JPH0692637A - Superconductor and its production - Google Patents

Superconductor and its production

Info

Publication number
JPH0692637A
JPH0692637A JP4096836A JP9683692A JPH0692637A JP H0692637 A JPH0692637 A JP H0692637A JP 4096836 A JP4096836 A JP 4096836A JP 9683692 A JP9683692 A JP 9683692A JP H0692637 A JPH0692637 A JP H0692637A
Authority
JP
Japan
Prior art keywords
superconductor
liquid phase
temperature
producing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4096836A
Other languages
Japanese (ja)
Other versions
JP2709000B2 (en
Inventor
Toshiya Doi
俊哉 土井
Hiroyuki Akata
広幸 赤田
Takeshi Ozawa
武 小沢
Yuichi Kamo
友一 加茂
Shinpei Matsuda
臣平 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4096836A priority Critical patent/JP2709000B2/en
Publication of JPH0692637A publication Critical patent/JPH0692637A/en
Application granted granted Critical
Publication of JP2709000B2 publication Critical patent/JP2709000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To produce a superconductor exhibiting a high critical current density even in a magnetic field by increasing the transport critical current density of a superconductor composed of an oxide superconductive substance already having a pinning center in the inside of its crystal grain. CONSTITUTION:In a superconductor composed of a superconductive substance containing Cu, Tl, Sr, Ca and O as the main elements, a process of heat treatment of a liquid phase composed mainly of Ba, Pb and O is carried out in the presence of a solid phase as a superconductive substance phase on the course of its production processes. As the liquid phase component generated in these processes, a material not causing decomposition of the superconductive substance and improving mutual junction between superconductive substance grains is desirable. As the effective liquid phase performing this role when producing a superconductor using a superconductive substance composed mainly of Cu, Tl, Sr, Ca and O, a liquid phase composed mainly of Ba, Pb and O is preferable, thus producing the objective superconductor, superconductor wire material and superconductor magnet capable of using not only under cooling by liquid helium but under cooling by liquid nitrogen and composed of an oxide superconductive substance exhibiting a high superconductivity critical current density even in a high magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導体及びその製造
方法に関し、特に、液体ヘリウムまたは液体窒素で冷却
することによって超電導性を発現する酸化物系超電導物
質を用いることによって、液体ヘリウムまたは液体窒素
で冷却することにより超電導電流を流すことを可能にす
る超電導体及びその製造方法、さらにはその超伝導体を
用いた超電導線材及び各種装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconductor and a method for producing the same, and more particularly to liquid helium or liquid by using an oxide-based superconducting substance which exhibits superconductivity by cooling with liquid helium or liquid nitrogen. The present invention relates to a superconductor that allows a superconducting current to flow by cooling with nitrogen, a method for manufacturing the same, and a superconducting wire and various devices using the superconductor.

【0002】[0002]

【従来の技術】従来のTl、Sr、Ca、Cu、Oを主要元素と
して含む酸化物系高温超電導物質は、フィジカC 第183
巻 67-72ページ (Physica C vol.183, pp67-72) 及び19
91年Materials Research Society主催の秋期学会 (1991
年12月1日〜6日、於ボストン) で報告されているよう
に、超電導臨界温度が 120Kと高く、更に、高い臨界電
流密度を得るための必要条件であるピンニングセンタの
導入に成功している非常に有望な材料であるが、超電導
線材を製造したときに、高い臨界電流密度を(輸送電流
として)得ることができなかった。従って実際に超電導
電流を流す応用製品を製造していくうえでは問題があっ
た。
2. Description of the Related Art Conventional oxide-based high-temperature superconducting materials containing Tl, Sr, Ca, Cu, and O as main elements are Physica C.
Volume 67-72 (Physica C vol.183, pp67-72) and 19
1991 Autumn Meeting held by Materials Research Society (1991
(December 1-6, 2010 in Boston), the superconducting critical temperature was as high as 120K, and the pinning center, which is a necessary condition for obtaining a high critical current density, was successfully introduced. Although it is a very promising material, it was not possible to obtain a high critical current density (as a transport current) when manufacturing a superconducting wire. Therefore, there is a problem in actually manufacturing an applied product in which a superconducting current is passed.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術は、超電
導線材中の超電導物質結晶粒子同士の電気的な接合(つ
まり結晶粒子界面を超電導電流が十分に流れるような接
合)について十分な配慮がなされておらず、僅かな磁場
が超電導物質に印加されただけで臨界電流密度が大きく
低下するという問題があった。
In the above-mentioned prior art, sufficient consideration has been given to the electrical connection between the superconducting material crystal grains in the superconducting wire (that is, the joint in which the superconducting current flows sufficiently at the crystal grain interface). However, there has been a problem that the critical current density is greatly reduced only by applying a slight magnetic field to the superconducting material.

【0004】本発明の目的は、酸化物系高温超電導物質
を用いた超電導体中の超電導物質結晶粒子同士の電気的
な接合を高め、磁場中においても高い臨界電流密度を有
する超電導体及びその製造方法を提供することを目的と
している。本発明の他の目的は、そのような超伝導体を
使用した線材及び各種装置を提供することをも目的とし
ている。
An object of the present invention is to enhance the electrical connection between crystal grains of a superconducting substance in a superconductor using an oxide-based high temperature superconducting substance, and to obtain a superconductor having a high critical current density even in a magnetic field, and to manufacture the same. It is intended to provide a way. Another object of the present invention is also to provide a wire rod and various devices using such a superconductor.

【0005】[0005]

【課題を解決するための手段】上記目的は、超電導物質
とその他の構成物からなる超電導体を製造する工程中
に、適切な成分組成の液相を固相成分と共存させる様な
状態で熱処理する工程を少なくともいちどいれることに
よって達成される。このとき生成させる液相の成分は超
電導物質の分解を起こさせず、そして超電導物質結晶粒
同士の接合性を良くするようなものが望ましい。このよ
うな性質を持つ液相の候補としては様々なものが考えら
れ、とくに用いる超電導物質の化学的な性質によってそ
れぞれ違ってくる。その1つとして今回我々は、図1、
図2、図3にその結晶構造を示すCu、Tl、Sr、Ca、Oを
主成分とする超電導物質を用いて超電導体 (薄膜、厚
膜、線材、焼結体その他) を製造するときに有効となる
上記の役割を担った液相として、BaとPbとOを主成分と
して少量のCu、Tl、Sr、Caを含む液相成分を発明するに
至った。
[Means for Solving the Problems] The above-mentioned object is to perform heat treatment in a state where a liquid phase having an appropriate component composition coexists with a solid phase component during a process for producing a superconductor composed of a superconducting substance and other constituents. It is achieved by adding at least one step. It is desirable that the liquid phase component generated at this time does not cause decomposition of the superconducting substance and improves the bondability between the superconducting substance crystal grains. There are various possible liquid phase candidates with such properties, and they differ depending on the chemical properties of the superconducting material used. One of them is this time,
When manufacturing superconductors (thin films, thick films, wire rods, sintered bodies, etc.) using superconducting materials whose main components are Cu, Tl, Sr, Ca, and O whose crystal structures are shown in Figs. As an effective liquid phase having the above-mentioned role, the inventors have invented a liquid phase component containing Ba, Pb, and O as main components and a small amount of Cu, Tl, Sr, and Ca.

【0006】Cu、Tl、Sr、Ca、Oを主成分とする超電導
物質を製造するのに必要な量の原料に、BaとPbの原料と
なる物質を添加して熱処理を行なうことによって、超電
導物質を合成する際にBaとPbとOを主成分として少量の
Cu、Tl、Sr、Caを含む液相成分が生成し、このことによ
って超電導物質結晶粒同士の接合性が良くなり、磁場中
においても高い臨界電流密度を有する超電導体が製造で
きるようになる。このとき添加されるべきBaとPbの量が
少なすぎると実質的に目的とする液相ができず、また多
すぎると異相として超電導体中に出てくるので好ましく
ない。多くの実験に基づき超電導体を構成することにな
る超電導物質に対してモル比で5%以上20%以下が適当
な量であることを知見した。
[0006] Superconductivity is increased by adding a material to be a raw material of Ba and Pb to a raw material in an amount necessary to produce a superconducting material containing Cu, Tl, Sr, Ca, and O as main components and performing heat treatment. When synthesizing the substance, a small amount of Ba, Pb, and O as the main components
A liquid phase component containing Cu, Tl, Sr, and Ca is generated, which improves the bondability between the superconducting material crystal grains and enables the production of a superconductor having a high critical current density even in a magnetic field. At this time, if the amounts of Ba and Pb to be added are too small, the desired liquid phase cannot be substantially formed, and if the amounts are too large, they emerge as a different phase in the superconductor, which is not preferable. Based on many experiments, it was found that the molar ratio is 5% or more and 20% or less with respect to the superconducting substance that constitutes the superconductor.

【0007】また超電導体に含まれるべきBaとPbは必ず
しも添加の形である必要はなく、BaとPbが超電導物質を
構成するような形で含まれていてもかまわない。超電導
体を製造する工程のなかでのある熱処理工程のときに、
上記の組成の液相が生成するような状態が実現できれば
良く、超電導物質にとって、BaとPbは添加の形であろう
と、置換の形であろうといっこうに差しつえない(後記
する実施例1〜3及び実施例4〜6を参照)。また添加
と置換が同時に行なわれているような形であっても構わ
ない。
Further, Ba and Pb to be contained in the superconductor do not necessarily have to be in the form of addition, and Ba and Pb may be contained in the form of constituting a superconducting substance. During a heat treatment process in the process of manufacturing a superconductor,
It suffices if a state in which a liquid phase having the above composition is produced can be realized, and for superconducting materials, Ba and Pb are invariably in the additive form or the substitution form (Examples 1 to be described later). 3 and Examples 4-6). Further, the form may be such that addition and substitution are performed at the same time.

【0008】超電導体を熱処理するとき、酸化物の固相
に対する液相の量が多すぎると、超電導物質以外の結晶
相が大きく成長し過ぎ、また凝固過程で生成してしまう
非超電導相が多くなり過ぎて、超電導体の特性を阻害す
る。実験に基づき、固相と共存させる液相の量は固相に
対する体積比で20%以下であることが好ましこと、液相
を共存させて行なう熱処理の温度としては液相が生成し
はじめる温度より10℃の範囲内上の温度領域にあること
が好ましいこと、さらに、BaとPbの添加量あるいは置換
量を調整して、液相ができはじめる温度を870℃〜980℃
になるよう調節した超電導体の場合その臨界電流密度が
特に良いことを知見した(同じく、実施例10及び11を参
照)。
When the amount of the liquid phase relative to the solid phase of the oxide is too large when the superconductor is heat-treated, the crystal phase other than the superconducting substance grows too much, and many non-superconducting phases are generated in the solidification process. Too much, hindering the characteristics of the superconductor. Based on the experiment, it is preferable that the amount of the liquid phase to coexist with the solid phase is 20% or less by volume ratio to the solid phase, and the temperature of the heat treatment performed in the coexistence of the liquid phase is the temperature at which the liquid phase begins to form. It is preferable that the temperature is in the upper temperature range of 10 ° C, further, by adjusting the addition amount or substitution amount of Ba and Pb, the temperature at which the liquid phase begins to be 870 ° C to 980 ° C.
It has been found that the critical current density is particularly good in the case of a superconductor adjusted so that (see also Examples 10 and 11).

【0009】液相を関与させたアニールを行なった後、
液相が生成しはじめる温度より下の温度でアニールを行
なって、液相が凝固する過程で生成した非超電導物質相
を減少させることにより更に超電導臨界電流密度の向上
の図れる場合がある。このときそれらの非超電導物質相
の残存量は超電導マトリックス相の5%以下であれば、
超電導電流パスを確保するうえで充分であり、また更に
これらの析出相の平均結晶粒径は3μm以下であるとき
磁場中における超電導臨界電流密度は更に向上すること
を知見した(同じく、実施例12及び13を参照)。
After performing the annealing involving the liquid phase,
In some cases, the superconducting critical current density can be further improved by performing annealing at a temperature lower than the temperature at which the liquid phase begins to be generated to reduce the non-superconducting material phase generated in the process of solidification of the liquid phase. At this time, if the remaining amount of the non-superconducting material phase is 5% or less of the superconducting matrix phase,
It was found that the superconducting critical current density is further improved when the superconducting current path is secured, and when the average crystal grain size of these precipitation phases is 3 μm or less (the same as in Example 12). And 13).

【0010】[0010]

【作用】超電導物質あるいはその原料となる物質を熱処
理して目的とする超電導体を製造するときに、その反応
系に適切な量のBaとPbを何らかの形の原料で導入してお
くことによって、目的とする超電導物質とBaとPbとOを
主成分とする液相と固相である超電導物質が平衡的に共
存させることが可能になる。液相を共存させた状態で熱
処理を行なえば、各元素の拡散速度が速く、超電導物質
の質 (組成の均一性等) が良くなると共に、結晶の成長
が良く起こり、結晶粒子同士の接合性も良くなる。
[Function] When a superconducting substance or a substance to be a raw material thereof is heat-treated to produce a desired superconductor, by introducing an appropriate amount of Ba and Pb into the reaction system in a form of a raw material, The superconducting substance of interest and the superconducting substance of liquid phase and solid phase containing Ba, Pb, and O as the main components can coexist in equilibrium. If heat treatment is performed in the presence of a liquid phase, the diffusion rate of each element is high, the quality of the superconducting material (uniformity of composition, etc.) is good, and crystal growth occurs well, and the bondability between crystal particles is good. Also gets better.

【0011】ただし、超電導物質結晶粒子同士の間にも
液相が侵入してくるので、このような状態から早い速度
で原子が拡散できないような低温にまで冷却してしまう
と、超電導物質結晶粒子同士の接続を非超電導物質相が
妨げてしまう。最終的に製品にする前にはこのようなこ
とを避けるため、液相が生成している温度に於て十分な
時間熱処理した後、十分に遅い速度で冷却するかあるい
は元素の拡散が十分に起こりかつ超電導物質が熱力学的
に安定な温度に十分な時間保持する工程を設ける。この
ことによって液相部分に存在した成分が超電導物質粒子
同士の直接的な接合を妨げないように、超電導物質粒子
の粒界三重点に集まったり、あるいは超電導物質内に固
溶、吸収されたりする。その結果、超電導物質粒子同士
の接合性は良くなり超電導臨界電流密度の高い超電導体
をえることが可能になる。
However, since the liquid phase also penetrates between the superconducting substance crystal particles, if the superconducting substance crystal particles are cooled from such a state to a low temperature at which atoms cannot diffuse at a high speed. The non-superconducting material phase interferes with the mutual connection. To prevent this from happening before the final product, heat-treat for a sufficient time at the temperature where the liquid phase is formed, and then cool it at a sufficiently slow rate or ensure that element diffusion is sufficient. A step of maintaining a temperature at which the superconducting material occurs and is thermodynamically stable is provided for a sufficient time. As a result, the components that existed in the liquid phase part gather at the grain boundary triple points of the superconducting substance particles, or are solid-dissolved and absorbed in the superconducting substance, so as not to interfere with the direct joining of the superconducting substance particles. . As a result, the bondability between the superconducting material particles is improved, and a superconductor having a high superconducting critical current density can be obtained.

【0012】超電導物質が熱力学的に安定な温度に十分
な時間保持する工程で非超電導物質相の析出量と析出形
態、結晶粒径等を調節するのであるが、析出量を0%に
するのには非常に長い時間を必要とし実用的でない。超
電導物質部分の体積に比較して5%以下の量程度であれ
ば超電導電流パスをそれほど妨げることもなく、非超電
導物質相の析出量をこの程度以下に押さえれば十分であ
る。このとき非超電導物質相の平均結晶粒径を3μm以
下に押さえておくと、現段階では明確な理由はなく推測
の域を出ないが、ピンニングセンタとして働くためなの
であろうか、超電導臨界電流密度が数%〜10%程度向上
する。
The precipitation amount, precipitation morphology, crystal grain size, etc. of the non-superconducting material phase are adjusted in the step of maintaining the temperature at which the superconducting material is thermodynamically stable for a sufficient time. It takes a very long time and is not practical. If the amount is about 5% or less of the volume of the superconducting substance portion, it does not hinder the superconducting current flow path so much, and it is sufficient to suppress the amount of the non-superconducting substance phase deposited to this amount or less. At this time, if the average crystal grain size of the non-superconducting material phase is suppressed to 3 μm or less, there is no clear reason at this stage and there is no speculation, but it may be because it functions as a pinning center. It improves by several to 10%.

【0013】本発明に記載の超電導物質、非超電導物質
及びその他の物質の組成は、厳密にこの値だけに限られ
るものではない。実際には、これらの酸化物には若干の
組成不定性があり各構成元素の含有比率が、十数パーセ
ントから30パーセント程度までずれることもある。従っ
て、以下の実施例において記載している物質の組成が若
干異なっていても、その結晶構造が基本的に同じであれ
ば、本発明の技術的範囲に包含されるものである。
The composition of the superconducting substance, non-superconducting substance and other substances described in the present invention is not strictly limited to this value. Actually, these oxides have some composition indeterminacy, and the content ratio of each constituent element may deviate from about a dozen percent to about 30 percent. Therefore, even if the compositions of the substances described in the following examples are slightly different, as long as their crystal structures are basically the same, they are included in the technical scope of the present invention.

【0014】本発明によって作製した超電導体を使用す
ることによって、液体窒素冷却で動作する、特性の良い
超電導マグネットの作製が可能になる。そしてこのマグ
ネットを使用することによって液体窒素冷却が動作する
NMR装置、SQUID装置、MRI装置、磁気浮上列
車等の作製が可能になる。超電導マグネットを利用した
装置の全てを、本発明の超電導体を使用した線材を使用
した超電導で置き換えることが可能であり、そのことに
よって液体窒素冷却で動作する様にできる。
By using the superconductor produced by the present invention, it becomes possible to produce a superconducting magnet which operates with liquid nitrogen cooling and has good characteristics. By using this magnet, it is possible to manufacture an NMR apparatus, a SQUID apparatus, an MRI apparatus, a magnetic levitation train, etc., in which liquid nitrogen cooling operates. It is possible to replace all of the devices using the superconducting magnet with the superconducting material using the wire material using the superconducting material of the present invention, whereby it is possible to operate with liquid nitrogen cooling.

【0015】[0015]

【実施例】以下、本発明の実施例を説明する。 [実施例1]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, CaO, CuO をそれぞれS
r:Ca:Cuの原子比率が 2:1:2 になるように混合し、
900℃で20時間大気中で焼成した。この粉末をめのう乳
鉢で粉砕し、得られた粉末にTl:Sr:Ca:Cuの原子比率
が 1:2:1:2 となるようにTl2O3 を混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて90
0℃の温度で大気中5時間の焼成を行ない、その後Arガ
ス気流中400℃で50時間アニールした。出来上がった焼
結体の粉末X線回折測定を実行し、結果をリートベルト
法で解析したところ、図1に示すような結晶構造を有す
る超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ80Kで電気抵抗がゼロになることが確認でき
た。
EXAMPLES Examples of the present invention will be described below. Example 1 As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, CaO, CuO
Mix so that the atomic ratio of r: Ca: Cu is 2: 1: 2,
It was baked in the air at 900 ° C for 20 hours. This powder was crushed in an agate mortar, and Tl 2 O 3 was mixed with the obtained powder so that the atomic ratio of Tl: Sr: Ca: Cu was 1: 2: 1: 2. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Firing was performed in the air at a temperature of 0 ° C. for 5 hours, and then annealing was performed at 400 ° C. for 50 hours in an Ar gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 1 was contained. . When the superconducting critical temperature of this sintered body was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 80K.

【0016】次に作製した超電導体を粉砕して、超電導
物質1モルに対して0.1モルのBaOとPbO を添加し、め
のう乳鉢で十分に粉砕、混合した。この粉末を外径6m
m, 内径4mmの銀パイプに充填し、外径0.5mmまで線引
きした後、厚さ0.1mmまで圧延した。これを30mmの試験
片として切り出し、885℃の温度で大気中で10時間熱処
理した後、10時間で870℃まで冷却し、870℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけないでこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=30000A/cm2 であり、1テス
ラーの磁場中でのこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=10000A/cm2 であった。DT
A測定によって最初に液相のではじめる温度を測定した
ところ880℃であった。 [比較例1]実施例1と同じ試験片を単に870℃で30時
間熱処理した試料のJc は磁場をかけない状態、77Kの
温度で3000A/cm2 、1テスラーの磁場中では50A/cm2
あった。 [比較例2]実施例1で作製した超電導物質の粉末をそ
のまま何も添加しないで外径6mm,内径4mmの銀パイプ
に充填し、実施例1と同様の加工方法で試験片を作製し
た。これを885℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=1000A/cm2 であり、1テスラーの
磁場中でのこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=10A/cm2 であった。 [実施例2]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, CaO, CuO をそれぞれS
r:Ca:Cuの原子比率が 2:2:3 になるように混合し、
900℃で20時間大気中で焼成した。この粉末をめのう乳
鉢で粉砕し、得られた粉末にTl:Sr:Ca:Cuの原子比率
が 1:2:2:3 となるようにTl2O3 を混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて90
0℃の温度で大気中5時間の焼成を行ない、その後Arガ
ス気流中400℃で50時間アニールした。出来上がった焼
結体の粉末X線回折測定を実行し、結果をリートベルト
法で解析したところ、図2に示すような結晶構造を有す
る超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ93Kで電気抵抗がゼロになることが確認でき
た。
Next, the produced superconductor was pulverized, 0.1 mol of BaO and PbO was added to 1 mol of the superconducting substance, and the mixture was sufficiently pulverized and mixed in an agate mortar. This powder has an outer diameter of 6 m
It was filled in a silver pipe with an inner diameter of 4 mm and a diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, it was Jc = 30000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 10000 A / cm 2 . DT
When the temperature at the beginning of the liquid phase was measured by A measurement, it was 880 ° C. [Comparative Example 1] Example 1 and Jc of samples heat treated for 30 hours at just 870 ° C. The same test piece when no applied magnetic field, 3000A / cm 2 at a temperature of 77K, 1 in a magnetic field of Tesla 50A / cm 2 Met. [Comparative Example 2] The powder of the superconducting material prepared in Example 1 was directly added to a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm without adding anything, and a test piece was prepared by the same processing method as in Example 1. This was heat-treated in the atmosphere at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method without applying a magnetic field at a temperature of 77 K, it was found to be Jc = 1000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 10 A / cm 2 . [Example 2] As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, CaO, CuO
Mix so that the atomic ratio of r: Ca: Cu is 2: 2: 3,
It was baked in the air at 900 ° C for 20 hours. This powder was crushed in an agate mortar, and Tl 2 O 3 was mixed with the obtained powder so that the atomic ratio of Tl: Sr: Ca: Cu was 1: 2: 2: 3. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Firing was performed in the air at a temperature of 0 ° C. for 5 hours, and then annealing was performed at 400 ° C. for 50 hours in an Ar gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 2 was contained. . When the superconducting critical temperature of this sintered body was measured by the DC 4-terminal method, it was confirmed that the electric resistance became zero at 93K.

【0017】次に作製した超電導体を粉砕して、超電導
物質1モルに対して0.08モルのBaOとPbO を添加し、め
のう乳鉢で十分に粉砕、混合した。この粉末を外径6m
m, 内径4mmの銀パイプに充填し、外径0.5mmまで線引
きした後、厚さ0.1mmまで圧延した。これを30mmの試験
片として切り出し、885℃の温度で大気中で10時間熱処
理した後、10時間で870℃まで冷却し、870℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけないでこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=65000A/cm2 であり、1テス
ラーの磁場中でのこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=42000A/cm2 であった。DT
A測定によって最初に液相のではじめる温度を測定した
ところ878℃であった。 [比較例3]実施例2と同じ試験片を単に870℃で30時
間熱処理した試料のJc は磁場をかけない状態、77Kの
温度で6000A/cm2 、1テスラーの磁場中では150A/cm2
であった。 [比較例4]実施例2で作製した超電導物質の粉末をそ
のまま何も添加しないで外径6mm,内径4mmの銀パイプ
に充填し、実施例2と同様の加工方法で試験片を作製し
た。これを885℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=3300A/cm2 、1テスラーの磁場中
でのこの試料の臨界電流密度を直流4端子法で測定した
ところ、Jc=200A/cm2 であった。 [実施例3]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, CaO, CuO をそれぞれS
r:Ca:Cuの原子比率が 2:3:4 になるように混合し、
900℃で20時間大気中で焼成した。この粉末をめのう乳
鉢で粉砕し、得られた粉末にTl:Sr:Ca:Cuの原子比率
が 1:2:3:4 となるようにTl2O3 を混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて90
0℃の温度で大気中5時間の焼成を行ない、その後Arガ
ス気流中400℃で50時間アニールした。出来上がった焼
結体の粉末X線回折測定を実行し、結果をリートベルト
法で解析したところ、図3に示すような結晶構造を有す
る超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ95Kで電気抵抗がゼロになることが確認でき
た。
Next, the prepared superconductor was crushed, 0.08 mol of BaO and PbO 2 was added to 1 mol of the superconducting substance, and the mixture was sufficiently crushed and mixed in an agate mortar. This powder has an outer diameter of 6 m
It was filled in a silver pipe with an inner diameter of 4 mm and a diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, Jc = 65000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 42000 A / cm 2 . DT
When the temperature at the beginning of the liquid phase was measured by the A measurement, it was 878 ° C. [Comparative Example 3] Jc of a sample obtained by simply heat-treating the same test piece as in Example 2 at 870 ° C for 30 hours was 6000A / cm 2 at a temperature of 77K and 150A / cm 2 in a magnetic field of 1 Tesler.
Met. [Comparative Example 4] The superconducting substance powder prepared in Example 2 was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm without adding anything as it was, and a test piece was prepared by the same processing method as in Example 2. This was heat-treated in the atmosphere at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the direct current 4-terminal method at a temperature of 77 K without applying a magnetic field, Jc = 3300 A / cm 2 , the critical current density of this sample in the magnetic field of 1 Tesler was measured by the direct current 4-terminal method. It was Jc = 200 A / cm 2 when measured by. [Example 3] As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, CaO, CuO
Mix so that the atomic ratio of r: Ca: Cu is 2: 3: 4,
It was baked in the air at 900 ° C for 20 hours. This powder was ground in an agate mortar, and Tl 2 O 3 was mixed with the obtained powder so that the atomic ratio of Tl: Sr: Ca: Cu was 1: 2: 3: 4. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Firing was performed in the air at a temperature of 0 ° C. for 5 hours, and then annealing was performed at 400 ° C. for 50 hours in an Ar gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 3 was contained. . The superconducting critical temperature of this sintered body was measured by the direct current 4-terminal method, and it was confirmed that the electric resistance became zero at 95K.

【0018】次に作製した超電導体を粉砕して、超電導
物質1モルに対して0.05モルのBaOとPbO を添加し、め
のう乳鉢で十分に粉砕、混合した。この粉末を外径6m
m, 内径4mmの銀パイプに充填し、外径0.5mmまで線引
きした後、厚さ0.1mmまで圧延した。これを30mmの試験
片として切り出し、885℃の温度で大気中で10時間熱処
理した後、10時間で870℃まで冷却し、870℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけないでこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=43000A/cm2 であり、1テス
ラーの磁場中でのこの試料の臨界電流密度を直流4端子
法で測定したところ、Jc=36000A/cm2 であった。DT
A測定によって最初に液相のではじめる温度を測定した
ところ879℃であった。 [比較例5]実施例3と同じ試験片を単に870℃で30時
間熱処理した試料のJc は磁場をかけない状態、77Kの
温度で5400A/cm2、1テスラーの磁場中では240A/cm2
あった。 [比較例6]実施例3で作製した超電導物質の粉末をそ
のまま何も添加しないで外径6mm,内径4mmの銀パイプ
に充填し、実施例2と同様の加工方法で試験片を作製し
た。これを890℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=3700A/cm2 、1テスラーの磁場中
でのこの試料の臨界電流密度を直流4端子法で測定した
ところ、Jc=170A/cm2 であった。 [実施例4]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, BaO, CaO, CuOをそれぞ
れSr:Ba:Ca:Cuの原子比率が 1.6:0.4:1:2 になる
ように混合し、900℃で20時間大気中で焼成した。この
粉末をめのう乳鉢で粉砕し、得られた粉末にTl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.6:0.4:1:2
となるようにTl2O3 とPbO をくわえて混合した。乳鉢
でよく混合した後の粉末を直径20mm, 厚さ2mmのディス
ク状に圧粉成型し、蓋の付いたアルミナるつぼにいれて
900℃の温度で大気中5時間の焼成を行ない、その後Ar
ガス気流中400℃で50時間アニールした。出来上がった
焼結体の粉末X線回折測定を実行し、結果をリートベル
ト法で解析したところ、図1に示すような結晶構造を有
する超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ95Kで電気抵抗がゼロになることが確認でき
た。
Next, the produced superconductor was crushed, 0.05 mol of BaO and PbO was added to 1 mol of the superconducting substance, and the mixture was sufficiently crushed and mixed in an agate mortar. This powder has an outer diameter of 6 m
It was filled in a silver pipe with an inner diameter of 4 mm and a diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, it was Jc = 43000 A / cm 2 , and the critical current density of this sample in the magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 36000 A / cm 2 . DT
When the temperature at the beginning of the liquid phase was first measured by A measurement, it was 879 ° C. [Comparative Example 5] Jc of a sample obtained by simply heat-treating the same test piece as in Example 3 at 870 ° C for 30 hours was 5400A / cm 2 at a temperature of 77K and 240A / cm 2 in a magnetic field of 1 Tesler. Met. [Comparative Example 6] The superconducting substance powder prepared in Example 3 was filled into a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm without adding anything, and a test piece was prepared by the same processing method as in Example 2. This was heat-treated in the atmosphere at a temperature of 890 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, it was found that the critical current density of this sample in the magnetic field of Jc = 3700 A / cm 2 , 1 Tesler was determined by the DC 4-terminal method. It was Jc = 170 A / cm 2 when measured by. [Example 4] As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, BaO, CaO, and CuO were mixed so that the atomic ratio of Sr: Ba: Ca: Cu was 1.6: 0.4: 1: 2, respectively, and calcined in the atmosphere at 900 ° C for 20 hours. This powder was crushed in an agate mortar and the resulting powder was Tl: Pb: S.
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.6: 0.4: 1: 2.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is pressed into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Baking for 5 hours in air at a temperature of 900 ℃, then Ar
It was annealed at 400 ° C. for 50 hours in a gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 1 was contained. . The superconducting critical temperature of this sintered body was measured by the direct current 4-terminal method, and it was confirmed that the electric resistance became zero at 95K.

【0019】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを30mmの試験片とし
て切り出し、890℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=35000A/cm2 であり、1テスラーの
磁場中でのこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=19000A/cm2 であった。DTA測定
によって最初に液相のではじめる温度を測定したところ
880℃であった。 [実施例5]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, BaO, CaO, CuOをそれぞ
れSr:Ba:Ca:Cuの原子比率が 1.6:0.4:2:3 になる
ように混合し、900℃で20時間大気中で焼成した。この
粉末をめのう乳鉢で粉砕し、得られた粉末にTl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.6:0.4:2:3
となるようにTl2O3 とPbO をくわえて混合した。乳鉢
でよく混合した後の粉末を直径20mm, 厚さ2mmのディス
ク状に圧粉成型し、蓋の付いたアルミナるつぼにいれて
900℃の温度で大気中5時間の焼成を行ない、その後Ar
ガス気流中400℃で50時間アニールした。出来上がった
焼結体の粉末X線回折測定を実行し、結果をリートベル
ト法で解析したところ、図2に示すような結晶構造を有
する超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ 115Kで電気抵抗がゼロになることが確認で
きた。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 890 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, it was Jc = 35000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 19000 A / cm 2 . When the temperature at the beginning of the liquid phase was measured by DTA measurement
It was 880 ° C. [Example 5] As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, BaO, CaO, and CuO were mixed so that the atomic ratio of Sr: Ba: Ca: Cu was 1.6: 0.4: 2: 3, and the mixture was baked at 900 ° C for 20 hours in the air. This powder was crushed in an agate mortar and the resulting powder was Tl: Pb: S.
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.6: 0.4: 2: 3.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is pressed into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Baking for 5 hours in air at a temperature of 900 ℃, then Ar
It was annealed at 400 ° C. for 50 hours in a gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 2 was contained. . When the superconducting critical temperature of this sintered body was measured by the DC 4-terminal method, it was confirmed that the electrical resistance became zero at 115K.

【0020】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを30mmの試験片とし
て切り出し、890℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=57000A/cm2 であり、1テスラーの
磁場中でのこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=45000A/cm2 であった。DTA測定
によって最初に液相のではじめる温度を測定したところ
876℃であった。 [実施例6]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用いた。まず最初に酸化
物超電導物質を作製した。SrO, BaO, CaO, CuOをそれぞ
れSr:Ba:Ca:Cuの原子比率が 1.6:0.4:3:4 になる
ように混合し、900℃で20時間大気中で焼成した。この
粉末をめのう乳鉢で粉砕し、得られた粉末にTl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.6:0.4:3:4
となるようにTl2O3 とPbO をくわえて混合した。乳鉢
でよく混合した後の粉末を直径20mm, 厚さ2mmのディス
ク状に圧粉成型し、蓋の付いたアルミナるつぼにいれて
900℃の温度で大気中5時間の焼成を行ない、その後Ar
ガス気流中400℃で50時間アニールした。出来上がった
焼結体の粉末X線回折測定を実行し、結果をリートベル
ト法で解析したところ、図3に示すような結晶構造を有
する超電導物質が90%以上含まれていることが確認され
た。この焼結体の超電導臨界温度を直流4端子法で測定
したところ95Kで電気抵抗がゼロになることが確認でき
た。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 890 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4-terminal method at a temperature of 77 K without applying a magnetic field, Jc = 57000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler When measured by the terminal method, it was Jc = 45000 A / cm 2 . When the temperature at the beginning of the liquid phase was measured by DTA measurement
It was 876 ° C. [Example 6] As a starting material, Tl 2 O 3 having a purity of 99% or more,
SrO, CaO, CuO, PbO and BaO were used. First, an oxide superconducting material was prepared. SrO, BaO, CaO, and CuO were mixed so that the atomic ratio of Sr: Ba: Ca: Cu was 1.6: 0.4: 3: 4, and the mixture was baked at 900 ° C for 20 hours in the atmosphere. This powder was crushed in an agate mortar and the resulting powder was Tl: Pb: S.
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.6: 0.4: 3: 4.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is pressed into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid.
Baking for 5 hours in air at a temperature of 900 ℃, then Ar
It was annealed at 400 ° C. for 50 hours in a gas stream. When powder X-ray diffraction measurement was performed on the finished sintered body and the results were analyzed by the Rietveld method, it was confirmed that 90% or more of the superconducting substance having the crystal structure as shown in FIG. 3 was contained. . The superconducting critical temperature of this sintered body was measured by the direct current 4-terminal method, and it was confirmed that the electric resistance became zero at 95K.

【0021】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを30mmの試験片とし
て切り出し、890℃の温度で大気中で10時間熱処理した
後、10時間で870℃まで冷却し、870℃で10時間保持した
後室温まで8時間かけて冷却した。77Kの温度で磁場を
かけないでこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=31000A/cm2 であり、1テスラーの
磁場中でのこの試料の臨界電流密度を直流4端子法で測
定したところ、Jc=27000A/cm2 であった。 [実施例7]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、TlとPb、SrとBaの
含有比率の違った試料を作製した。まずSrO, BaO, CaO,
CuOをそれぞれSr:Ba:Ca:Cuの原子比率が (1-Y):
Y:1:2 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、得られた粉
末にTlとPbの比率が変わるようにTl:Pb:Sr:Ba:Ca:
Cuの原子比率が (1-X):X:(1-Y):Y:1:2 となるよう
にTl2O3 とPbO をくわえて混合した。乳鉢でよく混合し
た後の粉末を直径20mm, 厚さ2mmのディスク状に圧粉成
型し、蓋の付いたアルミナるつぼにいれて890℃の温度
で大気中5時間の焼成を行ない、室温まで10時間で冷却
した。
The sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in the atmosphere at a temperature of 890 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. When the critical current density of this sample was measured by the DC 4 terminal method at a temperature of 77 K without applying a magnetic field, it was Jc = 31000 A / cm 2 , and the critical current density of this sample in a magnetic field of 1 Tesler was 4 DC. When measured by the terminal method, Jc = 27,000 A / cm 2 . [Example 7] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, and BaO, samples with different content ratios of Tl and Pb and Sr and Ba were prepared. First, SrO, BaO, CaO,
The atomic ratio of Sr: Ba: Ca: Cu to CuO is (1-Y):
The mixture was mixed so as to be Y: 1: 2 and baked at 900 ° C. for 20 hours in the air. This powder was crushed in an agate mortar, and Tl: Pb: Sr: Ba: Ca: so that the ratio of Tl and Pb changed in the obtained powder.
Tl 2 O 3 and PbO were added and mixed so that the atomic ratio of Cu was (1-X): X: (1-Y): Y: 1: 2. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, put in an alumina crucible with a lid, and baked at a temperature of 890 ° C for 5 hours in the air, until room temperature reaches 10 Cooled in time.

【0022】これら焼結体を粉砕し、粉末を外径6mm,
内径4mmの銀パイプに充填し、外径0.5mmまで線引きし
た後、厚さ0.1mmまで圧延した。これを30mmの試験片と
して切り出し、890℃の温度で酸素気流中で10時間熱処
理した後、10時間で870℃まで冷却し、870℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけない状態と1テスラーの磁場をかけた状態で
これら試料の臨界電流密度を直流4端子法で測定した結
果を表1に示す。
These sintered bodies were crushed to obtain powder having an outer diameter of 6 mm,
It was filled in a silver pipe having an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in an oxygen stream at a temperature of 890 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, held at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. Table 1 shows the results of measuring the critical current densities of these samples by the DC 4-terminal method under the condition that no magnetic field was applied at a temperature of 77 K and under the condition that a magnetic field of 1 Tesler was applied.

【0023】[0023]

【表1】 Xの値 Yの値 ゼロ磁場でのJc 1TでのJc 0 0.1 3400 A/cm2 110 A/cm2 0 0.5 2500 A/cm2 170 A/cm2 0 0.9 2400 A/cm2 140 A/cm2 0 1.0 2600 A/cm2 210 A/cm2 0.05 0.05 4500 A/cm2 920 A/cm2 0.05 0.2 4300 A/cm2 840 A/cm2 0.05 0.4 3900 A/cm2 880 A/cm2 0.05 0.6 3200 A/cm2 960 A/cm2 0.05 0.8 4400 A/cm2 890 A/cm2 0.05 1.0 3500 A/cm2 910 A/cm2 0.1 0.05 4500 A/cm2 960 A/cm2 0.1 0.1 8900 A/cm2 2300 A/cm2 0.1 0.2 16000 A/cm2 5600 A/cm2 0.1 0.4 19000 A/cm2 6500 A/cm2 0.1 0.6 21000 A/cm2 7300 A/cm2 0.1 0.8 18000 A/cm2 5700 A/cm2 0.1 0.8 19000 A/cm2 4500 A/cm2 0.1 1.0 21000 A/cm2 3900 A/cm2 0.3 0.05 6500 A/cm2 2600 A/cm2 0.3 0.1 35000 A/cm2 12000 A/cm2 0.3 0.3 38000 A/cm2 15000 A/cm2 0.3 0.5 43000 A/cm2 17000 A/cm2 0.3 0.8 37000 A/cm2 10600 A/cm2 0.3 1.0 31000 A/cm2 9900 A/cm2 0.5 0.05 8900 A/cm2 3500 A/cm2 0.5 0.1 23000 A/cm2 16000 A/cm2 0.5 0.3 49000 A/cm2 26000 A/cm2 0.5 0.5 53000 A/cm2 32000 A/cm2 0.5 0.8 51000 A/cm2 25000 A/cm2 0.5 1.0 33000 A/cm2 19000 A/cm2 0.6 0.05 9500 A/cm2 6000 A/cm2 0.6 0.1 26000 A/cm2 13000 A/cm2 0.6 0.5 25000 A/cm2 11000 A/cm2 0.6 0.8 27000 A/cm2 10300 A/cm2 0.6 1.0 21000 A/cm2 10000 A/cm2 0.7 0.1 6000 A/cm2 1900 A/cm2 0.7 0.5 3000 A/cm2 2300 A/cm2 0.7 1.0 2000 A/cm2 3500 A/cm2 以上の結果より、超伝導物質1モルに対するPbの量は原
子比で0.05〜0.7 程度、Baの量は原子比で0.05以上であ
ることが好ましいことがわかる。 [実施例8]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、TlとPb、SrとBaの
含有比率の違った試料を作製した。まずSrO, BaO, CaO,
CuOをそれぞれSr:Ba:Ca:Cuの原子比率が (1-Y):
Y:2:3 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、得られた粉
末にTlとPbの比率が変わるようにTl:Pb:Sr:Ba:Ca:
Cuの原子比率が (1-X):X:(1-Y):Y:2:3 となるよう
にTl2O3 とPbO をくわえて混合した。乳鉢でよく混合し
た後の粉末を直径20mm, 厚さ2mmのディスク状に圧粉成
型し、蓋の付いたアルミナるつぼにいれて885℃の温度
で大気中5時間の焼成を行ない、室温まで10時間で冷却
した。
[Table 1] X value Y value Jc at zero magnetic field Jc at 1T 0 0.1 3400 A / cm 2 110 A / cm 2 0 0.5 2500 A / cm 2 170 A / cm 2 0 0.9 2400 A / cm 2 140 A / cm 2 0 1.0 2600 A / cm 2 210 A / cm 2 0.05 0.05 4500 A / cm 2 920 A / cm 2 0.05 0.2 4300 A / cm 2 840 A / cm 2 0.05 0.4 3900 A / cm 2 880 A / cm 2 0.05 0.6 3200 A / cm 2 960 A / cm 2 0.05 0.8 4400 A / cm 2 890 A / cm 2 0.05 1.0 3500 A / cm 2 910 A / cm 2 0.1 0.05 4500 A / cm 2 960 A / cm 2 0.1 0.1 8900 A / cm 2 2300 A / cm 2 0.1 0.2 16000 A / cm 2 5600 A / cm 2 0.1 0.4 19000 A / cm 2 6500 A / cm 2 0.1 0.6 21000 A / cm 2 7300 A / cm 2 0.1 0.8 18000 A / cm 2 5700 A / cm 2 0.1 0.8 19000 A / cm 2 4500 A / cm 2 0.1 1.0 21000 A / cm 2 3900 A / cm 2 0.3 0.05 6500 A / cm 2 2600 A / cm 2 0.3 0.1 35000 A / cm 2 12000 A / cm 2 0.3 0.3 38000 A / cm 2 15000 A / cm 2 0.3 0.5 43000 A / cm 2 17000 A / cm 2 0.3 0.8 37000 A / cm 2 10600 A / cm 2 0.3 1.0 31000 A / cm 2 9900 A / cm 2 0.5 0.05 8900 A / cm 2 3500 A / cm 2 0.5 0.1 23000 A / cm 2 16000 A / cm 2 0.5 0.3 49000 A / cm 2 26000 A / cm 2 0.5 0.5 53000 A / cm 2 32000 A / cm 2 0.5 0.8 51000 A / cm 2 25000 A / cm 2 0.5 1.0 33000 A / cm 2 19000 A / cm 2 0.6 0.05 9500 A / cm 2 6000 A / cm 2 0.6 0.1 26000 A / cm 2 13000 A / cm 2 0.6 0.5 25000 A / cm 2 11000 A / cm 2 0.6 0.8 27000 A / cm 2 10300 A / cm 2 0.6 1.0 21000 A / cm 2 10000 A / cm 2 0.7 0.1 6000 A / cm 2 1900 A / cm 2 0.7 0.5 3000 A / cm 2 2300 A / From the results of cm 2 0.7 1.0 2000 A / cm 2 3500 A / cm 2 or more, it is found that the amount of Pb per mol of the superconducting substance is 0.05 to 0.7 in atomic ratio, and the amount of Ba is 0.05 or more in atomic ratio. It turns out to be preferable. [Example 8] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, and BaO, samples with different content ratios of Tl and Pb and Sr and Ba were prepared. First, SrO, BaO, CaO,
The atomic ratio of Sr: Ba: Ca: Cu to CuO is (1-Y):
The mixture was mixed so as to be Y: 2: 3, and baked in the air at 900 ° C for 20 hours. This powder was crushed in an agate mortar, and Tl: Pb: Sr: Ba: Ca: so that the ratio of Tl and Pb changed in the obtained powder.
Tl 2 O 3 and PbO were added and mixed so that the atomic ratio of Cu was (1-X): X: (1-Y): Y: 2: 3. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, put in an alumina crucible with a lid, and baked at a temperature of 885 ° C for 5 hours in the air, until room temperature reaches 10 Cooled in time.

【0024】これら焼結体を粉砕し、粉末を外径6mm,
内径4mmの銀パイプに充填し、外径0.5mmまで線引きし
た後、厚さ0.1mmまで圧延した。これを30mmの試験片と
して切り出し、885℃の温度で酸素気流中で10時間熱処
理した後、10時間で875℃まで冷却し、875℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけない状態と1テスラーの磁場をかけた状態で
これら試料の臨界電流密度を直流4端子法で測定した結
果を表2に示す。
These sinters were crushed to obtain powder having an outer diameter of 6 mm,
It was filled in a silver pipe having an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut into a 30 mm test piece, heat-treated in an oxygen stream at a temperature of 885 ° C. for 10 hours, cooled to 875 ° C. in 10 hours, kept at 875 ° C. for 10 hours, and then cooled to room temperature over 8 hours. Table 2 shows the results of measuring the critical current densities of these samples by the direct current 4-terminal method under the condition that the magnetic field is not applied at the temperature of 77 K and the magnetic field of 1 Tesler is applied.

【0025】[0025]

【表2】 Xの値 Yの値 ゼロ磁場でのJc 1TでのJc 0 0.1 4400 A/cm2 900 A/cm2 0 0.5 3500 A/cm2 860 A/cm2 0 0.9 3500 A/cm2 970 A/cm2 0 1.0 3700 A/cm2 1100 A/cm2 0.05 0.05 6500 A/cm2 1200 A/cm2 0.05 0.2 6800 A/cm2 1600 A/cm2 0.05 0.4 6400 A/cm2 2600 A/cm2 0.05 0.6 3800 A/cm2 2900 A/cm2 0.05 0.8 5500 A/cm2 1600 A/cm2 0.05 1.0 5900 A/cm2 1300 A/cm2 0.1 0.05 8300 A/cm2 6700 A/cm2 0.1 0.1 16000 A/cm2 9800 A/cm2 0.1 0.2 28000 A/cm2 13000 A/cm2 0.1 0.4 32000 A/cm2 19000 A/cm2 0.1 0.6 36000 A/cm2 16000 A/cm2 0.1 0.8 23000 A/cm2 11000 A/cm2 0.1 0.8 25000 A/cm2 13000 A/cm2 0.1 1.0 22000 A/cm2 10500 A/cm2 0.3 0.05 9700 A/cm2 7600 A/cm2 0.3 0.1 49000 A/cm2 22000 A/cm2 0.3 0.3 62000 A/cm2 35000 A/cm2 0.3 0.5 53000 A/cm2 27000 A/cm2 0.3 0.8 47000 A/cm2 31000 A/cm2 0.3 1.0 26000 A/cm2 12000 A/cm2 0.5 0.05 9900 A/cm2 6500 A/cm2 0.5 0.1 29000 A/cm2 19000 A/cm2 0.5 0.3 56000 A/cm2 31000 A/cm2 0.5 0.5 77000 A/cm2 45000 A/cm2 0.5 0.8 63000 A/cm2 35000 A/cm2 0.5 1.0 31000 A/cm2 15000 A/cm2 0.6 0.05 10300 A/cm2 7000 A/cm2 0.6 0.1 31000 A/cm2 18000 A/cm2 0.6 0.5 34000 A/cm2 18000 A/cm2 0.6 0.8 32000 A/cm2 19000 A/cm2 0.6 1.0 26000 A/cm2 13000 A/cm2 0.7 0.1 4000 A/cm2 2900 A/cm2 0.7 0.5 3000 A/cm2 2100 A/cm2 0.7 1.0 3000 A/cm2 1100 A/cm2 以上の結果より、超伝導物質1モルに対するPbの量は原
子比で0.05〜0.7 程度、Baの量は原子比で0.05以上であ
ることが好ましいことがわかる。 [実施例9]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、TlとPb、SrとBaの
含有比率の違った試料を作製した。まずSrO, BaO, CaO,
CuOをそれぞれSr:Ba:Ca:Cuの原子比率が (1-Y):
Y:3:4 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、得られた粉
末にTlとPbの比率が変わるようにTl:Pb:Sr:Ba:Ca:
Cuの原子比率が (1-X):X:(1-Y):Y:3:4 となるよう
にTl2O3 とPbO をくわえて混合した。乳鉢でよく混合し
た後の粉末を直径20mm, 厚さ2mmのディスク状に圧粉成
型し、蓋の付いたアルミナるつぼにいれて885℃の温度
で大気中5時間の焼成を行ない、室温まで10時間で冷却
した。
[Table 2] X value Y value Jc at zero magnetic field Jc at 1T 0 0.1 4400 A / cm 2 900 A / cm 2 0 0.5 3500 A / cm 2 860 A / cm 2 0 0.9 3500 A / cm 2 970 A / cm 2 0 1.0 3700 A / cm 2 1100 A / cm 2 0.05 0.05 6500 A / cm 2 1200 A / cm 2 0.05 0.2 6800 A / cm 2 1600 A / cm 2 0.05 0.4 6400 A / cm 2 2600 A / cm 2 0.05 0.6 3800 A / cm 2 2900 A / cm 2 0.05 0.8 5500 A / cm 2 1600 A / cm 2 0.05 1.0 5900 A / cm 2 1300 A / cm 2 0.1 0.05 8300 A / cm 2 6700 A / cm 2 0.1 0.1 16000 A / cm 2 9800 A / cm 2 0.1 0.2 28000 A / cm 2 13000 A / cm 2 0.1 0.4 32000 A / cm 2 19000 A / cm 2 0.1 0.6 36000 A / cm 2 16000 A / cm 2 0.1 0.8 23000 A / cm 2 11000 A / cm 2 0.1 0.8 25000 A / cm 2 13000 A / cm 2 0.1 1.0 22000 A / cm 2 10500 A / cm 2 0.3 0.05 9700 A / cm 2 7600 A / cm 2 0.3 0.1 49000 A / cm 2 22000 A / cm 2 0.3 0.3 62000 A / cm 2 35000 A / cm 2 0.3 0.5 53000 A / cm 2 27000 A / cm 2 0.3 0.8 47000 A / cm 2 31000 A / cm 2 0.3 1.0 26000 A / cm 2 12000 A / cm 2 0.5 0.05 9900 A / cm 2 6500 A / cm 2 0.5 0.1 29000 A / cm 2 19000 A / cm 2 0.5 0.3 56000 A / cm 2 31000 A / cm 2 0.5 0.5 77000 A / cm 2 45000 A / cm 2 0.5 0.8 63000 A / cm 2 35000 A / cm 2 0.5 1.0 31000 A / cm 2 15000 A / cm 2 0.6 0.05 10 300 A / cm 2 7000 A / cm 2 0.6 0.1 31000 A / cm 2 18000 A / cm 2 0.6 0.5 34000 A / cm 2 18000 A / cm 2 0.6 0.8 32000 A / cm 2 19000 A / cm 2 0.6 1.0 26000 A / cm 2 13000 A / cm 2 0.7 0.1 4000 A / cm 2 2900 A / cm 2 0.7 0.5 3000 A / cm 2 2100 A / cm 2 0.7 1.0 3000 A / cm 2 1100 A / cm 2 From the above results, the amount of Pb per mol of superconducting substance is about 0.05 to 0.7 in atomic ratio, and the amount of Ba is 0.05 in atomic ratio. It is understood that the above is preferable. [Example 9] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, and BaO, samples with different content ratios of Tl and Pb and Sr and Ba were prepared. First, SrO, BaO, CaO,
The atomic ratio of Sr: Ba: Ca: Cu to CuO is (1-Y):
The mixture was mixed so as to be Y: 3: 4 and baked at 900 ° C. for 20 hours in the air. This powder was crushed in an agate mortar, and Tl: Pb: Sr: Ba: Ca: so that the ratio of Tl and Pb changed in the obtained powder.
Tl 2 O 3 and PbO were added and mixed so that the atomic ratio of Cu was (1-X): X: (1-Y): Y: 3: 4. After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, put in an alumina crucible with a lid, and baked at a temperature of 885 ° C for 5 hours in the air, until room temperature reaches 10 Cooled in time.

【0026】これら焼結体を粉砕し、粉末を外径6mm,
内径4mmの銀パイプに充填し、外径0.5mmまで線引きし
た後、厚さ0.1mmまで圧延した。これを30mmの試験片と
して切り出し、885℃の温度で酸素気流中で10時間熱処
理した後、10時間で870℃まで冷却し、870℃で10時間保
持した後室温まで8時間かけて冷却した。77Kの温度で
磁場をかけない状態と1テスラーの磁場をかけた状態で
これら試料の臨界電流密度を直流4端子法で測定した結
果を表3に示す。
These sintered bodies were crushed to obtain powder having an outer diameter of 6 mm,
It was filled in a silver pipe having an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece, heat-treated in an oxygen stream at a temperature of 885 ° C. for 10 hours, cooled to 870 ° C. in 10 hours, kept at 870 ° C. for 10 hours, and then cooled to room temperature over 8 hours. Table 3 shows the results of measuring the critical current densities of these samples by the DC 4-terminal method under the condition that no magnetic field was applied at a temperature of 77 K and under the condition that a magnetic field of 1 Tesler was applied.

【0027】[0027]

【表3】 Xの値 Yの値 ゼロ磁場でのJc 1TでのJc 0 0.1 4300 A/cm2 900 A/cm2 0 0.5 3200 A/cm2 900 A/cm2 0 0.9 3700 A/cm2 950 A/cm2 0 1.0 3500 A/cm2 1200 A/cm2 0.05 0.05 6300 A/cm2 1100 A/cm2 0.05 0.2 6600 A/cm2 1600 A/cm2 0.05 0.4 6500 A/cm2 2900 A/cm2 0.05 0.6 4800 A/cm2 3100 A/cm2 0.05 0.8 4500 A/cm2 2600 A/cm2 0.05 1.0 5100 A/cm2 1900 A/cm2 0.1 0.05 7300 A/cm2 6400 A/cm2 0.1 0.1 26000 A/cm2 9600 A/cm2 0.1 0.2 23000 A/cm2 15000 A/cm2 0.1 0.4 34000 A/cm2 219000 A/cm2 0.1 0.6 37000 A/cm2 23000 A/cm2 0.1 0.8 28000 A/cm2 22000 A/cm2 0.1 0.8 22000 A/cm2 26000 A/cm2 0.1 1.0 26000 A/cm2 16000 A/cm2 0.3 0.05 9700 A/cm2 9600 A/cm2 0.3 0.1 41000 A/cm2 20000 A/cm2 0.3 0.3 69000 A/cm2 25000 A/cm2 0.3 0.5 59000 A/cm2 29000 A/cm2 0.3 0.8 41000 A/cm2 35000 A/cm2 0.3 1.0 24000 A/cm2 10000 A/cm2 0.5 0.05 9100 A/cm2 6000 A/cm2 0.5 0.1 39000 A/cm2 22000 A/cm2 0.5 0.3 51000 A/cm2 26000 A/cm2 0.5 0.5 67000 A/cm2 41000 A/cm2 0.5 0.8 53000 A/cm2 33000 A/cm2 0.5 1.0 42000 A/cm2 11000 A/cm2 0.6 0.05 13000 A/cm2 4000 A/cm2 0.6 0.1 35000 A/cm2 24000 A/cm2 0.6 0.5 39000 A/cm2 14000 A/cm2 0.6 0.8 33000 A/cm2 24000 A/cm2 0.6 1.0 36000 A/cm2 19000 A/cm2 0.7 0.1 5000 A/cm2 1900 A/cm2 0.7 0.5 5000 A/cm2 1100 A/cm2 0.7 1.0 2000 A/cm2 1000 A/cm2 以上の結果より、超伝導物質1モルに対するPbの量は原
子比で0.05〜0.7 程度、Baの量は0.05以上であることが
好ましいことがわかる。
[Table 3] X value Y value Jc at zero field Jc at 1T 0 0.1 4300 A / cm 2 900 A / cm 2 0 0.5 3200 A / cm 2 900 A / cm 2 0 0.9 3700 A / cm 2 950 A / cm 2 0 1.0 3500 A / cm 2 1200 A / cm 2 0.05 0.05 6300 A / cm 2 1100 A / cm 2 0.05 0.2 6600 A / cm 2 1600 A / cm 2 0.05 0.4 6500 A / cm 2 2900 A / cm 2 0.05 0.6 4800 A / cm 2 3100 A / cm 2 0.05 0.8 4500 A / cm 2 2600 A / cm 2 0.05 1.0 5100 A / cm 2 1900 A / cm 2 0.1 0.05 7300 A / cm 2 6400 A / cm 2 0.1 0.1 26000 A / cm 2 9600 A / cm 2 0.1 0.2 23000 A / cm 2 15000 A / cm 2 0.1 0.4 34000 A / cm 2 219000 A / cm 2 0.1 0.6 37000 A / cm 2 23000 A / cm 2 0.1 0.8 28000 A / cm 2 22000 A / cm 2 0.1 0.8 22000 A / cm 2 26000 A / cm 2 0.1 1.0 26000 A / cm 2 16000 A / cm 2 0.3 0.05 9700 A / cm 2 9600 A / cm 2 0.3 0.1 41000 A / cm 2 20000 A / cm 2 0.3 0.3 69000 A / cm 2 25000 A / cm 2 0.3 0.5 59000 A / cm 2 29000 A / cm 2 0.3 0.8 41000 A / cm 2 35000 A / cm 2 0.3 1.0 24000 A / cm 2 10000 A / cm 2 0.5 0.05 9100 A / cm 2 6000 A / cm 2 0.5 0.1 39000 A / cm 2 22000 A / cm 2 0.5 0.3 51000 A / cm 2 26000 A / cm 2 0.5 0.5 67000 A / cm 2 41000 A / cm 2 0. 5 0.8 53000 A / cm 2 33000 A / cm 2 0.5 1.0 42000 A / cm 2 11000 A / cm 2 0.6 0.05 13000 A / cm 2 4000 A / cm 2 0.6 0.1 35000 A / cm 2 24000 A / cm 2 0.6 0.5 39000 A / cm 2 14000 A / cm 2 0.6 0.8 33000 A / cm 2 24000 A / cm 2 0.6 1.0 36000 A / cm 2 19000 A / cm 2 0.7 0.1 5000 A / cm 2 1900 A / cm 2 0.7 0.5 5000 A / cm 2 1100 A / cm 2 0.7 1.0 2000 A / cm 2 1000 A / cm 2 From the results above, the amount of Pb per mol of superconducting material is 0.05 to 0.7 in atomic ratio, and the amount of Ba is above 0.05. It turns out that it is preferable to have.

【0028】[実施例10]出発原料としては、純度99%
以上のTl2O3, SrO, CaO, CuO, PbO, BaO を用い、まずS
rO, BaO, CaO, CuOをそれぞれSr:Ba:Ca:Cuの原子比
率が 1.7:0.3:2:3 になるように混合し、900℃で20
時間大気中で焼成した。この粉末をめのう乳鉢で粉砕
し、Tl:Pb:Sr:Ba:Ca:Cuの原子比率が 0.5:0.5:
1.7:0.3:2:3 となるようにTl2O3とPbO をくわえて混
合した。乳鉢でよく混合した後の粉末を直径20mm, 厚さ
2mmのディスク状に圧粉成型し、蓋の付いたアルミナる
つぼにいれて883℃の温度で大気中5時間の焼成を行な
い、室温まで10時間で冷却した。
[Example 10] The starting material had a purity of 99%.
Using the above Tl 2 O 3 , SrO, CaO, CuO, PbO, BaO, first, S
Mix rO, BaO, CaO, and CuO so that the atomic ratio of Sr: Ba: Ca: Cu is 1.7: 0.3: 2: 3, and mix at 20 ° C at 900 ℃.
Burned in air for hours. This powder was crushed in an agate mortar and the atomic ratio of Tl: Pb: Sr: Ba: Ca: Cu was 0.5: 0.5:
Tl 2 O 3 and PbO were added and mixed so that the ratio was 1.7: 0.3: 2: 3. After mixing well in a mortar, the powder is pressed into a disk shape with a diameter of 20 mm and a thickness of 2 mm, placed in an alumina crucible with a lid, and baked at a temperature of 883 ° C for 5 hours in the air to reach room temperature. Cooled in time.

【0029】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。この試料を酸素気流中で
DTA測定を行なって最初に液相のではじめる温度を測
定したところ879℃であった。これを30mmの試験片とし
て切り出し、種々の温度で酸素気流中で10時間熱処理し
た後、10時間で874℃まで冷却し、874℃で10時間保持し
た後室温まで8時間かけて冷却した。77Kの温度で磁場
をかけない状態と1テスラーの磁場をかけた状態でこれ
ら試料の臨界電流密度を直流4端子法で測定した結果を
表4に示す。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. When this sample was subjected to DTA measurement in an oxygen stream and the temperature at the beginning of the liquid phase was measured, it was 879 ° C. This was cut into 30 mm test pieces, heat-treated at various temperatures in an oxygen stream for 10 hours, cooled to 874 ° C. for 10 hours, held at 874 ° C. for 10 hours, and then cooled to room temperature over 8 hours. Table 4 shows the results of measuring the critical current densities of these samples by the direct current 4-terminal method under the condition that the magnetic field is not applied at the temperature of 77 K and the magnetic field of 1 Tesler is applied.

【0030】[0030]

【表4】 熱処理温度 ゼロ磁場でのJc 1TでのJc 874 ℃ 4500 A/cm2 800 A/cm2 876 ℃ 5400 A/cm2 860 A/cm2 878 ℃ 5800 A/cm2 1100 A/cm2 880 ℃ 46000 A/cm2 25000 A/cm2 882 ℃ 57000 A/cm2 33000 A/cm2 884 ℃ 53000 A/cm2 28000 A/cm2 886 ℃ 45000 A/cm2 26000 A/cm2 888 ℃ 35000 A/cm2 14000 A/cm2 890 ℃ 13000 A/cm2 9000 A/cm2 892 ℃ 5600 A/cm2 1300 A/cm2 以上の結果より、液相を共存させて行う熱処理の温度と
しては、液相が生成しはじめる温度より10℃の範囲内が
よいことがわかる。 [実施例11]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、まずSrO, BaO, Ca
O, CuOをそれぞれSr:Ba:Ca:Cuの原子比率が 1.8:0.
2:2:3 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、Tl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.8:0.2:2:3
となるようにTl2O3とPbO をくわえて混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて88
3℃の温度で大気中5時間の焼成を行ない、室温まで10
時間で冷却した。
[Table 4] Heat treatment temperature Jc at zero magnetic field Jc 1T Jc 874 ℃ 4500 A / cm 2 800 A / cm 2 876 ℃ 5400 A / cm 2 860 A / cm 2 878 ℃ 5800 A / cm 2 1100 A / cm 2 880 ℃ 46000 A / cm 2 25000 A / cm 2 882 ℃ 57000 A / cm 2 33000 A / cm 2 884 ℃ 53000 A / cm 2 28000 A / cm 2 886 ℃ 45000 A / cm 2 26000 A / cm 2 888 ℃ 35000 A / cm 2 14000 A / cm 2 890 ℃ 13000 A / cm 2 9000 A / cm 2 892 ℃ 5600 A / cm 2 1300 A / cm 2 From the above results, the temperature of heat treatment in the presence of liquid phase It can be seen that the temperature is preferably within the range of 10 ° C. above the temperature at which the liquid phase begins to form. [Example 11] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, BaO, first, SrO, BaO, Ca
The atomic ratio of Sr: Ba: Ca: Cu to O and CuO is 1.8: 0.
The mixture was mixed in a ratio of 2: 2: 3 and baked in the air at 900 ° C for 20 hours. This powder is crushed in an agate mortar, and Tl: Pb: S
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.8: 0.2: 2: 3.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid. 88
Bake for 5 hours in the air at a temperature of 3 ° C and bring to room temperature 10
Cooled in time.

【0031】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。この試料を酸素気流中で
DTA測定を行なって最初に液相のではじめる温度を測
定したところ879℃であった。2つの30mmの試験片を組
として、種々の温度で酸素気流中で10時間熱処理した
後、一方を炉から取り出して急冷、もう一方は続けて10
時間で874℃まで冷却し、874℃で10時間保持した後室温
まで8時間かけて冷却した。表5に、急冷試料の顕微鏡
観察により求めた熱処理時に存在したと思われる液相の
量を固相に対する体積分率で示し、77Kの温度で磁場を
かけない状態と1テスラーの磁場をかけた状態でこれら
試料の臨界電流密度を直流4端子法で測定した結果を併
せて示す。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. When this sample was subjected to DTA measurement in an oxygen stream and the temperature at the beginning of the liquid phase was measured, it was 879 ° C. Two 30mm test pieces are used as a set and heat-treated at various temperatures in an oxygen stream for 10 hours, then one is taken out of the furnace and rapidly cooled, the other 10
It was cooled to 874 ° C. in time, kept at 874 ° C. for 10 hours, and then cooled to room temperature over 8 hours. Table 5 shows the amount of the liquid phase, which was considered to exist during the heat treatment, which was obtained by microscopic observation of the quenched sample, in terms of volume fraction with respect to the solid phase, and was applied at a temperature of 77K without a magnetic field and with a magnetic field of 1 Tesler. The results of measuring the critical current densities of these samples in the state by the DC 4-terminal method are also shown.

【0032】[0032]

【表5】 液相の体積分率 ゼロ磁場でのJc 1TでのJc 3 % 16000 A/cm2 8800 A/cm2 5 % 36000 A/cm2 18000 A/cm2 8 % 42000 A/cm2 22000 A/cm2 13 % 43000 A/cm2 21000 A/cm2 16 % 21000 A/cm2 13000 A/cm2 20 % 8000 A/cm2 320 A/cm2 25 % 3000 A/cm2 200 A/cm2 30 % 1200 A/cm2 100 A/cm2 以上の結果より、固相と共存させる液相の量は3〜20%
が適切であることがわかる。 [実施例12]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、まずSrO, BaO, Ca
O, CuOをそれぞれSr:Ba:Ca:Cuの原子比率が 1.8:0.
2:2:3 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、Tl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.8:0.2:2:3
となるようにTl2O3とPbO をくわえて混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて88
3℃の温度で大気中5時間の焼成を行ない、室温まで10
時間で冷却した。
[Table 5] Volume fraction of liquid phase Jc at zero magnetic field Jc at 1T 3% 16000 A / cm 2 8800 A / cm 2 5% 36000 A / cm 2 18000 A / cm 2 8% 42000 A / cm 2 22000 A / cm 2 13% 43000 A / cm 2 21000 A / cm 2 16% 21000 A / cm 2 13000 A / cm 2 20% 8000 A / cm 2 320 A / cm 2 25% 3000 A / cm 2 200 A / cm 2 30% 1200 A / cm 2 From the result of 100 A / cm 2 or more, the amount of liquid phase coexisting with solid phase is 3-20%
Turns out to be appropriate. [Example 12] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, BaO, first, SrO, BaO, Ca
The atomic ratio of Sr: Ba: Ca: Cu to O and CuO is 1.8: 0.
The mixture was mixed in a ratio of 2: 2: 3 and baked in the air at 900 ° C for 20 hours. This powder is crushed in an agate mortar, and Tl: Pb: S
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.8: 0.2: 2: 3.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid. 88
Bake for 5 hours in the air at a temperature of 3 ° C and bring to room temperature 10
Cooled in time.

【0033】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを30mmの試験片とし
て切り出した。9片の試料を886℃で酸素気流中で20時
間熱処理した後、5時間で室温まで冷却した。その後種
々の温度で50時間熱処理して評価を行なった。表6に、
熱処理温度と、試料中の超電導物質に対する BaPbO3
(Sr,Ca)2CuO3 、の残留体積比、そして77Kの温度で磁
場をかけない状態と1テスラーの磁場をかけた状態での
臨界電流密度を直流4端子法で測定した結果を併せて示
す。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece. The nine pieces of the sample were heat-treated at 886 ° C. in an oxygen stream for 20 hours and then cooled to room temperature in 5 hours. After that, heat treatment was performed at various temperatures for 50 hours for evaluation. In Table 6,
Heat treatment temperature and BaPbO 3 for superconducting materials in the sample
The residual volume ratio of (Sr, Ca) 2 CuO 3 and the critical current densities at 77K temperature without magnetic field and 1 Tesler magnetic field were measured by DC 4-terminal method. Show.

【0034】[0034]

【表6】 熱処理温度 残存量 ゼロ磁場でのJc 1TでのJc 864 ℃ 12 % 11000 A/cm2 800 A/cm2 866 ℃ 10 % 16000 A/cm2 900 A/cm2 869 ℃ 8 % 19000 A/cm2 900 A/cm2 872 ℃ 6 % 25000 A/cm2 11000 A/cm2 875 ℃ 4 % 43000 A/cm2 23000 A/cm2 878 ℃ 2 % 69000 A/cm2 36000 A/cm2 880 ℃ 5 % 54000 A/cm2 27000 A/cm2 884 ℃ 6 % 12000 A/cm2 900 A/cm2 886 ℃ 15 % 1200 A/cm2 600 A/cm2 以上の結果から、非超伝導相の残存量が多すぎることは
好ましくないことがわかる [実施例13]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、まずSrO, BaO, Ca
O, CuOをそれぞれSr:Ba:Ca:Cuの原子比率が 1.8:0.
2:2:3 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、Tl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.5:1.8:0.2:2:3
となるようにTl2O3とPbO をくわえて混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて88
3℃の温度で大気中5時間の焼成を行ない、室温まで10
時間で冷却した。
[Table 6] Heat treatment temperature Residual amount Jc at zero magnetic field Jc at 1T 864 ℃ 12% 11000 A / cm 2 800 A / cm 2 866 ℃ 10% 16000 A / cm 2 900 A / cm 2 869 ℃ 8% 19000 A / cm 2 900 A / cm 2 872 ℃ 6% 25000 A / cm 2 11000 A / cm 2 875 ℃ 4% 43000 A / cm 2 23000 A / cm 2 878 ℃ 2% 69000 A / cm 2 36000 A / cm 2 880 ℃ 5% 54000 A / cm 2 27000 A / cm 2 884 ℃ 6% 12000 A / cm 2 900 A / cm 2 886 ℃ 15% 1200 A / cm 2 600 A / cm 2 It can be seen that it is not preferable that the amount of remaining conductive phase is too large. [Example 13] As a starting material, Tl 2 O 3 , having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, BaO, first, SrO, BaO, Ca
The atomic ratio of Sr: Ba: Ca: Cu to O and CuO is 1.8: 0.
The mixture was mixed in a ratio of 2: 2: 3 and baked in the air at 900 ° C for 20 hours. This powder is crushed in an agate mortar, and Tl: Pb: S
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.5: 1.8: 0.2: 2: 3.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid. 88
Bake for 5 hours in the air at a temperature of 3 ° C and bring to room temperature 10
Cooled in time.

【0035】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを30mmの試験片とし
て切り出した。5片の試料を881℃で酸素気流中で所定
時間熱処理した後、50時間で860℃まで冷却し、その後
6時間で室温まで冷却した。表7に、熱処理温度と、試
料中の BaPbO3と(Sr,Ca)2CuO3 の平均粒径、そして77K
の温度で磁場をかけない状態と1テスラーの磁場をかけ
た状態での臨界電流密度を直流4端子法で測定した結果
を併せて示す。
This sintered body was pulverized, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. This was cut out as a 30 mm test piece. Five pieces of the sample were heat-treated at 881 ° C in an oxygen stream for a predetermined time, cooled to 860 ° C in 50 hours, and then cooled to room temperature in 6 hours. Table 7 shows the heat treatment temperature, the average particle size of BaPbO 3 and (Sr, Ca) 2 CuO 3 in the sample, and 77K.
The results of measurement of the critical current density by the DC 4-terminal method in the state where no magnetic field is applied and the state where a magnetic field of 1 Tesler is applied are also shown.

【0036】[0036]

【表7】 熱処理時間 平均粒径 ゼロ磁場でのJc 1TでのJc 10時間 2μm 31000 A/cm2 13000 A/cm2 30時間 3μm 46000 A/cm2 28000 A/cm2 50時間 4μm 39000 A/cm2 21000 A/cm2 100時間 7μm 11000 A/cm2 5400 A/cm2 200時間 8μm 9000 A/cm2 3200 A/cm2 以上の結果から、試料中のBaPbO 3や(Sr,Ca)2CuO3 の平
均粒径は、3μm以下が好ましいことがわかる。 [実施例14]出発原料としては、純度99%以上のTl2O3,
SrO, CaO, CuO, PbO, BaO を用い、まずSrO, BaO, Ca
O, CuOをそれぞれSr:Ba:Ca:Cuの原子比率が 1.7:0.
4:2:3 になるように混合し、900℃で20時間大気中で
焼成した。この粉末をめのう乳鉢で粉砕し、Tl:Pb:S
r:Ba:Ca:Cuの原子比率が 0.5:0.6:1.7:0.4:2:3
となるようにTl2O3とPbO をくわえて混合した。乳鉢で
よく混合した後の粉末を直径20mm, 厚さ2mmのディスク
状に圧粉成型し、蓋の付いたアルミナるつぼにいれて88
3℃の温度で大気中5時間の焼成を行ない、室温まで10
時間で冷却した。
[Table 7] Heat treatment time Average particle size Jc at zero magnetic field Jc at 1T 10 hours 2 μm 31000 A / cm 2 13000 A / cm 2 30 hours 3 μm 46000 A / cm 2 28000 A / cm 2 50 hours 4 μm 39000 A / cm 2 21000 A / cm 2 100 hours 7 μm 11000 A / cm 2 5400 A / cm 2 200 hours 8 μm 9000 A / cm 2 3200 A / cm 2 From the above results, it was confirmed that BaPbO 3 and (Sr, Ca) 2 It can be seen that the average particle size of CuO 3 is preferably 3 μm or less. [Example 14] As a starting material, Tl 2 O 3 having a purity of 99% or more,
Using SrO, CaO, CuO, PbO, BaO, first, SrO, BaO, Ca
The atomic ratio of Sr: Ba: Ca: Cu for O and CuO is 1.7: 0.
The mixture was mixed in a ratio of 4: 2: 3 and baked in the air at 900 ° C for 20 hours. This powder is crushed in an agate mortar, and Tl: Pb: S
The atomic ratio of r: Ba: Ca: Cu is 0.5: 0.6: 1.7: 0.4: 2: 3.
Tl 2 O 3 and PbO were added and mixed so that After mixing well in a mortar, the powder is compacted into a disk shape with a diameter of 20 mm and a thickness of 2 mm, and put into an alumina crucible with a lid. 88
Bake for 5 hours in the air at a temperature of 3 ° C and bring to room temperature 10
Cooled in time.

【0037】この焼結体を粉砕し、粉末を外径6mm, 内
径4mmの銀パイプに充填し、外径0.5mmまで線引きした
後、厚さ0.1mmまで圧延した。これを用いて内径50cmの
ソレノイドコイルを作製し、酸素気流中で50時間、880
℃で熱処理した後、50時間で875℃まで冷却し、875℃で
50時間保持した後室温まで100時間かけて冷却した。こ
のコイルを液体窒素で冷却し、電流を流して、コイルと
しての性能を調べたところ、3.6テスラーまで電流の損
失なしに発生することができた。 [実施例15]実施例14において作製した超電導コイルを
用いて、NMR装置のモデルを作製し、原理的に動作す
ることを確認した。 [実施例16]実施例14において作製した超電導コイルを
用いて、MRI装置のモデルを作製し、原理的に動作す
ることを確認した。 [実施例17]実施例14において作製した超電導コイルを
用いて、磁気浮上列車のモデルを作製し、原理的に動作
することを確認した。
This sintered body was crushed, and the powder was filled in a silver pipe having an outer diameter of 6 mm and an inner diameter of 4 mm, drawn to an outer diameter of 0.5 mm, and then rolled to a thickness of 0.1 mm. Using this, a solenoid coil with an inner diameter of 50 cm was produced, and the
After heat treatment at ℃, cool down to 875 ℃ in 50 hours, and at 875 ℃
After holding for 50 hours, it was cooled to room temperature over 100 hours. When this coil was cooled with liquid nitrogen and an electric current was passed through to investigate the performance as a coil, it was possible to generate up to 3.6 Tessler without loss of electric current. [Example 15] Using the superconducting coil produced in Example 14, a model of an NMR apparatus was produced, and it was confirmed that it operates in principle. [Example 16] Using the superconducting coil produced in Example 14, a model of an MRI apparatus was produced and it was confirmed that the model operated in principle. [Example 17] A model of a magnetic levitation train was produced using the superconducting coil produced in Example 14, and it was confirmed that the model operated in principle.

【0038】[0038]

【発明の効果】本発明によれば、液体ヘリウムによる冷
却は勿論、液体窒素による冷却によって運転される、高
磁界中においても高い超電導臨界電流密度をゆうする酸
化物超電導物質を用いた超電導体、超電導線材、超電導
マグネットが得られる。
According to the present invention, a superconductor using an oxide superconducting material which has a high superconducting critical current density even in a high magnetic field is operated by liquid nitrogen cooling as well as liquid helium cooling. Superconducting wire and superconducting magnet can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用した超電導物質の結晶構造を表す
模式図。
FIG. 1 is a schematic diagram showing a crystal structure of a superconducting substance used in the present invention.

【図2】本発明に使用した他の超電導物質の結晶構造を
表す模式図。
FIG. 2 is a schematic diagram showing a crystal structure of another superconducting substance used in the present invention.

【図3】本発明に使用したさらに他の超電導物質の結晶
構造を表す模式図。
FIG. 3 is a schematic view showing a crystal structure of still another superconducting substance used in the present invention.

【符号の説明】[Explanation of symbols]

1:Tl原子もしくはPb原子もしくはBi原子 2:Sr原子もしくはBa原子 3:Ca原子 4:Cu原子 5:酸素原子 1: Tl atom or Pb atom or Bi atom 2: Sr atom or Ba atom 3: Ca atom 4: Cu atom 5: Oxygen atom

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 7244−5G (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 松田 臣平 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01B 13/00 565 D 7244-5G (72) Inventor Yuichi Kamo 4026 Kuji Town, Hitachi City, Ibaraki Japan Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inheihei Matsuda, 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture

Claims (36)

【特許請求の範囲】[Claims] 【請求項1】 超電導物質とその他の構成物からなる超
電導体を製造する方法において、その製造工程中に、所
要の成分組成の液相を固相成分と共存させる状態で熱処
理する工程を少なくとも有することを特徴とする超電導
体の製造方法。
1. A method for producing a superconductor composed of a superconducting substance and other constituents, which has at least a step of heat-treating in a state where a liquid phase having a required component composition coexists with a solid phase component during the production step. A method for manufacturing a superconductor characterized by the above.
【請求項2】 該液相の成分は超電導物質の分解を起こ
させずかつ超電導物質結晶粒同士の接合性を良好にする
物性を有するものであることを特徴とする、請求項1記
載の超電導体の製造方法。
2. The superconducting material according to claim 1, wherein the component of the liquid phase has physical properties that do not cause decomposition of the superconducting material and improve the bondability between the superconducting material crystal grains. Body manufacturing method.
【請求項3】 少なくともTl、Sr、Ca、Cu、Oを構成元
素として含む超電導物質と、超電導物質全体に対するモ
ル比で5%以上のBaと、モル比で5%以上のPbを含むこ
とを特徴とする超電導体を製造する方法において、該超
電導体を作製する工程のいずれかの部分において、少な
くとも一度はBaとPbを主成分とする液相が固相に対する
体積比で20%未満存在する温度範囲で熱処理した後、そ
の液相が生成しない温度範囲で熱処理することることを
特徴とする超電導体の製造方法。
3. A superconducting material containing at least Tl, Sr, Ca, Cu and O as constituent elements, Ba in a molar ratio of 5% or more and Pb in a molar ratio of 5% or more with respect to the entire superconducting material. In the method for producing a superconductor characterized by a liquid phase containing Ba and Pb as main components at least once in any part of the step of producing the superconductor, less than 20% by volume ratio to the solid phase is present. A method for producing a superconductor, comprising performing heat treatment in a temperature range and then in a temperature range in which the liquid phase is not generated.
【請求項4】 少なくともTl、Sr、Ca、Cu、Oを構成元
素として含む超電導物質と、超電導物質全体に対するモ
ル比で5%以上のBaと、モル比で5%以上のPbを含むこ
とを特徴とする超電導体を製造する方法であって、該方
法は、原料となる物質を混合する工程と、超電導物質を
合成する熱処理工程と、所望の形状に形成する工程と、
BaとPbを主成分とする液相が固相に対する体積比で20%
未満存在する温度範囲で熱処理する工程と、その液相が
生成しない温度範囲で熱処理する工程とを有することを
特徴とする超電導体の製造方法。
4. A superconducting material containing at least Tl, Sr, Ca, Cu and O as constituent elements, Ba in a molar ratio of 5% or more and Pb in a molar ratio of 5% or more with respect to the entire superconducting material. A method for producing a superconductor characterized by the following steps: a step of mixing substances as raw materials, a heat treatment step of synthesizing a superconducting substance, and a step of forming into a desired shape,
Liquid phase consisting mainly of Ba and Pb is 20% in volume ratio to solid phase
A method for producing a superconductor, comprising: a heat treatment step in a temperature range in which the liquid phase does not exist; and a heat treatment step in a temperature range in which a liquid phase thereof is not formed.
【請求項5】 少なくともTl、Sr、Ca、Cu、Oを構成元
素として含む超電導物質と、超電導物質全体に対するモ
ル比で5%以上のBaと、モル比で5%以上のPbを含むこ
とを特徴とする超電導体を製造する方法であって、その
製造工程のいずれかの部分において、少なくとも一度
は、BaとPbを主成分とする液相が生成しはじめる温度よ
り10℃の範囲上の温度領域で熱処理した後、その液相が
生成しはじめる温度より10℃の範囲内下の温度で熱処理
することを特徴とする超電導体の製造方法。
5. A superconducting material containing at least Tl, Sr, Ca, Cu, O as constituent elements, a Ba in a molar ratio of 5% or more and a Pb in a molar ratio of 5% or more with respect to the entire superconducting material. A method for producing a characteristic superconductor, wherein in any part of the production process, at least once, a temperature 10 ° C above the temperature at which a liquid phase containing Ba and Pb as main components starts to form. A method for producing a superconductor, characterized in that, after heat treatment in a region, heat treatment is performed at a temperature within a range of 10 ° C below a temperature at which the liquid phase starts to be generated.
【請求項6】 請求項1ないし3いずれか記載の超電導
体の製造方法において、該BaとPbを主成分とする液相が
生成しはじめる温度が870℃から890℃であるように超電
導体の化学分析組成を調整したことを特徴とする、導体
を構成している超電導物質同士の電気的な接合性を向上
せしめたことを特徴とする超電導体の製造方法。
6. The method for producing a superconductor according to claim 1, wherein the temperature at which the liquid phase containing Ba and Pb as the main components begins to be generated is 870 ° C. to 890 ° C. A method for producing a superconductor, characterized in that a chemical analysis composition is adjusted to improve the electrical bondability between the superconducting substances constituting the conductor.
【請求項7】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2CaCu2O7+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度はBaと
Pbを主成分とする液相が固相に対する体積比で20%未満
存在する温度範囲で組成物を熱処理した後、その液相が
生成しない温度範囲で熱処理することを特徴とする超電
導体の製造方法。
7. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 CaCu 2 O 7 + X4 where 0 <X1 <0.8, 0 <X2 <0.5. , 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process
Production of a superconductor characterized by heat-treating a composition in a temperature range in which a liquid phase containing Pb as a main component is present in a volume ratio of less than 20% with respect to the solid phase, and then in a temperature range in which the liquid phase is not formed. Method.
【請求項8】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2CaCu2O7+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、Ba
とPbを主成分とする液相が生成しはじめる温度より10℃
の範囲上の温度領域で熱処理した後、その液相が生成し
はじめる温度より10℃の範囲内下の温度で熱処理するこ
とを特徴とする超電導体の製造方法。
8. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 CaCu 2 O 7 + X4 where 0 <X1 <0.8, 0 <X2 <0.5. , 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process,
10 ° C from the temperature at which the liquid phase mainly composed of
After the heat treatment in the temperature range above the range, the heat treatment is performed at a temperature within a range of 10 ° C. below the temperature at which the liquid phase starts to be formed.
【請求項9】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2CaCu2O7+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、85
0℃から900℃の間に存在するBaとPbを主成分とする液相
が生成しはじめる温度において熱処理することを特徴と
する超電導体の製造方法。
9. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 CaCu 2 O 7 + X4 where 0 <X1 <0.8, 0 <X2 <0.5. , 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, 85
A method for producing a superconductor characterized by performing a heat treatment at a temperature at which a liquid phase containing Ba and Pb as main components existing between 0 ° C and 900 ° C begins to form.
【請求項10】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca2Cu3O9+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、Ba
とPbを主成分とする液相が固相に対する体積比で20%未
満存在する温度範囲で熱処理した後、その液相が生成し
ない温度範囲で熱処理することを特徴とする超電導体の
製造方法。
10. A chemical composition, wherein (Tl 1-X1-X2 Pb X1 Bi X2) (Sr 1-X3 Ba X3) 2 Ca 2 Cu 3 O 9 + X4, 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, Ba
A method for producing a superconductor, comprising: performing heat treatment in a temperature range in which a liquid phase containing Pb and Pb as main components is present in a volume ratio of less than 20% with respect to the solid phase, and then performing heat treatment in a temperature range in which the liquid phase is not formed.
【請求項11】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca2Cu3O9+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、Ba
とPbを主成分とする液相が生成しはじめる温度より10℃
の範囲上の温度領域で熱処理した後、その液相が生成し
はじめる温度より10℃の範囲内下の温度で熱処理するこ
とを特徴とする超電導体の製造方法。
11. The chemical composition, wherein (Tl 1-X1-X2 Pb X1 Bi X2) (Sr 1-X3 Ba X3) 2 Ca 2 Cu 3 O 9 + X4, 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, Ba
10 ° C from the temperature at which the liquid phase mainly composed of
After the heat treatment in the temperature range above the range, the heat treatment is performed at a temperature within a range of 10 ° C. below the temperature at which the liquid phase starts to be formed.
【請求項12】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca2Cu3O9+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、85
0℃から900℃の間に存在するBaとPbを主成分とする液相
が生成しはじめる温度において熱処理することを特徴と
する超電導体の製造方法。
12. The chemical composition, wherein (Tl 1-X1-X2 Pb X1 Bi X2) (Sr 1-X3 Ba X3) 2 Ca 2 Cu 3 O 9 + X4, 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, 85
A method for producing a superconductor characterized by performing a heat treatment at a temperature at which a liquid phase containing Ba and Pb as main components existing between 0 ° C and 900 ° C begins to form.
【請求項13】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca3Cu4O11+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、Ba
とPbを主成分とする液相が固相に対する体積比で20%未
満存在する温度範囲で熱処理した後、その液相が生成し
ない温度範囲で熱処理することを特徴とする超電導体の
製造方法。
13. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 Ca 3 Cu 4 O 11 + X4 where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, Ba
A method for producing a superconductor, comprising: performing heat treatment in a temperature range in which a liquid phase containing Pb and Pb as main components is present in a volume ratio of less than 20% with respect to the solid phase, and then performing heat treatment in a temperature range in which the liquid phase is not formed.
【請求項14】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca3Cu4O11+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、Ba
とPbを主成分とする液相が生成しはじめる温度より10℃
の範囲上の温度領域で熱処理した後、その液相が生成し
はじめる温度より10℃の範囲内下の温度で熱処理するこ
とを特徴とする超電導体の製造方法。
14. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 Ca 3 Cu 4 O 11 + X4 where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, Ba
10 ° C from the temperature at which the liquid phase mainly composed of
After the heat treatment in the temperature range above the range, the heat treatment is performed at a temperature within a range of 10 ° C. below the temperature at which the liquid phase starts to be formed.
【請求項15】 化学組成が、 (Tl1-X1-X2PbX1BiX2)(Sr1-X3BaX3)2Ca3Cu4O11+X4 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, 0<X3<1, -0.5<X4<0.5 で表される超電導物質を主要構成物とする超電導体の製
造方法において、その製造工程中少なくとも一度は、85
0℃から900℃の間に存在するBaとPbを主成分とする液相
が生成しはじめる温度において熱処理することを特徴と
する超電導体の製造方法。
15. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) (Sr 1-X3 Ba X3 ) 2 Ca 3 Cu 4 O 11 + X4 where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 <1, 0 <X3 <1, -0.5 <X4 <0.5 In the method for producing a superconductor whose main constituent is a superconducting substance, at least once during the production process, 85
A method for producing a superconductor characterized by performing a heat treatment at a temperature at which a liquid phase containing Ba and Pb as main components existing between 0 ° C and 900 ° C begins to form.
【請求項16】 請求項7ないし15いずれか記載の超電導
体の製造方法において、該超電導体が、超電導物質に対
するモル比にして5%以上20%以下のBaと、モル比にし
て5%以上20%以下のPbを添加物として含んでいること
を特徴とする超電導体の製造方法。
16. The method for producing a superconductor according to claim 7, wherein the superconductor has a molar ratio of Ba to the superconducting substance of 5% or more and 20% or less, and a molar ratio of 5% or more. A method for producing a superconductor, which contains 20% or less of Pb as an additive.
【請求項17】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2CaCu2O7+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度はBaとPbを主成分とする液相が固相に対する体積比
で20%未満存在する温度範囲で熱処理した後、その液相
が生成しない温度範囲で熱処理することを特徴とする超
電導の製造方法。
17. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 CaCu 2 O 7 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 < The main constituent is a superconducting material represented by 1, -0.5 <X3 <0.5, and the molar ratio of Ba to the superconducting material is 5% or more and 20% or less and the molar ratio of Ba is 5% or more and 20% or less. In a method for producing a superconductor containing Pb as an additive, after a heat treatment in a temperature range in which a liquid phase containing Ba and Pb as main components is present at less than 20% by volume relative to the solid phase at least once during the production process, A method for producing superconducting material, which comprises performing heat treatment in a temperature range in which a liquid phase is not generated.
【請求項18】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2CaCu2O7+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、BaとPbを主成分とする液相が生成しはじめる温
度より10℃の範囲上の温度領域で熱処理した後、その液
相が生成しはじめる温度より10℃の範囲内下の温度で熱
処理することを特徴とする超電導体の製造方法。
18. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 CaCu 2 O 7 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 < The main constituent is a superconducting material represented by 1, -0.5 <X3 <0.5, and the molar ratio of Ba to the superconducting material is 5% or more and 20% or less and the molar ratio of Ba is 5% or more and 20% or less. In the method for producing a superconductor containing Pb as an additive, at least once during the production process, after heat treatment in a temperature range of 10 ° C. above the temperature at which a liquid phase containing Ba and Pb as main components begins to form, A method for producing a superconductor characterized by performing heat treatment at a temperature within a range of 10 ° C below the temperature at which the liquid phase starts to be generated.
【請求項19】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2CaCu2O7+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、850℃から900℃の間に存在するBaとPbを主成分
とする液相が生成しはじめる温度において熱処理するを
特徴とする超電導体の製造方法。
19. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 CaCu 2 O 7 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + X2 < The main constituent is a superconducting material represented by 1, -0.5 <X3 <0.5, and the molar ratio of Ba to the superconducting material is 5% or more and 20% or less and the molar ratio of Ba is 5% or more and 20% or less. In the method for producing a superconductor containing Pb as an additive, at least once during the production process, heat treatment is performed at a temperature at which a liquid phase mainly composed of Ba and Pb existing between 850 ° C. and 900 ° C. begins to form. A method for producing a characteristic superconductor.
【請求項20】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca2Cu3O9+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度はBaとPbを主成分とする液相が固相に対する体積比
で20%未満存在する温度範囲で熱処理した後、その液相
が生成しない温度範囲で熱処理することを特徴とする超
電導体の製造方法。
20. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 2 Cu 3 O 9 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, after the heat treatment in a temperature range in which the liquid phase containing Ba and Pb as main components is less than 20% by volume relative to the solid phase at least once during the production process. A method for manufacturing a superconductor, characterized in that the heat treatment is performed in a temperature range in which the liquid phase is not generated.
【請求項21】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca2Cu3O9+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、BaとPbを主成分とする液相が生成しはじめる温
度より10℃の範囲上の温度領域で熱処理した後、その液
相が生成しはじめる温度より10℃の範囲内下の温度で熱
処理することを特徴とする超電導体の製造方法。
21. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 2 Cu 3 O 9 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, at least once during the production process, heat treatment was performed in a temperature range of 10 ° C above the temperature at which a liquid phase containing Ba and Pb as main components begins to form. Then, the method for producing a superconductor is characterized in that the heat treatment is performed at a temperature within a range of 10 ° C. below the temperature at which the liquid phase starts to be generated.
【請求項22】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca2Cu3O9+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、850℃から900℃の間に存在するBaとPbを主成分
とする液相が生成しはじめる温度において熱処理するこ
とを特徴とする超電導体の製造方法。
22. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 2 Cu 3 O 9 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, at least once during the production process, heat treatment is performed at a temperature at which a liquid phase mainly composed of Ba and Pb existing between 850 ° C. and 900 ° C. starts to form. A method for manufacturing a superconductor, comprising:
【請求項23】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca3Cu4O11+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度はBaとPbを主成分とする液相が固相に対する体積比
で20%未満存在する温度範囲で熱処理した後、その液相
が生成しない温度範囲で熱処理することを特徴とする超
電導体の製造方法。
23. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 3 Cu 4 O 11 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, after the heat treatment in a temperature range in which the liquid phase containing Ba and Pb as main components is less than 20% by volume relative to the solid phase at least once during the production process. A method for manufacturing a superconductor, characterized in that the heat treatment is performed in a temperature range in which the liquid phase is not generated.
【請求項24】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca3Cu4O11+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、BaとPbを主成分とする液相が生成しはじめる温
度より10℃の範囲上の温度領域で熱処理した後、その液
相が生成しはじめる温度より10℃の範囲内下の温度で熱
処理することを特徴とする超電導体の製造方法。
24. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 3 Cu 4 O 11 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, at least once during the production process, heat treatment was performed in a temperature range of 10 ° C above the temperature at which a liquid phase containing Ba and Pb as main components begins to form. Then, the method for producing a superconductor is characterized in that the heat treatment is performed at a temperature within a range of 10 ° C. below the temperature at which the liquid phase starts to be generated.
【請求項25】 化学組成が、 (Tl1-X1-X2PbX1BiX2)Sr2Ca3Cu4O11+X3 ここで、0<X1<0.8, 0<X2<0.5, 0<X1+X2<1, -0.5<X3<0.5 で表される超電導物質を主要構成物とし、これに超電導
物質に対するモル比にして5%以上20%以下のBaと、モ
ル比にして5%以上20%以下のPbを添加物として含む超
電導体の製造方法において、その製造工程中少なくとも
一度は、850℃から900℃の間に存在するBaとPbを主成分
とする液相が生成しはじめる温度において熱処理するこ
とを特徴とする超電導体の製造方法。
25. The chemical composition is (Tl 1-X1-X2 Pb X1 Bi X2 ) Sr 2 Ca 3 Cu 4 O 11 + X3, where 0 <X1 <0.8, 0 <X2 <0.5, 0 <X1 + The superconducting material represented by X2 <1, -0.5 <X3 <0.5 is the main constituent, and the molar ratio to the superconducting material is 5% to 20% Ba and the molar ratio is 5% to 20%. In the following method for producing a superconductor containing Pb as an additive, at least once during the production process, heat treatment is performed at a temperature at which a liquid phase mainly composed of Ba and Pb existing between 850 ° C. and 900 ° C. starts to form. A method for manufacturing a superconductor, comprising:
【請求項26】 請求項1ないし25いずれかに記載の製造
方法により製造された超伝導体。
26. A superconductor manufactured by the manufacturing method according to claim 1.
【請求項27】 少なくともTl, Sr, Ca, Cu, Oを含む酸
化物超電導物質を使用した超電導体において、超電導物
質をマトリックスとする部分に、非超電導物質相として
平均結晶粒径3μm以下のBaPbO3 が存在していること
を特徴とする超電導体。
27. In a superconductor using an oxide superconducting material containing at least Tl, Sr, Ca, Cu, O, BaPbO having an average crystal grain size of 3 μm or less as a non-superconducting material phase in a portion where the superconducting material serves as a matrix. A superconductor characterized by the presence of 3 .
【請求項28】 少なくともTl, Sr, Ca, Cu, Oを含む酸
化物超電導物質を使用した超電導体において、超電導物
質をマトリックスとする部分に、非超電導物質相として
平均結晶粒径3μm以下の (Ca,Sr)2CuO3 が存在して
いることを特徴とする超電導体。
28. In a superconductor using an oxide superconducting material containing at least Tl, Sr, Ca, Cu, O, an average crystal grain size of 3 μm or less as a non-superconducting material phase in a portion where the superconducting material serves as a matrix. A superconductor characterized by the presence of Ca, Sr) 2 CuO 3 .
【請求項29】 少なくともTl, Sr, Ca, Cu, Oを含む酸
化物超電導物質を使用した超電導体において、超電導物
質をマトリックスとする部分に、非超電導物質相として
平均結晶粒径3μm以下のBaPbO3 と(Ca,Sr)2CuO3が存
在していることを特徴とする超電導体。
29. In a superconductor using an oxide superconducting material containing at least Tl, Sr, Ca, Cu, O, BaPbO having an average crystal grain size of 3 μm or less as a non-superconducting material phase in a portion where the superconducting material serves as a matrix. Superconductor characterized by the presence of 3 and (Ca, Sr) 2 CuO 3 .
【請求項30】 請求項27ないし29いずれか記載の超伝導
体において、該非超電導物質相の体積分率が合計で超電
導マトリックス相の5%以下であるように調節したこと
を特徴とする超電導体。
30. The superconductor according to any one of claims 27 to 29, wherein the volume fraction of the non-superconducting material phase is adjusted to be 5% or less in total of the superconducting matrix phase. .
【請求項31】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材。
31. A superconducting wire containing the superconductor according to claim 26 as a constituent element.
【請求項32】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材を使用したマグネ
ット。
32. A magnet using a superconducting wire containing the superconductor according to claim 26 as a constituent element.
【請求項33】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材を使用したマグネ
ットを使用したNMR装置。
33. An NMR apparatus using a magnet using a superconducting wire containing the superconductor according to claim 26 as a constituent.
【請求項34】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材を使用したマグネ
ットを使用したMRI装置。
34. An MRI apparatus using a magnet that uses a superconducting wire containing the superconductor according to claim 26 as a constituent element.
【請求項35】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材を使用したマグネ
ットを使用した磁気浮上列車。
35. A magnetic levitation train using a magnet that uses a superconducting wire rod containing the superconductor according to claim 26 as a constituent element.
【請求項36】 請求項26ないし30いずれか記載の該超電
導体を構成要素として含む超電導線材を使用した発電装
置。
36. A power generation device using a superconducting wire rod containing the superconductor according to claim 26 as a constituent element.
JP4096836A 1992-04-16 1992-04-16 Superconductor and method of manufacturing the same Expired - Lifetime JP2709000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4096836A JP2709000B2 (en) 1992-04-16 1992-04-16 Superconductor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4096836A JP2709000B2 (en) 1992-04-16 1992-04-16 Superconductor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0692637A true JPH0692637A (en) 1994-04-05
JP2709000B2 JP2709000B2 (en) 1998-02-04

Family

ID=14175618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4096836A Expired - Lifetime JP2709000B2 (en) 1992-04-16 1992-04-16 Superconductor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2709000B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204322A (en) * 1989-01-31 1990-08-14 Asahi Glass Co Ltd Oxide superconductor having novel structure
JPH02255575A (en) * 1989-03-30 1990-10-16 Asahi Glass Co Ltd Production of compound by melt solidification method
JPH03252348A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of superconductive oxide paste and oxide superconductor
JPH03252351A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204322A (en) * 1989-01-31 1990-08-14 Asahi Glass Co Ltd Oxide superconductor having novel structure
JPH02255575A (en) * 1989-03-30 1990-10-16 Asahi Glass Co Ltd Production of compound by melt solidification method
JPH03252348A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of superconductive oxide paste and oxide superconductor
JPH03252351A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of oxide superconductor

Also Published As

Publication number Publication date
JP2709000B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
Bednorz et al. Possible highT c superconductivity in the Ba− La− Cu− O system
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
JP2719518B2 (en) Manufacturing method of oxide superconducting material
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
JP2709000B2 (en) Superconductor and method of manufacturing the same
JPH06219736A (en) Superconductor
US5270292A (en) Method for the formation of high temperature semiconductors
JP2625280B2 (en) Manufacturing method of oxide superconducting material
Shao et al. Synthesis and X-ray powder diffraction analysis of the high-Tc superconductor HgBa2Ca2Cu3O8+ δ
JP3219563B2 (en) Metal oxide and method for producing the same
JP2971504B2 (en) Method for producing Bi-based oxide superconductor
Monteiro et al. Transmission Electron Microscopy Study on the Annealing of YBa2Cu3O7‐δ
JP3283909B2 (en) Metal oxide material and method for producing the same
US7008906B2 (en) Oxide high-critical temperature superconductor acicular crystal and its production method
JPH05816A (en) Oxide superconductor production and superconducting wire
JP2854338B2 (en) Copper oxide superconductor
JPH08183614A (en) High-temperature superconductor and its production
JPH05229830A (en) Superconductor and its production
Podlesnyak et al. From SrCuO2 to Sr8Cu8O20− y: Why Are Superconducting Properties of Infinite-Layer Compounds so Poor?
JP3282688B2 (en) Manufacturing method of oxide superconductor
JP2822559B2 (en) Method for producing thallium-based oxide superconducting wire
US5244871A (en) N-type oxide superconductor represented by the formula (Ndx (Cey Lz)2 CuO4-d where L is La, Mg or a mixture of alakaline earth elements
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2761727B2 (en) Manufacturing method of oxide superconductor
Adachi et al. Increase of the Meissner volume fraction in O2-HIP processed La1. 85Ca1. 15Cu2O6 samples