JPH0697529A - Differential strictive actuator - Google Patents

Differential strictive actuator

Info

Publication number
JPH0697529A
JPH0697529A JP3319447A JP31944791A JPH0697529A JP H0697529 A JPH0697529 A JP H0697529A JP 3319447 A JP3319447 A JP 3319447A JP 31944791 A JP31944791 A JP 31944791A JP H0697529 A JPH0697529 A JP H0697529A
Authority
JP
Japan
Prior art keywords
strain
bodies
power supply
supply circuit
striction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3319447A
Other languages
Japanese (ja)
Inventor
Tomohiko Akuta
友彦 芥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP3319447A priority Critical patent/JPH0697529A/en
Publication of JPH0697529A publication Critical patent/JPH0697529A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To realize linear control of high precision by providing a pair of striction bodies and a movable body which receives driving action in the mutually opposite directions by the strictive action of each striction body. CONSTITUTION:A movable body 23 which receives driving action in the mutually opposite direction by the strictive action of a pair of striction bodies 17, 18 is provided. In the case that the striction bodies 17, 18 are magnetostriction bodies, the strain inducing means are coils, and a first coil 15 and a second coil 16 are differentially excited by a first power supply circuit Ea and a second power supply circuit Db. In the case that the striction bodies 17, 18 are electrostriction bodies, the striction inducing means are a pair of DC voltage applying electrodes which constitute a pair sandwiching the electrostriction bodies. DC voltages are differentially applied to a first DC voltage applying electrode and a second DC voltage applying electrode from the first power supply circuit Ea and the second power supply circuit Eb. Thereby, in the strictive actuator, nonlinear characteristics of magnetostriction or electrostriction are improved, influence of temperature drift is eliminated, hysteresis characteristics are restrained, and excellence striction linearity can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、差動式歪みアクチュエ
ータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential strain actuator.

【0002】[0002]

【従来の技術】磁歪素子あるいは電歪素子を用いたアク
チュエータが従来より提案されている。図6(a)は磁
歪アクチュエータであり、磁歪体1は、テルビウム(T
e)、鉄(Fe)、ディスプロジウム(Dy)を主体と
する合金製である。磁歪体1はソレノイド2の励磁によ
って磁界を印加され、この印加磁界によって長さ方向に
伸長する。この伸長によって駆動レバー3が予圧ばね4
に抗して駆動される。
2. Description of the Related Art An actuator using a magnetostrictive element or an electrostrictive element has been conventionally proposed. FIG. 6A shows a magnetostrictive actuator, and the magnetostrictive body 1 is a terbium (T
e), iron (Fe), and dysprosium (Dy). A magnetic field is applied to the magnetostrictive body 1 by exciting the solenoid 2, and the magnetostrictive body 1 extends in the lengthwise direction by the applied magnetic field. Due to this extension, the drive lever 3 moves the preload spring 4
Driven against.

【0003】図7(a)は電歪アクチュエータであり、
電歪積層体5は、圧電素子層5aと電極層5bとを交互
に積層して構成されている。圧電素子層5bの分極方向
は電圧印加方向(積層方向)に一致させてあり、電極層
5bに直流電圧を印加すれば電歪体5が積層方向へ伸長
する。
FIG. 7A shows an electrostrictive actuator,
The electrostrictive laminated body 5 is configured by alternately laminating the piezoelectric element layers 5a and the electrode layers 5b. The polarization direction of the piezoelectric element layer 5b is aligned with the voltage application direction (laminating direction), and when a DC voltage is applied to the electrode layer 5b, the electrostrictive body 5 extends in the laminating direction.

【0004】[0004]

【発明が解決しようとする課題】図6(b)のグラフの
曲線C1 は磁界の強さに対する磁歪体1の長さ方向の歪
み率を表し、図7(b)のグラフの曲線C2 は電圧の強
さに対する電歪体5の積層方向の歪み率を表す。両図か
ら分かるように印加磁界強さに対する磁歪体1の変位特
性、及び印加電圧強さに対する電歪体5の変位特性は非
線形であり、ヒステリシスも大きい。しかも、動作温度
の変化により熱膨張及び動作特性の変化を著しく受け、
同一磁界強さにも関わらず歪み量が温度変化によって変
動するという温度ドリフト現象に関する欠点がある。そ
のため、高性能微小位置決め装置、スプール弁、パイロ
ット弁における流量あるいは圧力制御のための精密アク
チュエータに磁歪体あるいは電歪体を用いたアクチュエ
ータを利用することは極めて困難であった。
The curve C 1 of the graph of FIG. 6B represents the strain rate in the longitudinal direction of the magnetostrictive body 1 with respect to the strength of the magnetic field, and the curve C 2 of the graph of FIG. 7B. Represents the strain rate in the stacking direction of the electrostrictive body 5 with respect to the strength of the voltage. As can be seen from both figures, the displacement characteristic of the magnetostrictive body 1 with respect to the applied magnetic field strength and the displacement characteristic of the electrostrictive body 5 with respect to the applied voltage strength are non-linear, and the hysteresis is large. Moreover, thermal expansion and changes in operating characteristics are significantly affected by changes in operating temperature,
There is a drawback related to the temperature drift phenomenon in which the amount of strain fluctuates due to temperature changes despite the same magnetic field strength. Therefore, it has been extremely difficult to use an actuator using a magnetostrictive body or an electrostrictive body as a precision actuator for controlling the flow rate or pressure in a high-performance minute positioning device, a spool valve, and a pilot valve.

【0005】本発明は、磁歪体、電歪体の非線形性、温
度ドリフト、ヒステリシスの影響を可及的に排して高精
度の線形制御を達成し得る歪みアクチュエータを提供す
ることを目的とする。
It is an object of the present invention to provide a strain actuator capable of achieving highly accurate linear control by eliminating influences of non-linearity of magnetostrictive body and electrostrictive body, temperature drift and hysteresis as much as possible. .

【0006】[0006]

【課題を解決するための手段】そのために本発明では、
入力信号に比例した駆動信号を出力する第1の電源回路
と、前記入力信号に逆比例した駆動信号を出力する第2
の電源回路と、第1の電源回路の駆動信号によって歪み
誘発力を発生する第1の歪み誘発手段と、第2の電源回
路の駆動信号によって歪み誘発力を発生する第2の歪み
誘発手段と、第1の歪み誘発手段及び第2の歪み誘発手
段の作動によって歪みを生じる一対の歪体と、各歪体の
歪み作用によって互いに逆方向への駆動作用を受ける可
動体とを備えた差動式歪みアクチュエータを構成した。
Therefore, according to the present invention,
A first power supply circuit that outputs a drive signal proportional to an input signal, and a second power circuit that outputs a drive signal inversely proportional to the input signal
Power supply circuit, first distortion inducing means for generating a distortion inducing force by the drive signal of the first power supply circuit, and second distortion inducing means for generating a distortion inducing force by the drive signal of the second power supply circuit. A differential including a pair of strain bodies that generate strain by the operation of the first strain inducing means and the second strain inducing means, and a movable body that receives a driving action in opposite directions due to the strain action of each strain body. Type strain actuator was constructed.

【0007】[0007]

【作用】歪体が磁歪体の場合には歪み誘発手段はコイル
となり、第1のコイル及び第2のコイルは第1の電源回
路及び第2の電源回路によって差動励磁される。歪体が
電歪体の場合には歪み誘発体は電歪体を挟んで対となる
直流電圧印加電極対となり、第1の直流電圧印加電極及
び第2の直流電圧印加電極対は第1の電源回路及び第2
の電源回路によって差動電圧印加される。
When the strain body is a magnetostrictive body, the strain inducing means is a coil, and the first coil and the second coil are differentially excited by the first power supply circuit and the second power supply circuit. When the strain body is an electrostrictive body, the strain inducing body is a pair of direct current voltage applying electrodes sandwiching the electrostrictive body, and the first direct current voltage applying electrode and the second direct current voltage applying electrode pair are the first pair. Power supply circuit and second
A differential voltage is applied by the power supply circuit.

【0008】差動励磁とは一対のコイルの磁束が互いに
減じ合う向きに生じるように励磁することである。即
ち、一方のコイルの磁束が増大すれば他方のコイルの磁
束が比例的に減少する。差動電圧印加とは一方の直流電
圧印加電極対間の電圧が増大すれば他方の直流電圧印加
電極対間の電圧が比例的に減少するようにすることであ
る。
The differential excitation is excitation so that the magnetic fluxes of the pair of coils are generated in the directions in which they are mutually reduced. That is, when the magnetic flux of one coil increases, the magnetic flux of the other coil proportionally decreases. Differential voltage application is to increase the voltage between one DC voltage applying electrode pair and decrease the voltage between the other DC voltage applying electrode pair proportionally.

【0009】このような差動作用による一対の歪体の歪
みの差は2乗特性による非線形性及び温度や外部磁界等
の影響によるドリフト特性を著しく改善し、又、適切な
バイアス値の印加によりヒステリシス特性をも抑制した
略線形特性をもたらす。従って、可動体は両歪体の歪み
の差に比例して変位し、可動体の変位は入力信号に対し
て略線形となる。
The difference between the strains of the pair of strain bodies due to the differential action remarkably improves the non-linearity due to the squared characteristic and the drift characteristic due to the influence of temperature, external magnetic field, and the like, and by applying an appropriate bias value. This brings about a substantially linear characteristic in which the hysteresis characteristic is suppressed. Therefore, the movable body is displaced in proportion to the difference between the strains of the two strain bodies, and the displacement of the movable body becomes substantially linear with respect to the input signal.

【0010】[0010]

【実施例】以下、本発明を具体化した第1の実施例を図
1〜図4に基づいて説明する。図1に示すように台枠1
0は一対のアーム10a,10bを備えており、両アー
ム10a,10bの対向面上には取り付け座11,12
が止着されている。取り付け座11,12上には筒状の
ヨーク13,14が止着されており、ヨーク13,14
内にはコイル15,16が収容されている。コイル1
5,16内には磁歪ロッド17,18が収容されてい
る。磁歪ロッド17,18はテルビウム(Te)、鉄
(Fe)及びディスプロジウム(Dy)を主体とする合
金製である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment embodying the present invention will be described below with reference to FIGS. Underframe 1 as shown in FIG.
0 has a pair of arms 10a and 10b, and mounting seats 11 and 12 are provided on the facing surfaces of both arms 10a and 10b.
Is fastened. Cylindrical yokes 13 and 14 are fixed on the mounting seats 11 and 12, respectively.
The coils 15 and 16 are housed therein. Coil 1
Magnetostrictive rods 17 and 18 are housed in 5 and 16. The magnetostrictive rods 17 and 18 are made of an alloy mainly containing terbium (Te), iron (Fe) and dysprosium (Dy).

【0011】磁歪ロッド17,18の対向面には押圧板
19,20が接合されており、押圧板19,20とアー
ム10a,10bとの間には予圧ばね21,22が介在
されている。押圧板19,20は予圧ばね21,22の
引っ張り作用によって磁歪ロッド17,18に押接され
ている。
Pressing plates 19, 20 are joined to the opposing surfaces of the magnetostrictive rods 17, 18, and preload springs 21, 22 are interposed between the pressing plates 19, 20 and the arms 10a, 10b. The pressing plates 19 and 20 are pressed against the magnetostrictive rods 17 and 18 by the pulling action of the preload springs 21 and 22.

【0012】ヨーク13,14、取り付け座11,12
及び押圧板19,20はいずれも強磁性材製であり、こ
れら各部材によってコイル15,16の周りに磁気回路
が形成されている。
Yokes 13, 14 and mounting seats 11, 12
The pressing plates 19 and 20 are both made of a ferromagnetic material, and a magnetic circuit is formed around the coils 15 and 16 by these members.

【0013】両押圧板19,20の間にはレバー23が
介在されている。レバー23は台枠10に支軸24を介
して傾動可能に支持されており、両押圧板19,20は
一体形成された球面突部19a,20aを介してレバー
23に当接している。
A lever 23 is interposed between the pressing plates 19 and 20. The lever 23 is tiltably supported by the underframe 10 via a support shaft 24, and both pressing plates 19 and 20 are in contact with the lever 23 via integrally formed spherical projections 19a and 20a.

【0014】コイル15,16の励磁は駆動回路25に
よって行われる。駆動回路25には入出力の線形性に優
れるオペアンプ25a1 ,25b1 が用いられており、
反転増幅回路を含む電源回路Eaと非反転増幅回路を含
むEbとが構成されている。又、コイル15,16の誘
起電圧を抑制するためにコイル15,16と並列に保護
ダイオード25a2 ,25b2 が設けられている。Rb
0 ,Ra1 ,Rb1 ,Ra2 ,Rb2 ,Ra3 ,Rb3
は抵抗器である。
Excitation of the coils 15 and 16 is performed by the drive circuit 25. The drive circuit 25 uses operational amplifiers 25a 1 and 25b 1 having excellent input / output linearity.
A power supply circuit Ea including an inverting amplifier circuit and an Eb including a non-inverting amplifier circuit are configured. Further, protective diodes 25a 2 and 25b 2 are provided in parallel with the coils 15 and 16 in order to suppress the induced voltage of the coils 15 and 16. Rb
0 , Ra 1 , Rb 1 , Ra 2 , Rb 2 , Ra 3 , Rb 3
Is a resistor.

【0015】図2の直線L1 ,L2 は駆動回路25の入
出力特性を示す。その座標軸の横軸は駆動回路25,2
6に入力される制御電圧信号Vinを表し、縦軸は出力電
圧を表す。直線L1 で表される出力電圧及び直線L2
表される出力電圧は、コイル15,16に印加される励
磁電圧となり、互いに逆向きの特性を持っている。つま
り、コイル15,16の励磁電圧をそれぞれVa ,Vb
とすると、励磁電圧Va は制御電圧信号Vinに対して同
じ傾きで単調増加し、励磁電圧Vb は励磁電圧Va と同
じ傾きで単調減少する。従って、両励磁電圧Va ,Vb
の和(Va +Vb )の値がVinに関係なく常に一定とな
る。即ち、コイル15,16には差動電圧Va ,Vb が
印加される。
The straight lines L 1 and L 2 in FIG. 2 show the input / output characteristics of the drive circuit 25. The horizontal axis of the coordinate axis is the drive circuit 25, 2
6 represents the control voltage signal Vin input to 6, and the vertical axis represents the output voltage. The output voltage represented by the straight line L 1 and the output voltage represented by the straight line L 2 are excitation voltages applied to the coils 15 and 16, and have characteristics opposite to each other. That is, the exciting voltages of the coils 15 and 16 are respectively Va and Vb.
Then, the exciting voltage Va monotonically increases with the same gradient with respect to the control voltage signal Vin, and the exciting voltage Vb monotonically decreases with the same gradient as the exciting voltage Va. Therefore, both excitation voltages Va and Vb
The value of the sum (Va + Vb) of V is always constant regardless of Vin. That is, the differential voltages Va and Vb are applied to the coils 15 and 16.

【0016】図2の曲線C3 ,C4 は磁歪ロッド17,
18の歪み特性を表す。曲線C4 で表される磁歪ロッド
18の歪み特性の座標軸は曲線C3 で表される磁歪ロッ
ド17の歪み特性の座標軸に対して上下及び左右に反転
して描いてある。その座標軸の横軸はコイル15,16
が発生する磁界の強さを表し、縦軸は歪み率を表す。こ
の実施例では制御電圧信号Vinは0からV1in の範囲で
使用され、磁界の強さは0からe1 エルステッドにわた
る。従って、制御電圧信号Vinが0の場合にはコイル1
5の発生磁界は0であり、コイル16の発生磁界はe1
である。制御電圧信号VinがV1in の場合にはコイル1
5の発生磁界はe1 であり、コイル16の発生磁界は0
である。
Curves C 3 and C 4 in FIG. 2 are magnetostrictive rods 17,
18 shows the distortion characteristics of 18. The coordinate axis of the strain characteristic of the magnetostrictive rod 18 represented by the curve C 4 is vertically and horizontally inverted with respect to the coordinate axis of the strain characteristic of the magnetostrictive rod 17 represented by the curve C 3 . The horizontal axis of the coordinate axes is the coils 15 and 16.
Represents the strength of the magnetic field generated by, and the vertical axis represents the strain rate. In this embodiment, the control voltage signal Vin is used in the range 0 to V 1 in and the field strength ranges from 0 to e 1 Oersted. Therefore, when the control voltage signal Vin is 0, the coil 1
The magnetic field generated by 5 is 0, and the magnetic field generated by the coil 16 is e 1
Is. Coil 1 when the control voltage signal Vin is V 1 in
The generated magnetic field of 5 is e 1 and the generated magnetic field of the coil 16 is 0
Is.

【0017】コイル15の発生磁界は磁歪ロッド17に
作用し、コイル16の発生磁界は磁歪ロッド18に作用
する。これらの発生磁界の作用によって両磁歪ロッド1
7,18が歪み、この歪み力がレバー23を介して対抗
する。即ち、図1に示すようにレバー23は押圧板1
9,20上の球面突部19a,20aを介して両磁歪ロ
ッド17,18から歪み率に比例した力F1 ,F2 を受
ける。制御電圧信号VinがV1in /2の場合には両磁歪
ロッド17,18は同じ強さの磁界の作用を受け、レバ
ー23は両磁歪ロッド17,18から同じ大きさの力F
1 ,F2 を受けて中央位置に平衡する。即ち、両磁歪ロ
ッド17,18はバイアス電流によって全磁界e1 の1
/2の値の磁気バイアスを受けてこの状態を基準として
差動動作することとなる。
The magnetic field generated by the coil 15 acts on the magnetostrictive rod 17, and the magnetic field generated by the coil 16 acts on the magnetostrictive rod 18. Due to the action of these generated magnetic fields, both magnetostrictive rods 1
7, 18 are distorted, and this distorting force opposes via the lever 23. That is, as shown in FIG.
Forces F 1 and F 2 proportional to the strain rate are received from both magnetostrictive rods 17 and 18 via the spherical protrusions 19a and 20a on the shafts 9 and 20, respectively. When the control voltage signal Vin is V 1 in / 2, both magnetostrictive rods 17 and 18 are subjected to the action of a magnetic field of the same strength, and the lever 23 exerts a force F of the same magnitude from both magnetostrictive rods 17 and 18.
Receive 1 and F 2 and equilibrate to the central position. That is, both magnetostrictive rods 17 and 18 have a total magnetic field e 1 of 1 due to the bias current.
Upon receiving a magnetic bias of a value of / 2, the differential operation is performed with this state as a reference.

【0018】図2の曲線C5 は両磁歪ロッド17,18
の歪み率の差動出力を表し、この歪み曲線C5 は両磁歪
ロッド17,18からレバー23に作用する力F1 ,F
2 の合成力(F1 −F2 )も表す。従って、制御電圧信
号VinがV1in /2以下の場合にはレバー23は磁歪ロ
ッド17側に傾き、制御電圧信号VinがV1in /2以上
の場合にはレバー23は磁歪ロッド18側に傾く。この
傾きは曲線C5 で示す歪みのヒステリシス特性の影響を
受けているが、この傾き変位は線形に近くなる。
The curve C 5 in FIG. 2 shows the two magnetostrictive rods 17, 18.
Represents the differential output of the strain rate, and this strain curve C 5 is the force F 1 , F acting on the lever 23 from both magnetostrictive rods 17, 18.
The synthetic force of 2 (F 1 −F 2 ) is also shown. Therefore, when the control voltage signal Vin is V 1 in / 2 or less, the lever 23 tilts toward the magnetostrictive rod 17, and when the control voltage signal Vin is V 1 in / 2 or more, the lever 23 moves toward the magnetostrictive rod 18 side. Lean. This inclination is influenced by the hysteresis characteristic of the distortion shown by the curve C 5 , but this inclination displacement becomes almost linear.

【0019】磁歪ロッド17,18は温度変化によって
熱膨張と歪み特性の変化を著しく受ける。しかしなが
ら、両磁歪ロッド17,18の温度が同一ならば両磁歪
ロッド17,18の熱膨張及び歪みは互いに対抗方向に
生じるため、温度ドリフトの影響は両磁歪ロッド17,
18間で互いに相殺される。又、レバー23は磁歪ロッ
ド17,18により対抗方向から常に力を受けるので、
各部のバックラッシに起因するヒステリシス特性が相殺
されて軽減する効果を持つ。
The magnetostrictive rods 17 and 18 remarkably undergo thermal expansion and strain characteristic changes due to temperature changes. However, if the temperatures of both magnetostrictive rods 17 and 18 are the same, thermal expansion and strain of both magnetostrictive rods 17 and 18 occur in the directions opposite to each other.
Eighteen offset each other. Further, the lever 23 is always subjected to the force from the opposing direction by the magnetostrictive rods 17 and 18,
This has the effect of offsetting and reducing the hysteresis characteristics due to the backlash of each part.

【0020】なお、予圧ばね21,22は磁歪合金の予
圧効果により歪み率を向上する作用をもたらす。図3の
グラフは図1の差動式歪みアクチュエータのヒステリシ
ス特性を大幅に改善する方式を表す。
The preload springs 21 and 22 have the function of improving the strain rate by the preload effect of the magnetostrictive alloy. The graph of FIG. 3 shows a method of significantly improving the hysteresis characteristic of the differential strain actuator of FIG.

【0021】この方式では各磁歪ロッド17,18に発
生する磁界の使用範囲はヒステリシスの小さい範囲〔e
2 ,e3 〕に特定されており、差動電圧Va ,Vb の差
(Va −Vb )の値が0となる制御電圧信号Vinの値V
2in の入力によって両コイル15,16には(e2 +e
3 )/2エルステッドの強さの磁界が発生し、両磁歪ロ
ッド17,18はこの値の磁気バイアスを受けてこの状
態を基準として差動動作する。曲線C6 は磁界の使用範
囲〔e2 ,e3 〕における両磁歪ロッド17,18の歪
み率の差を表す。曲線C6 で示すようにヒステリシス特
性及び線形性は図2の場合に比して大幅に改善されてい
る。このような改善は磁界の使用範囲をヒステリシスの
小さい範囲に特定してバイアス磁界を与えることによっ
て得られるものである。
In this system, the magnetic field generated in each of the magnetostrictive rods 17 and 18 is used in a range having a small hysteresis [e].
2 , e 3 ] and the value V of the control voltage signal Vin at which the value of the difference (Va-Vb) between the differential voltages Va and Vb becomes 0.
By inputting 2 in, both coils 15 and 16 have (e 2 + e
A magnetic field having a strength of 3 ) / 2 oersted is generated, and both magnetostrictive rods 17 and 18 receive a magnetic bias of this value and differentially operate with this state as a reference. The curve C 6 represents the difference between the strain rates of the two magnetostrictive rods 17 and 18 in the magnetic field use range [e 2 , e 3 ]. As shown by the curve C 6 , the hysteresis characteristic and linearity are greatly improved as compared with the case of FIG. Such improvement is obtained by specifying the range of use of the magnetic field to a range having a small hysteresis and applying the bias magnetic field.

【0022】なお、図2における差動電圧Va,Vbを
表す直線L1 ,L2 の交点が横軸上にある場合、即ちV
a=Vb=0となるような差動電圧Va,Vbを出力し
た場合、差動電圧Va,Vbは正負の値をとる。差動電
圧Va,Vbが正負にわたると歪み率は極小値をとり、
合成歪み特性の線形性が得られない。Va=Vb=0と
なるような差動電圧Va,Vbを出力する駆動回路が用
いられる場合には、両コイル15,16にバイアス電流
を予め加えておき、差動電圧Va,Vbがいずれも負値
とならないようにすればよい。
It should be noted that when the intersections of the straight lines L 1 and L 2 representing the differential voltages Va and Vb in FIG. 2 are on the horizontal axis, that is, V
When the differential voltages Va and Vb such that a = Vb = 0 are output, the differential voltages Va and Vb take positive and negative values. When the differential voltages Va and Vb are positive and negative, the distortion rate has a minimum value,
The linearity of the synthetic distortion characteristics cannot be obtained. When a drive circuit that outputs differential voltages Va and Vb such that Va = Vb = 0 is used, a bias current is added to both coils 15 and 16 in advance so that both differential voltages Va and Vb are It should not be a negative value.

【0023】あるいはバイアス電流を加える代わりにヨ
ーク13,14、取り付け座11,12及び押圧板1
9,20からなる磁気回路上に永久磁石を介在し、バイ
アス磁界を両磁歪ロッド17,18に作用させるように
してもよい。
Alternatively, instead of applying a bias current, the yokes 13, 14, the mounting seats 11, 12 and the pressing plate 1
A permanent magnet may be interposed on the magnetic circuit composed of 9 and 20 so that the bias magnetic field acts on both magnetostrictive rods 17 and 18.

【0024】次に、本発明を具体化した第2の実施例を
図4に基づいて説明する。支持台26には支柱26aが
一体形成されており、支柱26aにはレバー26bが傾
動可能に一体連結されている。支柱26aの両側には電
歪積層体27,28が立設されており、電歪積層体2
7,28先端の球面突部27a,28aがレバー26b
の支点部に対して正確に対称位置をとるように当接して
いる。
Next, a second embodiment embodying the present invention will be described with reference to FIG. A support 26a is integrally formed on the support 26, and a lever 26b is tiltably connected to the support 26a. Electrostrictive laminates 27 and 28 are erected on both sides of the pillar 26a.
The spherical protrusions 27a and 28a at the tips of the levers 7 and 28 are levers 26b.
Abuts on the fulcrum so as to take an exact symmetrical position.

【0025】電歪積層体27,28は、圧電素子層27
b,28bと電極層27c,28cとを交互に接着して
積層構成されている。駆動回路25の一方の直流電圧V
aは隣合う電極層27c間に印加されるようになってお
り、駆動回路25の他方の直流電圧Vbは隣合う電極層
28c間に印加されるようになっている。圧電素子層2
7b,28bの分極方向と電圧印加方向とが一致するよ
うにしてあり、電極層27c,28cに直流電圧Va,
Vbを印加すれは圧電素子層27b,28bが印加電圧
値Va,Vbに応じて厚み方向へ歪み伸長する。従っ
て、電歪積層体27,28全体が積層方向へ伸長し、レ
バー26bが両電歪積層体27,28の歪み作用力を受
ける。
The electrostrictive laminates 27 and 28 are piezoelectric element layers 27.
b and 28b and electrode layers 27c and 28c are alternately adhered to form a laminated structure. One DC voltage V of the drive circuit 25
a is applied between the adjacent electrode layers 27c, and the other DC voltage Vb of the drive circuit 25 is applied between the adjacent electrode layers 28c. Piezoelectric element layer 2
The polarization directions of 7b and 28b and the voltage application direction are made to coincide with each other, and DC voltage Va, is applied to the electrode layers 27c and 28c.
When Vb is applied, the piezoelectric element layers 27b and 28b are strained and expanded in the thickness direction according to the applied voltage values Va and Vb. Therefore, the entire electrostrictive laminates 27 and 28 extend in the laminating direction, and the lever 26b receives the strain acting force of both electrostrictive laminates 27 and 28.

【0026】両電歪積層体27,28の歪み特性は図7
(b)の曲線C2 で表されるが、図2あるいは図3の場
合と同様に直流電圧Va,Vbを差動印加し、差動歪み
出力を利用することによって両電歪積層体27,28の
合成歪み特性の非線形性と温度ドリフトとを著しく改善
し、ヒステリシス特性も軽減できる。
The strain characteristics of both electrostrictive laminates 27 and 28 are shown in FIG.
As shown by the curve C 2 in (b), the DC voltages Va and Vb are differentially applied and the differential strain output is used to generate the electrostrictive laminate 27, as in the case of FIG. 2 or 3. It is possible to remarkably improve the non-linearity and temperature drift of the composite strain characteristic of No. 28, and reduce the hysteresis characteristic.

【0027】図5は図4の電歪アクチュエータを2組以
上合わせた実施例を示し、両電歪アクチュエータのレバ
ー26bの作用先端が結合され、中央部付近の断面を細
くしてばね26cを構成している。29は例えば放電電
極などのように、図の上下方向に対して位置決めすべき
対象物で、このような複数組みのアクチュエータ構成に
よってレバー26bの作用力が倍加すると共に、レバー
26が単一の場合の円弧動作が改善されて正確に上下方
向の直線動作をさせ得る。
FIG. 5 shows an embodiment in which two or more sets of the electrostrictive actuators of FIG. 4 are combined, and the working tips of the levers 26b of both electrostrictive actuators are coupled to each other to form a spring 26c by narrowing the cross section near the center. is doing. Reference numeral 29 is an object to be positioned in the vertical direction of the drawing, such as a discharge electrode. When the lever 26b has a single action while the acting force of the lever 26b is doubled by a plurality of such actuator configurations. The arc motion of is improved, and the vertical straight line motion can be accurately performed.

【0028】[0028]

【発明の効果】以上詳述したように本発明の差動式歪み
アクチュエータは、磁歪あるいは電歪の非線形特性、温
度ドリフトの影響を著しく改善し、ヒステリシス特性を
抑制して良好な歪み線形性を得ることができるという優
れた効果を奏する。
As described in detail above, the differential strain actuator of the present invention remarkably improves the non-linear characteristic of magnetostriction or electrostriction and the influence of temperature drift, suppresses the hysteresis characteristic, and achieves good strain linearity. It has an excellent effect that it can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 差動式磁歪アクチュエータの構造及び駆動回
路を示す組合せ図である。
FIG. 1 is a combination diagram showing a structure and a drive circuit of a differential magnetostrictive actuator.

【図2】 磁歪ヒステリシス特性及び駆動回路の入出力
特性を示すグラフである。
FIG. 2 is a graph showing magnetostriction hysteresis characteristics and input / output characteristics of a drive circuit.

【図3】 磁歪ヒステリシス特性及び駆動回路の入出力
特性を示すグラフである。
FIG. 3 is a graph showing magnetostrictive hysteresis characteristics and input / output characteristics of a drive circuit.

【図4】 差動式電歪アクチュエータの構造及び駆動回
路を示す組合せ図である。
FIG. 4 is a combination diagram showing a structure and a drive circuit of a differential electrostrictive actuator.

【図5】 差動式電歪アクチュエータの構造及び駆動回
路の別例を示す組合せ図である。
FIG. 5 is a combination diagram showing another example of the structure of the differential electrostrictive actuator and the drive circuit.

【図6】 (a)は従来の磁歪アクチュエータの構造を
示す簡略図であり、(b)は磁歪のヒステリシス特性を
表すグラフである。
FIG. 6A is a simplified diagram showing a structure of a conventional magnetostrictive actuator, and FIG. 6B is a graph showing a hysteresis characteristic of magnetostriction.

【図7】 (a)は従来の電歪アクチュエータの構造を
示す簡略図であり、(b)は電歪のヒステリシス特性を
表すグラフである。
FIG. 7A is a simplified diagram showing a structure of a conventional electrostrictive actuator, and FIG. 7B is a graph showing a hysteresis characteristic of electrostriction.

【符号の説明】[Explanation of symbols]

15,16…コイル、17,18…磁歪ロッド、25…
駆動回路、27,28…電歪積層体、Ea,Eb…電源
回路。
15, 16 ... Coil, 17, 18 ... Magnetostrictive rod, 25 ...
Drive circuit, 27, 28 ... Electrostrictive laminated body, Ea, Eb ... Power supply circuit.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月12日[Submission date] November 12, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】入力信号(Vin)に比例した駆動信号(V
a)を出力する第1の電源回路(Ea)と、 前記入力信号(Vin)に逆比例した駆動信号(Va)を
出力する第2の電源回路(Eb)と、 第1の電源回路(Ea)の駆動信号(Ea)によって歪
み誘発力を発生する第1の歪み誘発手段(15又は27
c)と、 第2の電源回路(Eb)の駆動信号(Eb)によって歪
み誘発力を発生する第2の歪み誘発手段(16又は28
c)と、 第1の歪み誘発手段(15又は27c)及び第2の歪み
誘発手段(16又は28c)の作動によって歪みを生じ
る一対の歪体(17,18又は27b,28b)と、 各歪体(17,18又は27b,28b)の歪み作用に
よって互いに逆方向への駆動作用を受ける可動体(23
又は26b)とを備えたことを特徴とする差動式歪みア
クチュエータ。
1. A drive signal (V) proportional to an input signal (Vin).
a) a first power supply circuit (Ea), a second power supply circuit (Eb) which outputs a drive signal (Va) inversely proportional to the input signal (Vin), and a first power supply circuit (Ea) ) A first distortion inducing means (15 or 27) for generating a distortion inducing force by the drive signal (Ea).
c) and the second distortion inducing means (16 or 28) for generating the distortion inducing force by the drive signal (Eb) of the second power supply circuit (Eb).
c), a pair of strain bodies (17, 18 or 27b, 28b) that generate strain by the operation of the first strain inducing means (15 or 27c) and the second strain inducing means (16 or 28c), and each strain. A movable body (23) which receives a driving action in mutually opposite directions by a straining action of the body (17, 18 or 27b, 28b).
Or 26b), a differential strain actuator.
【請求項2】歪み誘発手段(15,16)はコイルであ
り、歪体(17,18)は磁歪体である請求項1に記載
の差動式歪みアクチュエータ。
2. The differential strain actuator according to claim 1, wherein the strain inducing means (15, 16) is a coil, and the strain body (17, 18) is a magnetostrictive body.
【請求項3】歪み誘発手段(27c,28c)は歪体
(27b,28b)を挟んで対となる直流電圧印加電極
対であり、歪体(27b,28b)は電歪体である請求
項1に記載の差動式歪みアクチュエータ。
3. The strain inducing means (27c, 28c) is a pair of DC voltage applying electrodes sandwiching the strain body (27b, 28b), and the strain body (27b, 28b) is an electrostrictive body. 1. The differential strain actuator according to 1.
JP3319447A 1991-12-03 1991-12-03 Differential strictive actuator Pending JPH0697529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3319447A JPH0697529A (en) 1991-12-03 1991-12-03 Differential strictive actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3319447A JPH0697529A (en) 1991-12-03 1991-12-03 Differential strictive actuator

Publications (1)

Publication Number Publication Date
JPH0697529A true JPH0697529A (en) 1994-04-08

Family

ID=18110307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3319447A Pending JPH0697529A (en) 1991-12-03 1991-12-03 Differential strictive actuator

Country Status (1)

Country Link
JP (1) JPH0697529A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009402A2 (en) * 2001-07-17 2003-01-30 Eads Deutschland Gmbh Actuator system
CN102437778A (en) * 2011-12-28 2012-05-02 南昌工程学院 Magnetostrictive linear driver with linear output
CN109932668A (en) * 2019-03-27 2019-06-25 三峡大学 Low magnetic hysteresis TMR magnetic field measuring device based on forward and reverse excitation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283580A (en) * 1990-03-30 1991-12-13 Nec Corp Piezoelectric actuator with displacement enlarging mechanism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283580A (en) * 1990-03-30 1991-12-13 Nec Corp Piezoelectric actuator with displacement enlarging mechanism

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003009402A2 (en) * 2001-07-17 2003-01-30 Eads Deutschland Gmbh Actuator system
WO2003009402A3 (en) * 2001-07-17 2003-10-09 Eads Deutschland Gmbh Actuator system
CN102437778A (en) * 2011-12-28 2012-05-02 南昌工程学院 Magnetostrictive linear driver with linear output
CN102437778B (en) * 2011-12-28 2014-09-10 南昌工程学院 Magnetostrictive linear driver with linear output
CN109932668A (en) * 2019-03-27 2019-06-25 三峡大学 Low magnetic hysteresis TMR magnetic field measuring device based on forward and reverse excitation
CN109932668B (en) * 2019-03-27 2020-11-27 三峡大学 Forward and reverse excitation-based low hysteresis TMR magnetic field measuring device

Similar Documents

Publication Publication Date Title
US11302862B1 (en) Magnetostrictive actuator with center bias
US11430939B1 (en) Linear magnetostrictive actuator
Ueno et al. Magnetic force control based on the inverse magnetostrictive effect
US20020057156A1 (en) Method of control for a self-sensing magnetostrictive actuator
JPH11241955A (en) Load detecting device
US3638153A (en) Transducer having single layered magnetostrictive member
JPH0697529A (en) Differential strictive actuator
EP2343566A1 (en) Magnetic field detection element and signal transmission element
JPH06232469A (en) Driving method of piezoelectric actuator
US4766357A (en) Demagnetization compensated magnetostrictive actuator
JP2012247232A (en) Acceleration sensor
CN211525404U (en) Inertial actuator with virtual mass
JP3332125B2 (en) Magnetostrictive actuator
Ge et al. Large resonance magnetoelectric response in Ni (Terfenol-d)/Pb (Zr, Ti) O 3 bilayer laminate composites
JP2012145650A (en) Vibration element and optical scanner, and image forming apparatus and image projection device using these
JPH0320910B2 (en)
WO2020119827A1 (en) Electrical/pneumatic converter
JPH07303363A (en) Linear actuator
JPH06244477A (en) Magnetoresistance element
JP2567169B2 (en) Differential electromagnetic actuator
JP2001217484A (en) Method of manufacturing for huge magnetic resistance sensor
JP3267662B2 (en) Direct drive servo valve
JP2003078181A (en) Ultra-magnetostrictive linear actuator
JP2020169881A (en) Physical quantity sensor element, pressure sensor, microphone, ultrasonic sensor, and touch panel
EP4177611A1 (en) Servo-type vibration detector and vibration control device