JPH0687957B2 - Multi-function - Google Patents

Multi-function

Info

Publication number
JPH0687957B2
JPH0687957B2 JP22765187A JP22765187A JPH0687957B2 JP H0687957 B2 JPH0687957 B2 JP H0687957B2 JP 22765187 A JP22765187 A JP 22765187A JP 22765187 A JP22765187 A JP 22765187A JP H0687957 B2 JPH0687957 B2 JP H0687957B2
Authority
JP
Japan
Prior art keywords
film
monomer
group
ion
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22765187A
Other languages
Japanese (ja)
Other versions
JPS6470108A (en
Inventor
高信 須郷
恭一 斎藤
次郎 岡本
Original Assignee
日本原子力研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本原子力研究所 filed Critical 日本原子力研究所
Priority to JP22765187A priority Critical patent/JPH0687957B2/en
Publication of JPS6470108A publication Critical patent/JPS6470108A/en
Publication of JPH0687957B2 publication Critical patent/JPH0687957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力発電をはじめ、医療、製薬、精密電子
工業などの各分野に於ける用水中に含まれる金属イオン
と非イオン性物質を同時に除去精製する有用な新規複合
機能過膜に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention provides metal ions and nonionic substances contained in water used in various fields such as nuclear power generation, medical care, pharmaceuticals, and precision electronics industry. The present invention relates to a useful novel multi-functional permembrane that is simultaneously removed and purified.

(従来技術) 従来の水処理技術においては非イオン性のクラッド、微
粒子、菌体等はマイクロフィルターやケーク過などで
あらかじめ除去した後に、溶存金属イオンをイオン交換
樹脂などで除去して来た。
(Prior Art) In the conventional water treatment technology, non-ionic clads, fine particles, bacterial cells and the like have been removed in advance with a microfilter, a cake or the like, and then dissolved metal ions have been removed with an ion exchange resin or the like.

これらの処理方法は操作が煩雑で、多量のイオン交換樹
脂を必要とし、かつ、イオン交換樹脂の寿命が比較的短
かく、使用済後の廃棄等の問題があった。
These treatment methods have complicated operations, require a large amount of ion exchange resin, have a relatively short life of the ion exchange resin, and have problems such as disposal after use.

特に原子力発電においては放射性廃棄物の減客が大きな
課題であり、化学的吸着除去と物理的過工程を複合機
能化することが安全性および経済性においても望まれて
いる。これらの問題を克服するため各種の方法が講じら
れて来たが、何れの方法もイオン吸着機能と微粒子除去
機能とを同時に付与することは困難であった。
Particularly in nuclear power generation, the reduction of customers of radioactive waste is a major issue, and it is desired to combine chemical adsorption and removal with physical over-process in terms of safety and economy. Various methods have been taken to overcome these problems, but it has been difficult for any of the methods to simultaneously provide an ion adsorption function and a fine particle removal function.

特にマイクロ過膜の親水化やイオン交換基の導入法の
検討が進められているが機能の付与に伴って微細孔がせ
ばめられ透水性能の低下が生じるため前記の課題を完全
に克服する事は困難であった。
In particular, the method of hydrophilizing the micro-permeation membrane and the method of introducing the ion-exchange group are being studied, but it is possible to completely overcome the above problems because the pores are fitted with the addition of the function and the water permeability decreases. It was difficult.

(本発明が解決しようとする問題点) 本発明は水処理技術において非イオン性微粒子を除去す
る多孔性のマイクロ過膜にイオン吸着性能を付与する
に際し透水性能が低下することなく効率良く除去する事
が可能な複合機能過膜を提供する事にある。
(Problems to be Solved by the Present Invention) The present invention efficiently removes nonionic fine particles in a water treatment technology when imparting ion adsorption performance to a porous micropermeation membrane without lowering water permeability. The purpose is to provide a multi-function membrane capable of doing things.

(問題点を解決する為の手段) 本発明者らは前記目的を達成する手段を鋭意研究した結
果、以下の手段によって達成できる事を見い出した。
(Means for Solving Problems) As a result of intensive studies on means for achieving the above-mentioned object, the present inventors have found that the following means can be achieved.

基材膜の材質がポリオレフィン、オレフィンとハロゲン
化オレフィンの共重合体からなる多孔性マイクロ過膜
にスルホン酸基、カルボン酸基、フェノール性水酸基、
ホスホン酸基およびアミドキシム基を有するか、または
交換し得る重合性単量体をグラフト重合するに際し、二
個以上の重合性基を有する単量体を共存させることによ
り溶存イオンおよび非イオン性物質を効率良く除去する
複合機能過膜によって目的を達成せられる事が判っ
た。
The material of the base material film is a polyolefin, a sulfonic acid group, a carboxylic acid group, a phenolic hydroxyl group on a porous micropermeation film made of a copolymer of olefin and halogenated olefin,
When graft-polymerizing a polymerizable monomer having a phosphonic acid group and an amidoxime group or capable of being exchanged, the presence of a monomer having two or more polymerizable groups causes the formation of a dissolved ionic and nonionic substance. It has been found that the objective can be achieved by a multi-function membrane that efficiently removes.

以下、本発明について更に具体的に詳細説明を行なう。Hereinafter, the present invention will be described in more detail.

本発明においてグラフト重合される基材のポリオレフィ
ン、オレフィンとハロゲン化オレフィン共重合体はポリ
エチレン、ポリプロピレン、ポリスルホン、ポリテトラ
フルオロエチレン、又はエチレンプロピレン、ブテン、
ヘキセン、テトラフルオロエチレン、クロロトリフルオ
ロエチレンの単独または共重合体から選択される。
The polyolefin of the base material to be graft-polymerized in the present invention, an olefin and a halogenated olefin copolymer are polyethylene, polypropylene, polysulfone, polytetrafluoroethylene, or ethylene propylene, butene,
It is selected from homopolymers or copolymers of hexene, tetrafluoroethylene, chlorotrifluoroethylene.

基材膜にグラフトされる重合性単量体は官能基を有する
か官能基に交換可能な反応性単量体であり、アクリル
酸、メタクリル酸、フルオロビニルカルボン酸、ビニル
スルホン酸、スチレン、スチレンスルホン酸、フルオロ
ビニルスルホン酸、パラビニルフェノール、ビニルアセ
テート、アクリロニトリル、シアン化ビニリデン、アク
ロレイン、ジメチルアクリルアミド、ジエチルアミノプ
ロピルアクリルアミド、メタクリル酸グリシジルなどが
用いられる。
The polymerizable monomer grafted to the base film is a reactive monomer having a functional group or capable of being exchanged with the functional group, such as acrylic acid, methacrylic acid, fluorovinylcarboxylic acid, vinylsulfonic acid, styrene and styrene. Sulfonic acid, fluorovinylsulfonic acid, paravinylphenol, vinyl acetate, acrylonitrile, vinylidene cyanide, acrolein, dimethylacrylamide, diethylaminopropylacrylamide, glycidyl methacrylate and the like are used.

本発明で使用される二個以上の重合性基を有する単量体
は、ジビニルベンゼン、重合度9個までのポリエチレン
グリコールジメタアクリレート、ポリエチレングリコー
ルジアクリレート、トリアリルイソシアヌレートなどが
用いられる。官能基を有する単量体と、2個以上のビニ
ル基を有する単量体との共存比は97対3ないし80対20の
範囲が望ましく、それ以上およびそれ以下においては、
イオン吸着性能が導入されても透水性能が低下し、複合
機能過膜としての機能を発揮することは不可能であ
る。
As the monomer having two or more polymerizable groups used in the present invention, divinylbenzene, polyethylene glycol dimethacrylate having a degree of polymerization of 9 or less, polyethylene glycol diacrylate, triallyl isocyanurate and the like are used. The coexistence ratio of the monomer having a functional group and the monomer having two or more vinyl groups is preferably in the range of 97: 3 to 80:20, and above and below,
Even if the ion adsorption performance is introduced, the water permeation performance deteriorates, and it is impossible to exert the function as a multi-functional permeation membrane.

本発明のグラフト重合に際して用いる電離性放射線はα
線、β線、γ線、加速電子線、X線などがあるが、実用
的には加速電子線またはγ線が望ましい。
The ionizing radiation used in the graft polymerization of the present invention is α
Rays, β rays, γ rays, accelerated electron rays, X rays and the like are available, but accelerated electron rays or γ rays are preferable for practical use.

本発明に従つて基材と重合性単量体のグラフト重合させ
る方法としては、基材と単量体を共存下に放射線を照射
して行なう同時照射法と、基材のみに予め放射線を照射
した後、単量体と接触させる前照射法のいずれでも可能
であるが望ましくは前照射法がグラフト重合以外の副反
応を生成しにくい。
As a method of graft-polymerizing a base material and a polymerizable monomer according to the present invention, a simultaneous irradiation method in which the base material and the monomer are irradiated with radiation in the coexistence, and only the base material is previously irradiated with radiation. After that, any of the pre-irradiation methods of contacting with the monomer is possible, but preferably the pre-irradiation method is less likely to generate side reactions other than the graft polymerization.

グラフト重合において基材と単量体を接触させる方法は
液状の単量体と直接接触させる液相重合と単量体の蒸気
あるいは気化状態で接触させる気相重合とがあるが、い
ずれの選択も可能である。
The method of contacting the base material and the monomer in the graft polymerization includes liquid phase polymerization in which the monomer is directly contacted with liquid monomer and gas phase polymerization in which the monomer is contacted in vapor or vaporized state. It is possible.

以下、実施例により本発明の構成および効果を具体的に
述べるがいずれも本発明を限定するものではない。
Hereinafter, the configuration and effects of the present invention will be specifically described with reference to Examples, but the present invention is not limited to any of them.

(実施例) 実施例1 ポリエチレン製の多孔性中空糸膜(内径0.62mmφ、外径
1.24mmφ、平均孔径0.1μm)に電子加速器(加速電圧2
MeV、電子線電流1mA)を用いて窒素雰囲気下で200KGy照
射したのち、あらかじめ溶存酸素を凍結脱気したメタク
リル酸グリシジル(GMA)とジビニルベンゼン(DVB)混
合液(DVBモル分率3%、5%、10%)をガラスアンプ
ルに入れ、反応液を底部に、中央部に60メッシュのステ
ンレス製鋼を設置し上部に照射した中空糸膜を入れ、10
-4mmHgに減圧脱気した後、40℃の恒温槽中で5から10時
間反応させて100〜200%のグラフト膜を得た。このグラ
フト膜を濃リン酸液中で80℃、1時間リン酸化反応を行
なった。これをイオン滴定法で官能基濃度を求めた結
果、0.5から1.5meq/gのリン酸基が導入された。この中
空糸膜を用いて、圧力1kg/cm2で透水試験を行なった。
(Example) Example 1 A porous hollow fiber membrane made of polyethylene (inner diameter 0.62 mmφ, outer diameter
1.24mmφ, average pore diameter 0.1μm, electron accelerator (accelerating voltage 2
After irradiating 200KGy in a nitrogen atmosphere using MeV and electron beam current 1mA), a mixed solution of glycidyl methacrylate (GMA) and divinylbenzene (DVB) in which dissolved oxygen was freeze-deaerated beforehand (DVB mole fraction 3%, 5% %, 10%) into a glass ampoule, place the reaction solution at the bottom, place 60 mesh stainless steel in the center, and place the irradiated hollow fiber membrane at the top.
After degassing to -4 mmHg under reduced pressure, the reaction was carried out in a constant temperature bath at 40 ° C for 5 to 10 hours to obtain a 100 to 200% graft membrane. This graft membrane was subjected to phosphorylation reaction at 80 ° C. for 1 hour in a concentrated phosphoric acid solution. As a result of determining the functional group concentration by ion titration, 0.5 to 1.5 meq / g of phosphate group was introduced. Using this hollow fiber membrane, a water permeability test was conducted at a pressure of 1 kg / cm 2 .

結果を図1に示す。The results are shown in Fig. 1.

比較例1 実施例1と同じ中空糸膜を用いて反応液をメタクリル酸
グリシジルのみでDVBを混合させないでグラフト反応お
よびリン酸化反応を実施例1と同様に行ない反応時間を
変えて、グラフト率100から200%、官能基濃度0.5から
1.5mep/gの樹脂を得た。この膜の透水試験の結果を図1
に併記した。
Comparative Example 1 Using the same hollow fiber membrane as in Example 1, graft reaction and phosphorylation reaction were carried out in the same manner as in Example 1 without mixing DVB with glycidyl methacrylate in the reaction solution, and the reaction time was changed to obtain a graft ratio of 100. From 200%, functional group concentration from 0.5
1.5 mep / g of resin was obtained. Figure 1 shows the results of the water permeability test of this membrane.
Also described in.

DVBを混合しない比較例は透水量が、0.01m3/m2・hr以下
であり実施例1によるDVBの添加効果が明確に現われ
た。
In the comparative example in which DVB was not mixed, the water permeability was 0.01 m 3 / m 2 · hr or less, and the effect of adding DVB according to Example 1 was clearly shown.

実施例2 ポリエチレン製の多孔性平膜(膜厚100μm、平均孔径
0.1μm)に電子加速器(加速電圧2MeV電子線電流1mA)
を用いて、窒素雰囲気下で200KGy照射したのち、あらか
じめ溶存酸素を窒素ガスで脱酸素した。
Example 2 Polyethylene porous flat membrane (film thickness 100 μm, average pore size
0.1 μm) electron accelerator (accelerating voltage 2 MeV electron beam current 1 mA)
After irradiating with 200 kgy in a nitrogen atmosphere, dissolved oxygen was deoxidized with nitrogen gas in advance.

アクリル酸(AAC)45部とテトラエチレングリコールジ
メタクリレート(4G)5部、水50部の混合液(硫酸第1
鉄アンモニウム0.25%添加)とをガラスアンプルで30
℃、1時間反応させグラフト率40%の膜を得た。これを
実施例1と同様に透水試験を行なった結果、1.4m3/m2
hrであった。
A mixed solution of 45 parts of acrylic acid (AAC), 5 parts of tetraethylene glycol dimethacrylate (4G) and 50 parts of water (sulfuric acid No. 1
0.25% iron ammonium) and 30 in a glass ampoule
The reaction was carried out at 1 ° C for 1 hour to obtain a membrane having a graft ratio of 40%. This was subjected to a water permeability test in the same manner as in Example 1, and as a result, 1.4 m 3 / m 2 ·
It was hr.

比較例2 実施例2と同じ基材を用いて反応液に4Gを無添加として
他はすべて実施例2と同様に行なった結果、グラフト率
は65%、透水速度は0.005m3/m2・hrであった。この結果
4Gの添加の有無により透水性能に大きな差が認められ4G
の添加効果が明らかとなった。
Comparative Example 2 The same base material as in Example 2 was used, except that 4G was not added to the reaction solution, and the same procedure as in Example 2 was carried out. As a result, the graft ratio was 65% and the water permeation rate was 0.005 m 3 / m 2 ·. It was hr. As a result
A large difference in water permeability was observed depending on whether 4G was added or not.
It became clear that the effect of addition of.

実施例3 ポリプロピレン製多孔膜(膜厚100μm平均孔径0.1μ
m)をガラス容器に入れ、ドライアイスとメタノールで
冷却したジュワービンの中でコバルトー60ガンマー線を
線量率10KGy/hrで20時間照射した後あらかじめ脱気した
アクリロニトリル90部とトリアリルイソシアヌレート10
部をガラス容器中に導入して基材と接触させ50℃で4時
間反応させグラフト率95%の膜を得た。これを3%の塩
酸ヒドロキシルアミンのメタノール溶液で80℃、3時間
反応させ基材1グラム当り4.5ミリモルのアミドキシム
基を導入した。
Example 3 Porous polypropylene membrane (film thickness 100 μm, average pore size 0.1 μm
m) in a glass container and irradiated with cobalt-60 gamma rays at a dose rate of 10KGy / hr for 20 hours in dewarbin cooled with dry ice and methanol, and then degassed 90 parts of acrylonitrile and triallyl isocyanurate 10
Part was introduced into a glass container, brought into contact with the substrate and reacted at 50 ° C. for 4 hours to obtain a membrane having a graft ratio of 95%. This was reacted with 3% hydroxylamine hydrochloride in methanol at 80 ° C. for 3 hours to introduce 4.5 mmol of amidoxime group per gram of the substrate.

これを実施例1と同様に透水性能を測定した結果1.6m3/
m2・hrを得た。
The water permeability of this was measured in the same manner as in Example 1, and the result was 1.6 m 3 /
I got m 2 · hr.

比較例3 実施例3の方法で反応液にトリアリルイソシアヌレート
を添加しないでグラフト重合を行ない、他は全て実施例
3と同様な操作を行なった結果、グラフト率120%、透
水速度0.002m3/m2・hrを得た。
Comparative Example 3 Graft polymerization was carried out by the method of Example 3 without adding triallyl isocyanurate to the reaction solution, and the same operation as in Example 3 was carried out except that the graft ratio was 120% and the water permeation rate was 0.002 m 3. / m 2 · hr was obtained.

この結果からトリアリルイソシアヌレートを添加するこ
とにより透水性能を低下させることなく多孔膜に官能基
を導入することが出来た。
From this result, it was possible to introduce a functional group into the porous membrane by adding triallyl isocyanurate without lowering the water permeability.

(発明の効果) 図2に示す通り本発明の方法により、多孔性高分子膜の
過透水性能を損なうことなくイオンの吸着機能が付与
され、破過点が明確に現われることから、化学的および
物理的分離機能に優れた複合機能過膜を提供すること
ができた。
(Effects of the Invention) As shown in FIG. 2, the method of the present invention imparts an ion adsorption function without impairing the permeation performance of the porous polymer membrane, and clearly shows a breakthrough point. It was possible to provide a multi-functional permembrane having excellent physical separation function.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例1および比較例1において得
られたグラフト重合体からなる過膜のグラフト率と透
水性能との関係を表わす図である。 第2図は、本発明の実施例1および実施例3において得
られた過膜の過透水性能を表わす図である。
FIG. 1 is a diagram showing the relationship between the graft ratio and the water permeation performance of the permembranes made of the graft polymers obtained in Example 1 and Comparative Example 1 of the present invention. FIG. 2 is a diagram showing the superpermeable performance of the permeation membranes obtained in Examples 1 and 3 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08J 5/18 CES 9267−4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C08J 5/18 CES 9267-4F

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基材膜の材質がポリオレフィン、オレフィ
ンとハロゲン化オレフィンの共重合体からなる多孔膜に
親水基及びイオン吸着性官能基を導入するに際し、2個
以上の重合性基を有する単量体を3乃至20モル%共存さ
せたことを特徴とする、イオン吸着機能と微粒子除去機
能とを同時に有する複合機能濾過膜の製造方法。
1. When a hydrophilic film and an ion-adsorptive functional group are introduced into a porous film composed of a polyolefin film or a copolymer of an olefin and a halogenated olefin as a material of a substrate film, a mono-functional film having two or more polymerizable groups A method for producing a multi-function filtration membrane having both an ion adsorption function and a fine particle removal function, which is characterized in that 3 to 20 mol% of a monomer coexists.
【請求項2】基材膜の構造が平膜状又は中空糸状で平均
孔径が0.01μ−10μmである特許請求の範囲第1項記載
の方法。
2. The method according to claim 1, wherein the structure of the base film is a flat film or a hollow fiber, and the average pore diameter is 0.01 μm to 10 μm.
【請求項3】イオン吸着性官能基を導入するための重合
性単量体が、スルホン酸基、カルボン酸基、フェノール
性水酸基、ホスホン酸基若しくはアミドキシム基を有す
るか、又はこれらの基と交換し得る炭化水素系重合性単
量体若しくは含ハロゲン系重合性単量体であり、膜重量
1グラム当たり0.1乃至8ミリ当量を含む特許請求の範
囲第1項記載の方法。
3. A polymerizable monomer for introducing an ion-adsorptive functional group has a sulfonic acid group, a carboxylic acid group, a phenolic hydroxyl group, a phosphonic acid group or an amidoxime group, or is exchanged with these groups. The method according to claim 1, which is a hydrocarbon-based polymerizable monomer or a halogen-containing polymerizable monomer that is capable of being contained in an amount of 0.1 to 8 milliequivalents per gram of film weight.
【請求項4】官能の導入方法が電離性放射線を用いてグ
ラフト重合することを特徴とする特許請求の範囲第1項
記載の方法。
4. The method according to claim 1, wherein the functional introduction method is graft polymerization using ionizing radiation.
【請求項5】2個以上の重合性基を有する単量体の重合
度nが2≦n≦9のポリエチレングリコールジメタクリ
レート、ジビニルベンゼン、トリアリルイソシアネート
から選択されることを特徴とする特許請求の範囲第1項
記載の方法。
5. A polymer having a degree of polymerization n of a monomer having two or more polymerizable groups selected from polyethylene glycol dimethacrylate, divinylbenzene, and triallyl isocyanate having 2 ≦ n ≦ 9. The method according to claim 1.
JP22765187A 1987-09-11 1987-09-11 Multi-function Expired - Lifetime JPH0687957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22765187A JPH0687957B2 (en) 1987-09-11 1987-09-11 Multi-function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22765187A JPH0687957B2 (en) 1987-09-11 1987-09-11 Multi-function

Publications (2)

Publication Number Publication Date
JPS6470108A JPS6470108A (en) 1989-03-15
JPH0687957B2 true JPH0687957B2 (en) 1994-11-09

Family

ID=16864209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22765187A Expired - Lifetime JPH0687957B2 (en) 1987-09-11 1987-09-11 Multi-function

Country Status (1)

Country Link
JP (1) JPH0687957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189286B2 (en) 2003-02-19 2013-04-24 ナトリックス セパレイションズ インコーポレーテッド COMPOSITE MATERIAL COMPRISING SUPPORTED POROUS GEL
AU2005231532B2 (en) 2004-04-08 2010-01-07 Merck Millipore Ltd. Membrane stacks
EP3427815B1 (en) 2011-05-17 2023-12-06 Merck Millipore Ltd. Device with layered tubular membranes for chromatography
CN102626592A (en) * 2012-01-12 2012-08-08 天津工业大学 Method for preparing hydrophilic PVDF hollow fiber membrane by high energy electron beam mutual irradiation grafting

Also Published As

Publication number Publication date
JPS6470108A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
US6828386B2 (en) Process for preparing graft copolymers and membranes formed therefrom
US5648400A (en) Process for producing polymeric electrolyte complex and ion-exchange resin
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
JP3200458B2 (en) Electric regeneration type desalination equipment
JPS6258774B2 (en)
JP2001187809A (en) Organic polymer material, its production method and heavy metal ion scavenger comprising the material
US3759738A (en) Graft polymeric substrate
JP2563448B2 (en) Method for producing immobilized tannin adsorbent
EP0222926B1 (en) Process for producing an ion exchange membrane
JPH0687957B2 (en) Multi-function
JP3245454B2 (en) Production method of ion exchange resin
JPS6145351B2 (en)
JP2504885B2 (en) Ion exchanger manufacturing method
EP1421126A1 (en) Process for preparing graft copolymer membranes
JP2610676B2 (en) Method for producing porous separation membrane
JPS6258775B2 (en)
JPH07114945B2 (en) Method for manufacturing separation functional material
JPS61157344A (en) Manufacture of metal absorbing material
JPS62210005A (en) Novel composite functional membrane
JPH06271687A (en) Production of ion-exchange membrane
JPH0759643B2 (en) Method for producing modified cation exchange membrane
JP2954276B2 (en) Method for producing membrane containing fluorine
JPS60110711A (en) Production of graft-polymerized membrane
JPH11207328A (en) Heavy metal removing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term