JPH0685627B2 - Method for manufacturing magnetically anisotropic material - Google Patents

Method for manufacturing magnetically anisotropic material

Info

Publication number
JPH0685627B2
JPH0685627B2 JP15439885A JP15439885A JPH0685627B2 JP H0685627 B2 JPH0685627 B2 JP H0685627B2 JP 15439885 A JP15439885 A JP 15439885A JP 15439885 A JP15439885 A JP 15439885A JP H0685627 B2 JPH0685627 B2 JP H0685627B2
Authority
JP
Japan
Prior art keywords
magnetic
conductive material
clad plate
clad
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15439885A
Other languages
Japanese (ja)
Other versions
JPS6216045A (en
Inventor
要次 穂積
善一 吉田
宏 貝沼
武司 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15439885A priority Critical patent/JPH0685627B2/en
Publication of JPS6216045A publication Critical patent/JPS6216045A/en
Publication of JPH0685627B2 publication Critical patent/JPH0685627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性材料の占積率の向上、および磁性材料と
導電性材料の占積比率の設定が容易にできる磁気異方性
材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a magnetic anisotropic material capable of easily improving the space factor of a magnetic material and easily setting the space ratio of a magnetic material and a conductive material. It relates to a manufacturing method.

[従来の技術] 磁気異方性導電材料として、例えば、特開昭57−46656
号公報に示されるように、誘導電動機に使用されるもの
がある。第6図(イ)、(ロ)はその誘導電動機の回転
子を構成する部材として使用される磁気異方性導電材料
を示しており、回転子には回転軸11と同軸状に通電外被
12と回転子鉄心13が設けられている。通電外被12は、拡
大部分Qで示すように、半径方向に伸びる磁性材料14と
その間を充填した導電材料15より成る磁気異方性導電材
料16で主要部を構成されている。
[Prior Art] As a magnetic anisotropic conductive material, for example, JP-A-57-46656.
As disclosed in the publication, there are those used for induction motors. 6 (a) and 6 (b) show a magnetic anisotropic conductive material used as a member constituting the rotor of the induction motor, and the rotor has a current-carrying jacket coaxial with the rotating shaft 11.
12 and a rotor core 13 are provided. As shown by the enlarged portion Q, the energizing jacket 12 is mainly composed of a magnetic anisotropic conductive material 16 composed of a magnetic material 14 extending in the radial direction and a conductive material 15 filling the space between them.

以上の構成により、半径方向の透磁率μrが周方向の透
磁率μθより大きく(μr>μθ)、かつ、軸方向の抵
抗率ρxの小さい回転子が得られる。ここで、この誘導
電動機を駆動すると、半径方向においてばらつきの少い
大きな透磁率μrのために固定子との間で磁気変動の少
ない磁気結合が得られ、振動騒音の少ない駆動を行うこ
とができ、かつ、回転子から巻線を省略したため、小型
化および軽量化を図ることができる。
With the above configuration, a rotor having a radial magnetic permeability μr larger than the circumferential magnetic permeability μθ (μr> μθ) and a small axial resistivity ρx can be obtained. Here, when this induction motor is driven, magnetic coupling with less magnetic fluctuation is obtained between the stator and the stator due to the large magnetic permeability μr with little variation in the radial direction, and driving with less vibration noise can be performed. Moreover, since the winding is omitted from the rotor, it is possible to reduce the size and weight.

また、磁性材料と導電材料の占積比率に応じて透磁率お
よび抵抗率を制御することができる。
Further, the magnetic permeability and the resistivity can be controlled according to the space factor of the magnetic material and the conductive material.

この磁気異方性導電材料は、例えば、半径方向に所定の
長さを有した多数本の鉄線或るいは鋼線の磁性材料を放
射状に配置し、その間に銅やアルミニウム等の導電材料
を鋳込んで成形されている。
In this magnetic anisotropic conductive material, for example, a large number of iron wires or steel wires having a predetermined length in the radial direction are radially arranged, and a conductive material such as copper or aluminum is cast between them. It is molded complicatedly.

[発明が解決しようとする問題点] しかし、前述した磁気異方性導電材料の製造方法によれ
ば、磁性材料を放射状に整列配置することが難しいため
に磁性材料の整列が乱れることがあり、そのため全体的
に均一の透磁率を有した磁気異方性導電材料の製造が困
難であり、また、磁性材料の占積率を向上するために磁
性材料の配列密度を大にする(具体的には例えばびっし
り詰めて配列する)と、磁性材料間の間隔が小さくなる
ばかりでなく、ときには接触したりすることがあるた
め、溶融した導電材料の浸透性が悪化して成形品内部に
空巣が発生したり、透磁率の偏りによって特性劣化が生
じるという不都合がある。従って、従来の製法では磁性
材料の占積率は20〜30%が限度である。また、この鋳込
む方法では鋼線表面の酸化状態が接着に非常に大きな影
響を与えるという問題があり、それにより鉄線あるいは
鋼線からなる磁性材料の密度が高くなるほど鋳込みづら
くなるという問題がある。
[Problems to be Solved by the Invention] However, according to the above-described method for producing a magnetic anisotropic conductive material, it is difficult to radially align magnetic materials, and thus the alignment of magnetic materials may be disturbed. Therefore, it is difficult to manufacture a magnetic anisotropic conductive material having a uniform magnetic permeability as a whole, and the arrangement density of magnetic materials is increased to improve the space factor of the magnetic materials (specifically, (For example, if they are packed closely together), not only the gap between the magnetic materials becomes smaller, but sometimes they may come into contact with each other, so that the permeability of the molten conductive material deteriorates and voids occur inside the molded product. However, there is an inconvenience that the characteristics are deteriorated due to the deviation of the magnetic permeability. Therefore, in the conventional manufacturing method, the space factor of the magnetic material is limited to 20 to 30%. Further, in this casting method, there is a problem that the oxidation state of the surface of the steel wire has a great influence on the adhesion, and as a result, the higher the density of the magnetic material made of the iron wire or the steel wire, the more difficult it becomes to cast.

[問題を解決するための手段] 本発明は上記に鑑みてなされたものであり、巣の発生や
特性劣化がなく、磁性材料の占積率の向上および磁性材
料と導電材料の占積比率の設定が容易にできる磁気異方
性材料の製造方法の提供を目的とする。
[Means for Solving the Problem] The present invention has been made in view of the above, and it is possible to improve the space factor of the magnetic material and to increase the space factor of the magnetic material and the conductive material without generation of cavities and characteristic deterioration. An object of the present invention is to provide a method of manufacturing a magnetic anisotropic material that can be easily set.

即ち、本発明の要旨は、磁性材料の板材と導電性材料の
板材からなるクラッド板に多数のスリット加工を施した
ものをそれぞれスリット部の位置をそろえて多数枚積層
し該スリット部を前記導電性材料と同一の溶融導電性材
料で充填することによって多数枚積層したクラッド板を
一体化することを特徴とする磁気異方性材料の製造方法
にある。
That is, the gist of the present invention is to provide a plurality of clad plates made of a magnetic material plate material and a conductive material plate material, which have been subjected to a large number of slits, by aligning the positions of the slit parts, and laminating a large number of the slit parts to the conductive material. The method for producing a magnetic anisotropic material is characterized in that a plurality of laminated clad plates are integrated by filling with the same molten conductive material as the conductive material.

本発明において、磁性材料の板材と導電性材料の板材か
らなるクラッド板としては、例えばCu−Feクラッド板、
Al−Feクラッド板の2層クラッド板、Cu−Fe−Cuクラッ
ド板、Al−Fe−Alクラッド板の3層クラッド板が用いら
れる。
In the present invention, the clad plate made of a magnetic material plate material and a conductive material plate material, for example, Cu-Fe clad plate,
A two-layer clad plate of Al-Fe clad plate, a Cu-Fe-Cu clad plate, and a three-layer clad plate of Al-Fe-Al clad plate are used.

また、前記クラッド板の平面の形としては、円板状,四
角板形状のものなどを任意に選ぶことが出来る。
The planar shape of the clad plate may be disc-shaped, square-plate-shaped, or the like.

又、スリット加工としては、一定方向にスリットを設け
る、あるいは放射状にスリットを設けるなど、製品の用
途,使用形態によって種々選ぶことが出来る。
Further, as the slit processing, various kinds of slits can be selected depending on the application and use form of the product, such as providing slits in a fixed direction or providing slits radially.

該スリットを導電性材料で充填する方法としては、例え
ば充填するための導電性材料を金属膜の形で予め積層す
るクラッド板の間に挿入して補給するか、溶湯を注ぐこ
とによって補給するか何れの方法でもよい。
As a method of filling the slit with a conductive material, for example, a conductive material for filling is inserted between clad plates which are preliminarily laminated in the form of a metal film to be replenished, or it is replenished by pouring molten metal. It may be a method.

そして、該スリット部を導電性材料で充填し一体化する
方法としては、例えば加熱圧接の方法を用いるか、又は
導電性材料の溶湯を注ぐことによって鋳造する方法(鋳
込法)で行うか何れの方法を使用してもよい。但し、こ
の場合満足な充填と一体化を得るためには、クラッド板
のスリット部は積層するクラッド板すべてについて同じ
位置関係になるようにクラッド板を重ね合わせることが
望ましい。
Then, as a method of filling and integrating the slit portion with a conductive material, for example, a method of heating pressure welding is used, or a method of casting by pouring molten metal of a conductive material (casting method) is performed. Method may be used. However, in this case, in order to obtain a satisfactory filling and integration, it is desirable that the clad plates are superposed so that the slit portions of the clad plates have the same positional relationship for all the clad plates to be laminated.

[作用] 予め表面に導電性材料を被覆したクラッド板を用いる方
法では、従来の鋳込み方法と比較して空巣が生じないの
で磁性材料と導電性材料の接着が完全であり、また、磁
性材料の占積率の設定が容易であると共に磁性材料の占
積率を40%以上に向上させることが出来る。
[Operation] In the method of using the clad plate whose surface is coated with a conductive material in advance, voids do not occur as compared with the conventional casting method, so that the magnetic material and the conductive material are completely adhered to each other. The space factor can be easily set and the space factor of the magnetic material can be increased to 40% or more.

又板材を用いるということは、その形状及びスリット部
の設け方によって磁性材料の方向性を自由に設定するこ
とが出来るメリットがある。
Further, the use of the plate material has an advantage that the directionality of the magnetic material can be freely set depending on the shape and the way of providing the slit portion.

[実施例] 次に添付図面により本発明磁気異方性材料の一実施例を
説明する。
[Example] Next, an example of the magnetic anisotropic material of the present invention will be described with reference to the accompanying drawings.

まず、クラッド板としては、第2図に示される様にCu−
Fe−Cuの円形のクラッド板を使用する。この材料の寸法
は、外径125φ厚さ0.5mm−2.0mm−05mmとする。このク
ラッド板1に第3,4図に示す様に5゜間隔に幅1mm長さ30
mmのスリット2の加工を施す。
First, as the clad plate, as shown in FIG.
A circular clad plate of Fe-Cu is used. The dimensions of this material are an outer diameter of 125 and a thickness of 0.5 mm-2.0 mm-05 mm. This clad plate 1 has a width of 1 mm and a length of 30 at intervals of 5 ° as shown in Figs.
The slit 2 of mm is processed.

それから、クラッド板1の油分除去の表面処理を行った
後、第5図の様に各板のスリット部が位置を同じくする
様、35〜37枚積層する。積層したクラッド板層8は、第
1図の様に鋳型4の中に入れ押え金具5と、押えボルト
7で固定する。
Then, after the surface treatment for removing the oil content of the clad plate 1, 35 to 37 sheets are laminated so that the slit portions of the respective plates are in the same position as shown in FIG. As shown in FIG. 1, the laminated clad plate layers 8 are put into the mold 4 and fixed by the holding metal fittings 5 and the holding bolts 7.

この後、積層したクラッド板層8が酸化しない様に周辺
の雰囲気を真空又は不活性ガスを充填することによって
酸素を追い出すようにし、電気ヒーター6で予熱し同じ
雰囲気中で鋳造を行なう。予熱温度は、導電性材料の溶
融温度(Cu=1083℃)より低目の約1000〜1050℃に予熱
する。予熱温度が上昇したら鋳型4上部の押え金具5の
間から上記した導電性材料と同一の銅の溶湯3を流しこ
む。この時、溶湯温度は、前記溶融温度より約10〜15%
位高い温度で流し込み、この後、電気ヒーター6を切
り、鋳型下部より水冷又は空冷にて冷却し凝固させる。
冷却後鋳型から鋳造したクラッド板層を取り出して、所
定の寸法,外径120φ内径80φ長さ100mmの円筒形状に仕
上加工して磁気異方性材料として使用できる。この時の
磁性体の占積率は43.8%であった。
After that, the surrounding atmosphere is vacuumed or filled with an inert gas so that oxygen is expelled so that the laminated clad plate layers 8 are not oxidized, and preheated by the electric heater 6 to perform casting in the same atmosphere. The preheating temperature is about 1000 to 1050 ° C, which is lower than the melting temperature of the conductive material (Cu = 1083 ° C). When the preheating temperature rises, the same molten metal 3 of copper as the above-mentioned conductive material is poured from between the holding metal fittings 5 above the mold 4. At this time, the molten metal temperature is about 10 to 15% of the melting temperature.
It is poured at a temperature as high as possible, after which the electric heater 6 is turned off, and cooled by water cooling or air cooling from the lower part of the mold to solidify.
After cooling, the cast clad plate layer can be taken out of the mold and finished into a cylindrical shape having a predetermined size and an outer diameter of 120φ, an inner diameter of 80φ, and a length of 100 mm to be used as a magnetic anisotropic material. The space factor of the magnetic material at this time was 43.8%.

なお、この場合の銅の溶湯3はいわゆる接着用のろう材
と同じであるから、積層したクラッド板層の内部に空巣
を生じさせないためには積層したクラッド板層の間から
多少溶銅がしみ出るぐらいにボルト7でクラッド板層を
加圧するとよい。この場合における溶銅のしみ出しは銅
厚そのものが薄いのでごくわずかであるが、占積率の向
上にもつながる。
Since the molten copper 3 in this case is the same as the so-called brazing filler metal for adhesion, in order to prevent voids from being formed inside the laminated clad plate layers, some molten copper stains are present between the laminated clad plate layers. It is advisable to press the clad plate layer with bolts 7 so that they come out. In this case, the exudation of molten copper is very small because the copper thickness itself is thin, but it also leads to an improvement in the space factor.

一方、前記の溶湯注入による一体化の方法の他に、第5
図の様にクラッド板を積層する時、クラッド板間に適当
な厚さのCu箔を挿入し、これを第1図の鋳型5内に納
め、7の押えボルト等で1kg/cm2以上の圧力を加えなが
ら、無酸素雰囲気内で鋳型温度を1083℃〜1200℃に上昇
させ、挿入したCu箔及びクラッド板のCu層を加熱溶融さ
せた後、冷却して、所定寸法の磁気異方性材料を得るこ
ともできる。
On the other hand, in addition to the above-mentioned integration method by pouring molten metal,
When the clad plate is laminated as in the figure, by inserting the Cu foil of a suitable thickness in the clad plates, which placed in the mold 5 in FIG. 1, 7 presser bolts 1 kg / cm 2 or more of While applying pressure, the mold temperature was raised to 1083 ° C to 1200 ° C in an oxygen-free atmosphere, the inserted Cu foil and the Cu layer of the clad plate were heated and melted, and then cooled to obtain magnetic anisotropy of a predetermined dimension. Material can also be obtained.

[発明の効果] 以上説明した通り、本発明の磁気異方性材料の製造方法
によれば、磁性材料と導電材料からなるクラッド材を素
材として用いるため、空巣の発生や特性劣化がなく、磁
性材料の占積率の向上および磁性材料と導電材料の占積
比率の設定、さらには磁性の方向を容易かつ自由に設定
にできる磁気異方性導電材料を簡単な工程によって製造
することができる。
[Effects of the Invention] As described above, according to the method for producing a magnetic anisotropic material of the present invention, a clad material composed of a magnetic material and a conductive material is used as a raw material, so that there is no generation of voids and deterioration of characteristics, and It is possible to manufacture a magnetic anisotropic conductive material in which the space factor of the material is improved, the space ratio of the magnetic material and the conductive material is set, and the direction of magnetism can be easily and freely set by a simple process.

【図面の簡単な説明】 第1図は本発明による磁気異方性材料を製造する鋳造装
置の概略断面側面図。 第2図は本発明の一実施例としてのクラッド板の斜視
図,第3図は本発明に使用するクラッド板スリット加工
の一実施例の斜視図,第4図は第2図のスリット加工し
た部分の拡大図,第5図は第2図のスリット加工したク
ラッド材を積層した斜視図、第6図(イ)、(ロ)は磁
気異方性材料を使用した誘導電動機用回転子を示す説明
図である。 1:クラッド板、 2:スリット、 3:溶湯、 4:鋳型、 5:押え金具、 6:ヒータ、 7:押えボルト、 8:積層したクラッド板層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional side view of a casting apparatus for producing a magnetic anisotropic material according to the present invention. FIG. 2 is a perspective view of a clad plate as an embodiment of the present invention, FIG. 3 is a perspective view of an embodiment of a clad plate slit processing used in the present invention, and FIG. 4 is a slit processing of FIG. FIG. 5 is an enlarged view of a portion, FIG. 5 is a perspective view in which the slit clad material of FIG. 2 is laminated, and FIGS. 6 (a) and 6 (b) show a rotor for an induction motor using a magnetic anisotropic material. FIG. 1: Clad plate, 2: Slit, 3: Molten metal, 4: Mold, 5: Press fitting, 6: Heater, 7: Press bolt, 8: Laminated clad plate layers.

フロントページの続き (72)発明者 貝沼 宏 茨城県日立市川尻町1500番地地 日立電線 株式会社豊浦工場内 (72)発明者 瀬谷 武司 茨城県日立市川尻町1500番地地 日立電線 株式会社豊浦工場内Front page continued (72) Inventor Hiroshi Kainuma 1500 Kawajiri-cho, Hitachi, Ibaraki Prefecture, Toraura Plant, Hitachi Cable, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】磁性材料の板材と導電性材料の板材からな
るクラッド板に多数のスリット加工を施したものをそれ
ぞれスリット部の位置をそろえて多数枚積層し、該スリ
ット部を前記導電性材料と同一の溶融導電性材料で充填
することによって多数枚積層したクラッド板を一体化す
ることを特徴とする磁気異方性材料の製造方法。
1. A clad plate made of a magnetic material plate material and a conductive material plate material, which has been subjected to a large number of slits, is laminated by aligning the positions of the slit parts, and the slit parts are made of the conductive material. A method for producing a magnetic anisotropic material, characterized in that a plurality of laminated clad plates are integrated by being filled with the same molten conductive material as described above.
JP15439885A 1985-07-12 1985-07-12 Method for manufacturing magnetically anisotropic material Expired - Fee Related JPH0685627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15439885A JPH0685627B2 (en) 1985-07-12 1985-07-12 Method for manufacturing magnetically anisotropic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15439885A JPH0685627B2 (en) 1985-07-12 1985-07-12 Method for manufacturing magnetically anisotropic material

Publications (2)

Publication Number Publication Date
JPS6216045A JPS6216045A (en) 1987-01-24
JPH0685627B2 true JPH0685627B2 (en) 1994-10-26

Family

ID=15583270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15439885A Expired - Fee Related JPH0685627B2 (en) 1985-07-12 1985-07-12 Method for manufacturing magnetically anisotropic material

Country Status (1)

Country Link
JP (1) JPH0685627B2 (en)

Also Published As

Publication number Publication date
JPS6216045A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
US4392073A (en) Dynamoelectric machine stator having concentric amorphous metal laminations and method of making same
US3848331A (en) Method of producing molded stators from steel particles
US4403401A (en) Method of making a dynamoelectric machine stator having concentric amorphous metal laminations
US8910371B2 (en) Method for fabricating an induction rotor
US8466593B2 (en) Rotor for an induction motor and method for fabricating
JPH01186143A (en) Coreless armature and manufacture thereof, and molding tool for coreless armature
CA2192807A1 (en) Bulk metallic glass motor and transformer parts and method of manufacture
JP5365476B2 (en) Rotating electric machine
KR20120004969A (en) Electric machine
US2711492A (en) Stator for electric motors
US8932517B2 (en) Powder based soft magnetic inductive component, and a method and a device for production thereof
JP5249897B2 (en) Iron core manufacturing method
US8511367B2 (en) Method and apparatus for fabricating a rotor for an induction motor
JPH0685627B2 (en) Method for manufacturing magnetically anisotropic material
KR101695184B1 (en) Rotor assembly and manufacturing method by centrifugal casting
EP0064846A2 (en) Method of making motor stator
JPH0740778B2 (en) Method for manufacturing magnetically anisotropic material
JP3880692B2 (en) Electric motor rotor
JPH09163642A (en) Flat type motor and manufacture of its stator
US5119058A (en) Laminated conductor for high current coils
JPH02193552A (en) Manufacture of rotor for motor
JPS6259538B2 (en)
US5050293A (en) Method of making a laminated conductor for high current coils
JP2679043B2 (en) Method for manufacturing magnetically anisotropic conductive member
JPS6351602A (en) Manufacture of magnetically anisotropic conductive material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees