿機1を通る間に冷却除湿され、ついで加熱機2
にて昇温され、加湿機3にて加湿されて所望の温湿度と
なって送風機4の下流側に配置されたULPAフィルタ
等のフィルタ4aを通って除塵、整流化されてスピンコ
ータ等の作業部(カップ等)を空調するようになってい
る。
EXAMPLES Examples of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of an air conditioner according to the present invention. In the figure, 1 is an air cooling dehumidifier, 2 is a heater, 3 is a humidifier, 4 is a blower, and these are bent wind tunnels. 5, which are arranged in series, are cooled and dehumidified while the air sucked by the blower 4 passes through the cooling and dehumidifying machine 1, and then the heating machine 2
Is heated by the humidifier 3 to a desired temperature / humidity, and passes through a filter 4a such as a ULPA filter disposed on the downstream side of the blower 4 to remove dust and rectify the working portion such as a spin coater. It is designed to air-condition (cups, etc.).

【0014】上記空気冷却除湿機1と加熱機2とは、風
胴5の屈曲部の両側に配置されていて、それぞれの対向
面は正対しないようになっており、それぞれを通過する
空気の流通方向が角度をなすようになっている。
The air-cooling dehumidifier 1 and the heater 2 are arranged on both sides of the bent portion of the wind tunnel 5 so that their opposing surfaces do not face each other, and the air passing therethrough is The distribution direction forms an angle.

【0015】また上記空気冷却除湿機1は、これに凝縮
した水滴が風胴5の空気吹き出し口5aに滴下しないよ
うに、この空気吹き出し口5aから横方向にはずれた位
置に配置されている。
The air-cooling dehumidifier 1 is arranged at a position laterally offset from the air outlet 5a so that the water droplets condensed on the air-dehumidifier 1 do not drip onto the air outlet 5a of the wind tunnel 5.

【0016】なお、±0.01℃の超高精度空調を実現
するため、また空調空気量を自由に変えるために、送風
機4は回転数サーボ機構を備えたものを用いて、処理す
る空気量を定量化させた。
In order to realize ultra-high-precision air conditioning of ± 0.01 ° C. and to freely change the air-conditioning air amount, the blower 4 is equipped with a rotation speed servo mechanism and the amount of air to be processed is used. Was quantified.

【0017】上記空気冷却除湿機1は図2に示すよう
に、風胴5内に、冷媒(冷却媒体)が流れる空気−流体
熱交換器6が配置される構成となっており、上記風胴5
を通る空気が空気−流体熱交換器6の外面に接触するこ
とにより冷却されるようになっている。そしてこの空気
−流体熱交換器6の冷媒流入口6aは風の流れに対して
下流側に、冷媒流出口6bは上流側に設けてあり、空気
−流体熱交換器6内における冷媒の流れ方向はこの空気
−流体熱交換器6を流れる風の下流側から上流側へ向け
て流れるようになっている。上記冷媒流入、流出口6
a,6bはポンプ8を有する冷却回路7を介して流体−
流体熱交換器9に接続されている。
As shown in FIG. 2, the air-cooling dehumidifier 1 has a structure in which an air-fluid heat exchanger 6 through which a refrigerant (cooling medium) flows is arranged in a wind tunnel 5. 5
The air passing therethrough is cooled by coming into contact with the outer surface of the air-fluid heat exchanger 6. The refrigerant inlet 6a of the air-fluid heat exchanger 6 is provided on the downstream side with respect to the flow of wind, and the refrigerant outlet 6b is provided on the upstream side. Is designed to flow from the downstream side to the upstream side of the wind flowing through the air-fluid heat exchanger 6. Refrigerant inflow / outflow port 6
a and 6b are fluids via a cooling circuit 7 having a pump 8.
It is connected to the fluid heat exchanger 9.

【0018】流体−流体熱交換器9は図2に示すよう
に、冷媒が通る吸熱通路10と、冷却水が通る排熱通路
11とがペルチェ素子12を介して積層した構成となっ
ている。そしてこの流体−流体熱交換器9内における冷
媒と冷却水の流れ方向は、図2に示すように対向流とな
るようにするか、後述する具体的な構成例のように交差
するようにして吸熱通路10と排熱通路11が配置され
ている。
As shown in FIG. 2, the fluid-fluid heat exchanger 9 has a structure in which a heat absorption passage 10 through which a refrigerant flows and an exhaust heat passage 11 through which cooling water passes are laminated via a Peltier element 12. The flow directions of the refrigerant and the cooling water in the fluid-fluid heat exchanger 9 may be counter flows as shown in FIG. 2 or may be intersected as in a specific configuration example described later. A heat absorption passage 10 and an exhaust heat passage 11 are arranged.

【0019】図3から図6は上記流体−流体熱交換器9
の具体的な構成を示す。なおこの構成は、冷媒と冷却水
とが互いに交差する方向に流れるようにして吸熱通路1
0と排熱通路11がそれぞれペルチェ素子12を介して
交互に積層された構成となっている。
3 to 6 show the fluid-fluid heat exchanger 9 described above.
The specific configuration of is shown. It should be noted that in this configuration, the refrigerant and the cooling water are allowed to flow in a direction intersecting with each other so that the heat absorption passage 1
0 and the exhaust heat passage 11 are alternately laminated via the Peltier element 12.

【0020】図3は上記流体−流体熱交換器9の平面形
状を、また図4は正面形状を示すもので、図5は図3の
A−A線に沿う断面形状を示し、これにより、上記吸熱
通路10の部分を、また図6は図3のB−B線に沿う断
面形状を示し、これにより上記排熱通路11の部分をそ
れぞれ示す。
FIG. 3 is a plan view of the fluid-fluid heat exchanger 9 and FIG. 4 is a front view thereof. FIG. 5 is a sectional view taken along the line AA of FIG. FIG. 6 shows a portion of the heat absorption passage 10, and FIG. 6 shows a sectional shape taken along the line BB of FIG. 3, thereby showing a portion of the heat exhaust passage 11.

【0021】図5に示す吸熱通路10は、両端に位置す
る出入口用吸熱板13a,13bと、これらの間に積層
位置する複数個の中間用吸熱板13cとからなり、各吸
熱板13a,13b,13cには、通路14が積層方向
と直交する方向に設けてある。そして各吸熱板13a,
13b,13cの通路14はそれぞれの両側部でジョイ
ント部材15a,15bにて接続してあり、両端に位置
する出入口用吸熱板13a,13bに、それぞれの通路
14の一側部に連通した出入口継手16a,16bが接
続してある。
The endothermic passage 10 shown in FIG. 5 is composed of inlet / outlet endothermic plates 13a, 13b located at both ends and a plurality of intermediate endothermic plates 13c stacked between them, and each endothermic plate 13a, 13b is provided. , 13c, passages 14 are provided in a direction orthogonal to the stacking direction. And each heat absorbing plate 13a,
The passages 14 of 13b and 13c are connected to each other by joint members 15a and 15b on both sides thereof, and the inlet / outlet joints connected to one side of the passages 14 are connected to the inlet / outlet heat absorbing plates 13a and 13b. 16a and 16b are connected.

【0022】上記ジョイント部材15a,15bは、各
吸熱板13a,13b,13cにおいて、冷媒の流入方
向の上流側に位置するジョイント部材15aは、これの
中間部に仕切り板15cを有して閉塞されており、下流
側に位置するジョイント部材15bは開放されていて、
入口継手16aより流入した冷媒は各吸熱板13a,1
3b,13cをジグザグ状に流れて出口継手16bへ導
かれるようになっている。
In the joint members 15a and 15b, the joint member 15a located on the upstream side in the refrigerant inflow direction of each of the heat absorbing plates 13a, 13b and 13c has a partition plate 15c in the middle thereof and is closed. And the joint member 15b located on the downstream side is open,
The refrigerant that has flowed in through the inlet joint 16a is transferred to each of the heat absorbing plates 13a, 1a.
It is configured to flow in a zigzag shape through 3b and 13c and be guided to the outlet joint 16b.

【0023】一方図6に示す排熱通路11は、両端に位
置する出入口用排熱板17a,17bと、これらの間に
積層位置する複数個の中間用排熱板17cとからなり、
各排熱板17a,17b,17cには通路18が積層方
向と直交する方向に設けてある。そして各排熱板17
a,17b,17cの通路18は上記吸熱通路10の各
吸熱板13a,13b,13cの通路14と同様に、仕
切り板15cを有するジョイント部材15aと、開放さ
れたジョイント15bとを冷却水の流れ方向に交互に接
続されており、この冷却水は各排熱板17a,17b,
17cをジグザグ状に流れるようになっている。両端部
でジョイント部材15にて接続してあり、両端に位置す
る出入口用排熱板17a,17bに、それぞれの通路1
8の一端部に連通した出入口継手19a,19bが接続
してある。
On the other hand, the exhaust heat passage 11 shown in FIG. 6 is composed of inlet / outlet exhaust heat plates 17a and 17b located at both ends, and a plurality of intermediate heat exhaust plates 17c stacked between them.
A passage 18 is provided in each of the heat exhaust plates 17a, 17b, 17c in a direction orthogonal to the stacking direction. And each heat exhaust plate 17
Like the passages 14 of the heat absorbing plates 13a, 13b, 13c of the heat absorbing passage 10, the passages 18a, 17b, 17c connect the joint member 15a having the partition plate 15c and the opened joint 15b to the flow of the cooling water. Are alternately connected to each other, and this cooling water is supplied to each heat exhaust plate 17a, 17b,
17c flows in a zigzag shape. The passages 1 are connected to the inlet / outlet heat exhaust plates 17a and 17b, which are connected to each other by the joint members 15 at both ends.
The inlet / outlet joints 19a and 19b communicating with one end of 8 are connected.

【0024】上記吸熱通路10を構成する各吸熱板13
a,13b,13cは図5、図6に示すように、排熱通
路11を構成する各排熱板17a,17b,17cの間
に、ペルチェ素子12を介在させて積層され、ボルトに
て結合されるようになっている。そして吸熱通路10の
両出入口用吸熱板13a,13bの出入口継手16a,
16bに図1で示す冷媒回路7が接続されており、また
排熱通路11の両出入口用排熱板17a,17bの出入
口継手19a,19bに冷却水回路20が接続してあ
る。上記冷媒回路7には不凍液が用いられる。
Each heat absorbing plate 13 constituting the heat absorbing passage 10
As shown in FIGS. 5 and 6, a, 13b, and 13c are laminated by interposing the Peltier element 12 between the heat exhaust plates 17a, 17b, and 17c that form the exhaust heat passage 11, and are joined by bolts. It is supposed to be done. Then, the inlet / outlet joints 16a of the heat absorbing plates 13a, 13b for both entrances and exits of the heat absorbing passage 10,
The refrigerant circuit 7 shown in FIG. 1 is connected to 16b, and the cooling water circuit 20 is connected to the inlet / outlet joints 19a, 19b of the exhaust heat plates 17a, 17b for both inlets and outlets of the exhaust heat passage 11. An antifreeze liquid is used for the refrigerant circuit 7.

【0025】上記各ペルチェ素子12は制御装置21に
接続してあり、この制御装置21を介して通電すること
により、各吸熱板13a,13b,13c側から吸熱し
て排熱板17a,17b,17c側へ排熱するようにな
っている。
Each of the Peltier elements 12 is connected to a control device 21. By energizing through the control device 21, heat is absorbed from the heat absorbing plates 13a, 13b, 13c side and the heat discharging plates 17a, 17b, Heat is exhausted to the 17c side.

【0026】上記構成の流体−流体熱交換器において、
空気冷却除湿機1内の熱交換機6を通る間に吸熱して昇
温された冷媒は、流体−流体熱交換器9の吸熱通路10
を循環し、この間に、吸熱通路10を構成する各吸熱板
13a,13b,13c内で、これに接触しているペル
チェ素子12の吸熱作用によって冷却される。
In the fluid-fluid heat exchanger configured as described above,
The refrigerant whose temperature is increased by absorbing heat while passing through the heat exchanger 6 in the air-cooling dehumidifier 1 is the heat-absorbing passage 10 of the fluid-fluid heat exchanger 9.
And is cooled by the heat absorbing action of the Peltier element 12 in contact with the heat absorbing plates 13a, 13b, 13c constituting the heat absorbing passage 10 during this period.

【0027】一方この流体−流体熱交換器9の排熱通路
11には冷却水が循環されていて、この排熱通路11を
構成する各排熱板17a,17b,17cで上記ペルチ
ェ素子12の排熱作用によって排熱する。
On the other hand, cooling water is circulated in the exhaust heat passage 11 of the fluid-fluid heat exchanger 9, and the exhaust heat plates 17a, 17b, 17c constituting the exhaust heat passage 11 serve to remove the Peltier element 12 from each other. Exhaust heat by the exhaust heat effect.

【0028】図1に示す空調装置の出口側には出口空気
の温湿度を検出する温湿度センサ22が設けてあり、こ
の温湿度センサ22の検出値に基づいて上記制御装置2
1にて上記流体−流体熱交換器9、加熱機2、加湿機3
を制御するようになっている。上記流体−流体熱交換器
9の両通路10,11を構成する中間用の吸熱板13c
及び排熱板17cは同一形状で共通部品となっている。
そしてこの各中間用の吸熱板13c及び排熱板17cは
同一数ずつ増減することができ、これによって流体−流
体熱交換器9の熱交換能力が調節される。
A temperature / humidity sensor 22 for detecting the temperature / humidity of the outlet air is provided on the outlet side of the air conditioner shown in FIG. 1. Based on the detected value of the temperature / humidity sensor 22, the control device 2 is operated.
1, the fluid-fluid heat exchanger 9, the heater 2, the humidifier 3
To control. Intermediate heat absorbing plate 13c forming both passages 10 and 11 of the fluid-fluid heat exchanger 9.
The heat exhaust plate 17c has the same shape and is a common component.
The heat absorbing plate 13c and the heat exhausting plate 17c for each intermediate can be increased / decreased by the same number, whereby the heat exchange capacity of the fluid-fluid heat exchanger 9 is adjusted.

【0029】上記構成において、送風機4にて送風され
る空気は、空気冷却除湿機1にて所定の絶対湿度まで除
湿され、加熱機2にて加熱され、加湿機3にて加湿され
て所望の温湿度に空調される。このとき、空気冷却除湿
機1に結露した水滴は風胴5の空気吹き出し口5a以外
の部分に滴下してこの空気吹き出し口5aより水滴が滴
下することがない。そして空調された空気は空気吹き出
し口5a付近に設置された温湿度センサ22にてこれの
温湿度が検出され、この検出値に上記所望の温湿度との
間に偏差がある場合には制御装置21にて加熱機2ある
いは加湿機3の操作量を増減して温湿度の制御が行なわ
れる。
In the above structure, the air blown by the blower 4 is dehumidified by the air-cooling dehumidifier 1 to a predetermined absolute humidity, heated by the heater 2 and humidified by the humidifier 3 to obtain a desired amount. Air-conditioned to temperature and humidity. At this time, the water droplets that have condensed on the air-cooling dehumidifier 1 do not drop on the portion of the wind tunnel 5 other than the air outlet 5a, and the water droplets do not drop from the air outlet 5a. The temperature and humidity of the conditioned air is detected by the temperature and humidity sensor 22 installed near the air outlet 5a. If there is a deviation between the detected value and the desired temperature and humidity, the control device At 21, the temperature and humidity are controlled by increasing or decreasing the operation amount of the heater 2 or the humidifier 3.

【0030】また図示してないが、風胴5の入口側にも
温湿度センサを設けて、入口空気の温湿度から計算され
る露点温度及び所望の吐き出し空気の温湿度から計算さ
れる絶対湿度と比較して最も効率的な除湿制御を自動的
に行なうようにしても良い。
Although not shown, a temperature / humidity sensor is also provided on the inlet side of the wind tunnel 5, and the dew point temperature calculated from the temperature / humidity of the inlet air and the absolute humidity calculated from the temperature / humidity of the desired discharge air. The most efficient dehumidification control may be automatically performed as compared with.

【0031】そしてこのように最適に除湿された空気は
加熱機2へ導かれて所定の温度まで加熱され、さらに加
湿機3で所望の湿度まで加湿する。そしてこの空気は送
風機4にて送り出されるが、風胴5の空気吹き出し口5
a側が、図1に示すように、漏斗状になっている場合に
は、この部分にて膨脹される。
The thus optimally dehumidified air is guided to the heater 2 and heated to a predetermined temperature, and further humidified by the humidifier 3 to a desired humidity. This air is blown out by the blower 4, but the air blowout port 5 of the wind tunnel 5
When the a side has a funnel shape as shown in FIG. 1, it is expanded at this portion.

【0032】送り出される空気は、空気吹き出し口5a
側に設けた温湿度センサ22にて検出され、その検出値
により加熱機2、加湿機3を制御することにより、それ
ぞれ±0.01℃、±0.1%RHの誤差で温湿度が制
御される。
The air sent out is the air outlet 5a.
The temperature and humidity are detected by the temperature and humidity sensor 22 provided on the side, and the temperature and humidity are controlled with an error of ± 0.01 ° C. and ± 0.1% RH by controlling the heater 2 and the humidifier 3 according to the detected values. To be done.

【0033】上記作用において、空気冷却除湿機1と加
熱機2とは、それぞれの対向面が正対していないことに
より、空気冷却除湿機1は加熱機2からの輻射熱による
影響を減らすことができる。
In the above operation, since the air cooling dehumidifier 1 and the heater 2 do not face each other, the air cooling dehumidifier 1 can reduce the influence of the radiant heat from the heater 2. .

【0034】また上記空気冷却除湿機1において、これ
を流れる冷媒の流れ方向が、空気冷却除湿機1を通る空
気の流れと対向する方向となっていることにより、冷媒
の温度上昇が大きくとれると共に、冷媒−空気の熱交換
効率もよくなる。
In the air-cooling dehumidifier 1, since the flow direction of the refrigerant flowing through the air-cooling dehumidifier 1 is opposite to the flow of air passing through the air-cooling dehumidifier 1, the temperature rise of the refrigerant can be increased. The heat exchange efficiency between the refrigerant and the air is also improved.

【0035】空気冷却除湿機1にて吸熱して昇温された
冷媒は上記したように、流体−流体熱交換器9を通る間
に、ペルチェ素子12の吸熱作用により冷却水側へ排熱
されるが、このとき、流体−流体熱交換器9における冷
媒と冷却水のそれぞれの流れ方向が対向あるいは上記実
施例に示すように交差することにより、ペルチェ素子1
2の動作点は高効率に設定され、冷媒から冷却水への熱
移動が効率よく行なわれる。
As described above, the refrigerant that has absorbed heat in the air-cooling dehumidifier 1 and has been raised in temperature is discharged to the cooling water side by the endothermic action of the Peltier element 12 while passing through the fluid-fluid heat exchanger 9. However, at this time, the respective flow directions of the refrigerant and the cooling water in the fluid-fluid heat exchanger 9 are opposite to each other or intersect as shown in the above embodiment, so that the Peltier element 1
The operating point of No. 2 is set to high efficiency, and heat is efficiently transferred from the refrigerant to the cooling water.

【0036】このときのペルチェ素子12の高効率動作
について図7をもとに説明する。図7の線図は横軸がペ
ルチェ素子の吸熱面と放熱面の温度差△T、すなわち冷
媒と冷却水の温度差、縦軸はペルチェ素子の吸熱量Qc
を表す。この線図からみて温度差△Tが大きいほど吸熱
量Qcは少ないことがわかる。冷媒の温度と冷却水の温
度が決まっていれば△Tは一定と考えがちだが、そうで
はない。吸熱板10を介してペルチェ素子12で冷却さ
れた例えば0℃冷媒は空気冷却除湿機1を通過する際に
吸い込み空気から吸熱して例えば10℃に温度が上がり
ポンプ8を介して再び吸熱板10へ戻る場合、吸熱面の
算術平均温度は5℃になり、冷却水の温度が例えば20
℃ならば温度差△Tは15℃となる。冷媒の空気冷却除
湿機1への流し方で温度上昇は変わるため、ペルチャ素
子12の温度差△Tも変えることができる。実際には冷
却水の温度も上昇するため温度差△Tは対数平均温度差
で計算すべきであるが、平均の温度差△Tが変えられる
点は同じである。すなわち空気冷却除湿機1では空気と
冷媒は対向流になるように配置し、冷媒の流量を減ら
す。また流体−流体熱交換器9においても冷却水と冷媒
も対向流とし、ペルチェ素子の吸熱面と放熱面の温度差
△T(平均温度差)を小さくすることができる。
The highly efficient operation of the Peltier device 12 at this time will be described with reference to FIG. In the diagram of FIG. 7, the horizontal axis represents the temperature difference ΔT between the heat absorption surface and the heat dissipation surface of the Peltier element, that is, the temperature difference between the refrigerant and the cooling water, and the vertical axis represents the heat absorption amount Qc of the Peltier element.
Represents From this diagram, it can be seen that the larger the temperature difference ΔT, the smaller the heat absorption amount Qc. If the temperature of the coolant and the temperature of the cooling water are determined, it is easy to think that ΔT is constant, but it is not so. The 0 ° C. refrigerant cooled by the Peltier element 12 via the heat absorbing plate 10 absorbs heat from the sucked air when passing through the air cooling / dehumidifying machine 1 and its temperature rises to, for example, 10 ° C. When returning to, the arithmetic mean temperature of the endothermic surface becomes 5 ° C, and the temperature of the cooling water is, for example, 20 ° C.
If the temperature is ° C, the temperature difference ΔT is 15 ° C. Since the temperature rise changes depending on how the refrigerant flows into the air-cooling dehumidifier 1, the temperature difference ΔT of the peltier element 12 can also be changed. Actually, the temperature of the cooling water also rises, so the temperature difference ΔT should be calculated by the logarithmic average temperature difference, but the point that the average temperature difference ΔT can be changed is the same. That is, in the air-cooling dehumidifier 1, the air and the refrigerant are arranged so as to be in counterflow, and the flow rate of the refrigerant is reduced. Further, in the fluid-fluid heat exchanger 9 as well, the cooling water and the refrigerant are made to flow in opposite directions, and the temperature difference ΔT (average temperature difference) between the heat absorbing surface and the heat radiating surface of the Peltier element can be reduced.

【0037】図8は流体−流体熱交換器の他の実施例を
示すもので、一対の排熱板17a,17bの間にそれぞ
れペルチェ素子12を介して吸熱板13cを積層してな
る熱交換ユニット23を複数用い、ポンプ8にて供給さ
れる冷媒を各熱交換ユニット23の吸熱板13cに直列
状に流し、また冷却水は各熱交換ユニット23の両排熱
板17a,17bに並列に流れ、かつ各熱交換ユニット
23相互では直接に流れるようになっている。
FIG. 8 shows another embodiment of the fluid-fluid heat exchanger, which is a heat exchange system in which a heat absorbing plate 13c is laminated between a pair of heat discharging plates 17a and 17b with a Peltier element 12 interposed therebetween. Using a plurality of units 23, the refrigerant supplied by the pump 8 is made to flow in series to the heat absorbing plate 13c of each heat exchange unit 23, and the cooling water is parallel to both heat exhaust plates 17a and 17b of each heat exchange unit 23. The heat exchange units 23 flow directly to each other.

【0038】また図9は全体構成の他の例を示すもので
4、風胴5の吸い込み口56を下側へ向けた構成となっ
ている。
FIG. 9 shows another example of the overall structure 4, in which the suction port 56 of the wind tunnel 5 is directed downward.

【0039】[0039]

【発明の効果】本発明によれば、空調装置内にての結露
水が風胴5の空気吹き出し口5aより滴下することがな
い。また、空気冷却除湿機1にて吸収した熱を排熱する
ための熱交換器を、従来の圧縮冷凍機を用いたものに比
較して小形化、軽量化を図れると共に、振動をもなくす
ことがができる。また、ペルチェ素子による方式の中で
も最も高効率となり、これによって空調装置全体の小
形、軽量化を図れる。また空調の際に排出される結露水
を空気と分離できることとあわせて、スピンコーティン
グ装置等の作業部の直上に空調装置を設置できるため超
精密空調が実現でき、また高価なクリーンルームの床面
を占有することもない。さらに、吸熱板と排熱板及びペ
ルチェ素子12の数を増減することにより、この熱交換
器の能力を容易に変えることができ、これにより空気冷
却除湿機1での空気処理能力を、これの風洞断面積を変
更することなく容易に調整することができる。また空気
−流体熱交換器6と流体−流体熱交換器9を分離してい
るため空調装置のメンテナンスが容易になる。
According to the present invention, dew condensation water in the air conditioner does not drip from the air outlet 5a of the wind tunnel 5. In addition, the heat exchanger for exhausting the heat absorbed by the air-cooling dehumidifier 1 can be made smaller and lighter than that using a conventional compression refrigerator, and vibration can be eliminated. You can Moreover, the efficiency is the highest among the methods using the Peltier device, and this makes it possible to reduce the size and weight of the entire air conditioner. In addition to being able to separate the condensed water discharged during air conditioning from the air, ultra-precision air conditioning can be realized because the air conditioning device can be installed directly above the work unit such as the spin coating device, and the floor surface of an expensive clean room can be realized. It doesn't occupy either. Further, the capacity of this heat exchanger can be easily changed by increasing or decreasing the number of the heat absorbing plate, the heat exhausting plate and the Peltier element 12, whereby the air treatment capacity of the air cooling dehumidifier 1 can be improved. It can be easily adjusted without changing the wind tunnel cross-sectional area. Further, since the air-fluid heat exchanger 6 and the fluid-fluid heat exchanger 9 are separated, maintenance of the air conditioner becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の全体構成図である。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】本発明の実施例に用いる空気冷却除湿機に接続
する流体−流体熱交換器の概略的な構成説明図である。
FIG. 2 is a schematic configuration explanatory view of a fluid-fluid heat exchanger connected to an air cooling dehumidifier used in an embodiment of the present invention.

【図3】本発明の実施例に用いる流体−流体熱交換器を
示す平面図である。
FIG. 3 is a plan view showing a fluid-fluid heat exchanger used in an embodiment of the present invention.

【図4】本発明の実施例に用いる流体−流体熱交換器を
示す正面図である。
FIG. 4 is a front view showing a fluid-fluid heat exchanger used in an embodiment of the present invention.

【図5】図3のA−A線に沿う断面矢視図である。5 is a cross-sectional arrow view taken along the line AA of FIG.

【図6】図3のB−B線に沿う断面矢視図である。6 is a cross-sectional arrow view taken along the line BB of FIG.

【図7】ペルチェ素子の特性を示す線図である。FIG. 7 is a diagram showing characteristics of a Peltier device.

【図8】流体−流体熱交換器の他例を示す構成説明図で
ある。
FIG. 8 is a structural explanatory view showing another example of a fluid-fluid heat exchanger.

【図9】本発明の他の実施例の全体構成図である。FIG. 9 is an overall configuration diagram of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…空気冷却除湿機、2…加熱機、3…加湿機、4…送
風機、4a…フィルタ、5…風胴、5a…空気吹き出し
口、6…空気−流体熱交換器、7…冷媒回路、8…ポン
プ、9…流体−流体熱交換器、10…吸熱通路、11…
排熱通路、12…ペルチェ素子、13a,13b…出入
口用吸熱板、13c…中間用吸熱板、14,18…流体
通路、15…ジョイント部材、16a,16b,19
a,19b…出入口継手、17a,17b…出入口用排
熱板、17c…中間用排熱板、20…冷却水回路、21
…制御装置、22…温湿度センサ。
DESCRIPTION OF SYMBOLS 1 ... Air cooling dehumidifier, 2 ... Heating machine, 3 ... Humidifier, 4 ... Blower, 4a ... Filter, 5 ... Wind tunnel, 5a ... Air outlet, 6 ... Air-fluid heat exchanger, 7 ... Refrigerant circuit, 8 ... Pump, 9 ... Fluid-fluid heat exchanger, 10 ... Endothermic passage, 11 ...
Exhaust heat passage, 12 ... Peltier element, 13a, 13b ... Heat inlet / outlet heat absorbing plate, 13c ... Intermediate heat absorbing plate, 14, 18 ... Fluid passage, 15 ... Joint member, 16a, 16b, 19
a, 19b ... inlet / outlet joint, 17a, 17b ... inlet / outlet heat exhaust plate, 17c ... intermediate heat exhaust plate, 20 ... cooling water circuit, 21
... control device, 22 ... temperature and humidity sensor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杓子 徹夫 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 松本 利彦 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 渡辺 弦一郎 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 (72)発明者 今村 敏英 神奈川県平塚市万田1200 株式会社小松製 作所研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuo Tako, 1200 Manda, Hiratsuka-shi, Kanagawa Prefecture, Komatsu Seisakusho Laboratory (72) Inventor, Toshihiko Matsumoto 1200, Manda, Hiratsuka-shi, Kanagawa, Ltd. Komatsu Seisakusho, Ltd. ( 72) Inventor Genichiro Watanabe 1200 Manda, Hiratsuka-shi, Kanagawa, Komatsu Ltd. (72) Inventor Toshihide Imamura 1200, Hiratsuka, Kanagawa, Komatsu Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 風胴5内に送風機4、加熱器3、加湿機
2及び空気−流体熱交換器6を用いた空気冷却除湿機1
を内装してなる空調装置において、上記空気冷却除湿機
1を、風胴5の空気吹き出し口5aに凝縮水が滴下しな
い位置に配置したことを特徴とする空調装置。
1. An air cooling dehumidifier 1 using a blower 4, a heater 3, a humidifier 2 and an air-fluid heat exchanger 6 in a wind tunnel 5.
An air conditioner in which the air-cooling dehumidifier 1 is arranged at a position where condensed water does not drip into the air outlet 5a of the wind tunnel 5.
【請求項2】 風胴5を屈曲し、空気冷却除湿機1と加
熱機2とが風胴5内で正対しないように配置したことを
特徴とする請求項1記載の空調装置。
2. The air conditioner according to claim 1, wherein the wind tunnel 5 is bent so that the air-cooling dehumidifier 1 and the heater 2 are arranged so as not to face each other in the wind tunnel 5.
【請求項3】 流体−流体熱交換器9の吸熱通路10と
排熱通路11とを、それぞれの通路14,18が直交す
るように積層配置し、この吸熱通路10と排熱通路11
の間にペルチェ素子12を介装したことを特徴とする請
求項1記載の空調装置。
3. The heat absorption passage 10 and the exhaust heat passage 11 of the fluid-fluid heat exchanger 9 are stacked so that the passages 14 and 18 are orthogonal to each other, and the heat absorption passage 10 and the exhaust heat passage 11 are arranged.
The air conditioner according to claim 1, wherein a Peltier element 12 is interposed between the air conditioners.
【請求項4】 流体−流体熱交換器9の排熱通路10と
吸熱通路11とを、それぞれの通路14,18が平行に
なるように積層配置し、この吸熱通路10と排熱通路1
1の間にペルチェ素子12を介装したことを特徴とする
請求項1記載の空調装置。
4. The heat-exhaust passage 10 and the heat-absorbing passage 11 of the fluid-fluid heat exchanger 9 are stacked so that the passages 14 and 18 are parallel to each other.
The air conditioner according to claim 1, wherein a Peltier element 12 is provided between the air conditioners.
JP6150899A 1993-08-12 1994-07-01 Air-conditioning device Pending JPH07103506A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6150899A JPH07103506A (en) 1993-08-12 1994-07-01 Air-conditioning device
PCT/JP1995/000682 WO1996001397A1 (en) 1994-07-01 1995-04-06 Air conditioning device
EP95914535A EP0766049A4 (en) 1994-07-01 1995-04-06 Air conditioning device
KR1019960707626A KR100242758B1 (en) 1994-07-01 1995-04-06 Airconditioner
US08/750,596 US5921088A (en) 1994-07-01 1995-04-06 Air conditioning apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-200716 1993-08-12
JP20071693 1993-08-12
JP6150899A JPH07103506A (en) 1993-08-12 1994-07-01 Air-conditioning device

Publications (1)

Publication Number Publication Date
JPH07103506A true JPH07103506A (en) 1995-04-18

Family

ID=26480339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6150899A Pending JPH07103506A (en) 1993-08-12 1994-07-01 Air-conditioning device

Country Status (1)

Country Link
JP (1) JPH07103506A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990046726A (en) * 1999-04-19 1999-07-05 전찬구 Air-conditioner making use of thermo-element
EP0813032A3 (en) * 1996-06-10 2001-05-23 Thermovonics Co., Ltd Air-conditioning ventilator
KR100623527B1 (en) * 2005-05-23 2006-09-13 주식회사 대우일렉트로닉스 Waste heat withdrawal and air veatilation apparatus available for cooling and heating room
ES2296563A1 (en) * 2007-10-22 2008-04-16 Nestor Jacob Escario System for cooling and condensation of fluid, has internal condenser coil with multiple plates and thermoelectric circuit to heat circulating fluid, and container is provided, which is connected to circuit of another circulating fluid
JP2011514504A (en) * 2008-03-04 2011-05-06 アメリカン パワー コンバージョン コーポレイション Dehumidification device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0813032A3 (en) * 1996-06-10 2001-05-23 Thermovonics Co., Ltd Air-conditioning ventilator
KR19990046726A (en) * 1999-04-19 1999-07-05 전찬구 Air-conditioner making use of thermo-element
KR100623527B1 (en) * 2005-05-23 2006-09-13 주식회사 대우일렉트로닉스 Waste heat withdrawal and air veatilation apparatus available for cooling and heating room
ES2296563A1 (en) * 2007-10-22 2008-04-16 Nestor Jacob Escario System for cooling and condensation of fluid, has internal condenser coil with multiple plates and thermoelectric circuit to heat circulating fluid, and container is provided, which is connected to circuit of another circulating fluid
JP2011514504A (en) * 2008-03-04 2011-05-06 アメリカン パワー コンバージョン コーポレイション Dehumidification device and method

Similar Documents

Publication Publication Date Title
KR100242758B1 (en) Airconditioner
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
JP4409914B2 (en) Air conditioner air conditioning system
EP3415832B1 (en) Energy exchange system for conditioning air in an enclosed structure
EP2250446B1 (en) Indirect evaporative cooler
US7905108B2 (en) Air conditioning apparatus
US20210341171A1 (en) Energy recovery system and method
WO2003046441A1 (en) Humidity controller
JPH0684822B2 (en) Indirect air conditioner
JP2004257588A (en) Dehumidifying air-conditioner
KR102289482B1 (en) Air conditioning system
CN108105931A (en) A kind of constant temperature and humidity airhandling equipment with twin-stage heat reclamation device
JPH07103506A (en) Air-conditioning device
JPH07163830A (en) Dry dehumidifier and air conditioner used therewith
JP4341358B2 (en) Air conditioner
JP4911428B2 (en) Dehumidifying air conditioner
JPH11132500A (en) Dehumidifying air conditioner
JP4011724B2 (en) Desiccant air conditioning method
JPH0933065A (en) Air conditioning method and air conditioner
JPH06101930A (en) Air cooler using moisture absorbent
WO2022158094A1 (en) Humidity adjustment device
JP2002349905A (en) Desiccant air-conditioning device corresponding to heating type
WO2022259898A1 (en) Humidity controlling device
JPH10227480A (en) Air-conditioner
JP2586746B2 (en) Ceiling cooling and heating system