JPH0678171B2 - How to observe soot - Google Patents

How to observe soot

Info

Publication number
JPH0678171B2
JPH0678171B2 JP9168183A JP9168183A JPH0678171B2 JP H0678171 B2 JPH0678171 B2 JP H0678171B2 JP 9168183 A JP9168183 A JP 9168183A JP 9168183 A JP9168183 A JP 9168183A JP H0678171 B2 JPH0678171 B2 JP H0678171B2
Authority
JP
Japan
Prior art keywords
soot
gas
reaction chamber
plate
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9168183A
Other languages
Japanese (ja)
Other versions
JPS59217638A (en
Inventor
邦男 小倉
和昭 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9168183A priority Critical patent/JPH0678171B2/en
Publication of JPS59217638A publication Critical patent/JPS59217638A/en
Publication of JPH0678171B2 publication Critical patent/JPH0678171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01406Deposition reactors therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【発明の詳細な説明】 本発明は気相軸付法によつて形成される反応室内のスー
トを反応室外から観察するためのスートの観察方法に関
する。
The present invention relates to a soot observing method for observing a soot in a reaction chamber formed by a vapor phase axis method from outside the reaction chamber.

気相軸付法によつて形成されるスートの堆積面における
温度分布は、屈折率を決定する上で重要な要素であり、
このためスートの製造工程で反応室外から内部のスート
の堆積面における温度を赤外放射温度計等によつて測定
し、該測定値を製造条件にフイードバツクし、スートの
堆積面の温度を制御するようにしている。
The temperature distribution on the deposition surface of the soot formed by the vapor phase axis method is an important factor in determining the refractive index,
Therefore, in the soot manufacturing process, the temperature of the soot deposition surface inside the reaction chamber is measured by an infrared radiation thermometer, etc., and the measured value is fed back to the manufacturing conditions to control the temperature of the soot deposition surface. I am trying.

第1図は従来のスートの温度測定方法を示すもので、反
応室aに配置された図示しないターゲツト棒を回転させ
つつ上昇させ、このターゲツト棒に下方からガスバーナ
bによつて原料を供給してスートcを形成するものであ
るが、このスートcの堆積面の温度を測定するため、反
応室aの底部に観察窓部dを開設し、開口面に内部のガ
スの漏洩を防止するための赤外線の透過率の良いフツ化
カルシウム板等の結晶板eを設け、この結晶板eを介し
て赤外放射温度計fによりスートcの温度を測定するよ
うにしている。
FIG. 1 shows a conventional soot temperature measuring method, in which a target rod (not shown) arranged in a reaction chamber a is raised while being rotated, and a raw material is supplied to the target rod from below by a gas burner b. Although the soot c is formed, in order to measure the temperature of the deposition surface of the soot c, an observation window portion d is opened at the bottom of the reaction chamber a to prevent the internal gas from leaking at the opening surface. A crystal plate e such as a calcium fluoride plate having a good infrared transmittance is provided, and the temperature of the soot c is measured by the infrared radiation thermometer f through the crystal plate e.

しかし上記結晶板e上には、排気口gから排気しきれな
かつたスス等の酸化微粒子が付着して結晶板eがくもる
ため、赤外線の透過率が低下し、したがつてスートcの
温度が正確に測定できず、このためフイードバツク機構
を設けてもスートcの温度を充分に制御し得ないという
問題があつた。
However, on the crystal plate e, oxide fine particles such as soot that could not be exhausted from the exhaust port g adhere to the crystal plate e, and the crystal plate e is fogged, so that the infrared ray transmittance is lowered, so that the temperature of the soot c is reduced. Since the measurement cannot be performed accurately, the temperature of the soot c cannot be controlled sufficiently even if a feedback mechanism is provided.

本発明は外部からの観察の妨げにならないように観察窓
部に受板部を設け、該受板部に気体を導入して室内に流
入させ、該気体の流入路からスートを観察することによ
つて上記問題点を解決しようというもので、これを図面
に示す実施例を参照しながら説明すると、第2図におい
て(1)は反応室であつて、前述したようにガスバーナ
(2)から供給される気相原料の堆積によつてスート
(3)が形成される。
The present invention provides a receiving plate portion in the observation window portion so as not to interfere with observation from the outside, introduces gas into the receiving plate portion to flow into the room, and observes the soot from the inflow passage of the gas. Therefore, the above problem will be solved by referring to the embodiment shown in the drawing. In FIG. 2, (1) is a reaction chamber, which is supplied from the gas burner (2) as described above. The soot (3) is formed by the deposition of the vapor phase raw material.

同図において、(4)は反応室(1)内のスート(3)
を観察するための観察窓部(4)であつて、反応室
(1)の底部を外力に延出させ、その先端を切除開口し
て窓フランジ(5)を形成し、この窓フランジ(5)内
に1つ以上の仕切板(6)a、(6)bを設置すると共
に同フランジ(5)の先端に赤外線の透過率の良いフツ
化カルシウム板(7)を設け、上記仕切板(6)a、
(6)bの夫々の略中央部に通孔(8)a、(8)bを
形成することによつて構成された受板部(9)を有して
いる。
In the figure, (4) is the soot (3) in the reaction chamber (1).
An observation window portion (4) for observing the bottom of the reaction chamber (1) is extended to an external force, and a tip end thereof is cut and opened to form a window flange (5). ), One or more partition plates (6) a, (6) b are installed, and a calcium fluoride plate (7) having a high infrared transmittance is provided at the tip of the flange (5). 6) a,
(6) b has a receiving plate portion (9) formed by forming through holes (8) a and (8) b at substantially central portions thereof.

窓フランジ(5)の側壁には、仕切板(6)a、(6)
b間及び仕切板(6)bとフツ化カルシウム板(7)と
の間の夫々の間隙部(10)a、(10)bに連通するガス
導入孔(11)a、(11)bが設けられており、これらガ
ス導入孔(11)a、(11)bから空気、窒素、アルゴン
またはヘリウム等の気体Gが導入可能となつている。
The side walls of the window flange (5) have partition plates (6) a, (6).
b and between the partition plate (6) b and the calcium fluoride plate (7), the gas introduction holes (11) a, (11) b communicating with the gaps (10) a, (10) b, respectively. A gas G such as air, nitrogen, argon or helium can be introduced through the gas introduction holes (11) a and (11) b.

気体の導入量は気相原料の堆積が影響を受けない程度に
設定される。
The amount of gas introduced is set to such an extent that the deposition of the vapor phase raw material is not affected.

上記通孔(8)a、(8)bの大きさとしては、スート
(3)の堆積面における温度を測定するための赤外放射
温度計(12)のスポツトサイズより僅かに大きく設定さ
れる。
The size of the through holes (8) a, (8) b is set to be slightly larger than the spot size of the infrared radiation thermometer (12) for measuring the temperature at the deposition surface of the soot (3). .

尚、上記仕切板(6)a、(6)bの数は、図面に示さ
れているように2枚に限らず、1枚でもあるいは3枚以
上でもよく、その数が多い程通孔(8)a、(8)bの
サイズを大きくすることができ、これに応じて赤外放射
温度計(12)のスポツトサイズも大きくすることができ
る。
The number of the partition plates (6) a and (6) b is not limited to two as shown in the drawing, and may be one or three or more. The larger the number, the more through holes ( The sizes of 8) a and (8) b can be increased, and the spot size of the infrared radiation thermometer (12) can be increased accordingly.

また、仕切板(6)a、(6)bの数と、通孔(8)
a、(8)bの大きさと、気体の導入量とを調節するこ
とによつて、フツ化カルシウム板(7)を用いずとも反
応室(1)内のガスの流出を防止できるため、直接スー
ト(3)の温度を測定することが可能になる。
Further, the number of partition plates (6) a, (6) b and the through holes (8)
By adjusting the size of a and (8) b and the amount of gas introduced, it is possible to prevent the outflow of gas in the reaction chamber (1) without using the calcium fluoride plate (7), It becomes possible to measure the temperature of the soot (3).

ここでスート(3)の堆積面における温度の測定方法に
ついて述べると、ガスバーナ(2)から気相原料を供給
しつつ、ガス導入孔(11)a、(11)bから窓フランジ
(5)内に気体Gを導入すれば、気体Gは通孔(8)
a、(8)bから反応室(1)内に流入することにな
り、したがつてスス等の微粒子は通孔(8)a、(8)
bを通つてフツ化カルシウム板(7)上に達することな
く、仕切板(6)a上に付着することになり、たとえ同
仕切板(6)aの通孔(8)a内に入つたとしてもそれ
より下位の仕切板(6)b上に堆積することになる。
Here, the method of measuring the temperature on the deposition surface of the soot (3) will be described. While supplying the gas phase raw material from the gas burner (2), the gas introduction holes (11) a, (11) b to the inside of the window flange (5). If the gas G is introduced into, the gas G will pass through the hole (8).
a, (8) b will flow into the reaction chamber (1), so that fine particles such as soot will pass through the holes (8) a, (8).
It will adhere to the partition plate (6) a without reaching the calcium fluoride plate (7) through b, and even if it enters the through hole (8) a of the partition plate (6) a. However, it will be deposited on the lower partition plate (6) b.

スート(3)の温度は、上記温度計(12)により通孔
(8)a、(8)bを介して測定されるのであるが、通
孔(8)a、(8)bからは気体が吹き出しているた
め、ススが通孔(8)a、(8)bを閉塞することはな
く、したがつて温度測定に支障が生ずることはない。
The temperature of the soot (3) is measured by the thermometer (12) through the through holes (8) a and (8) b, but the gas from the through holes (8) a and (8) b is measured. Since the soot is blown out, the soot does not block the through holes (8) a and (8) b, and therefore the temperature measurement is not hindered.

ここでより具体的な例について述べると、反応室(1)
として直径230mmの反応球を用い、その底部に直径50mm
の円筒形の窓フランジ(5)を取り付け、同フランジ
(5)の下端面に厚さ5mmのフツ化カルシウム板(7)
を設置すると共に同板(7)の上位に2枚の仕切板
(6)a、(6)bを設け、両板(6)a、(6)bの
間隔を20mmとし、また通孔(8)a、(8)bの直径
を、赤外線放射温度計(12)のスポツトサイズが直径2m
mであることから5mmとし、ガス導入孔(11)aから3l/m
inのチツ素ガスを、また他方のガス導入孔(11)bから
2l/minのチツ素ガスを導入し、窓フランジ(5)の圧力
を反応室(1)内のそれよりやや高く保持した。
Here, a more specific example will be described. The reaction chamber (1)
As a reaction ball with a diameter of 230 mm, a diameter of 50 mm at the bottom
The cylindrical window flange (5) is attached, and a calcium fluoride plate (7) with a thickness of 5 mm is attached to the lower end surface of the flange (5).
Is installed and two partition plates (6) a and (6) b are provided above the plate (7), the distance between both plates (6) a and (6) b is set to 20 mm, and the through hole ( The diameter of 8) a and (8) b is 2m when the spot size of the infrared radiation thermometer (12) is 2m.
Since it is m, it is set to 5 mm and 3 l / m from the gas introduction hole (11) a.
in nitrogen gas from the other gas introduction hole (11) b
2 l / min of nitrogen gas was introduced to keep the pressure of the window flange (5) slightly higher than that in the reaction chamber (1).

比較のため、第1図に示す装置を用いてスート(3)の
温度測定実験を行なつた。
For comparison, a temperature measurement experiment of soot (3) was performed using the apparatus shown in FIG.

上記具体例及び比較例ともに10時間のスート製造を行な
い、スート製造終了後、フツ化カルシウム板(7)の汚
れを調べたところ、具体例においてはススの付着が認め
られなかつたのに対し、他方比較例においてはススの付
着があり、白く汚れていた。
Soot production was carried out for 10 hours in each of the above specific examples and comparative examples, and after the soot production was completed, the calcium fluoride plate (7) was inspected for stains. In the specific examples, no soot adhesion was observed. On the other hand, in the comparative example, soot was attached and it was stained white.

さらにこれらフツ化カルシウム板を通して、500℃の温
度の黒体炉を温度測定したところ、具体例の場合には温
度計が正確に500℃を示したのに対し比較例の場合には3
80℃を示し、正確な温度測定ができないということがわ
かつた。
Further, through these calcium fluoride plates, the temperature of a blackbody furnace at a temperature of 500 ° C. was measured, and in the case of the specific example, the thermometer showed exactly 500 ° C.
It was found that the temperature was 80 ° C and the temperature could not be measured accurately.

以上のように本発明においては観察窓部に受板部を設
け、同受板部に気体を導入して反応室内に流入させ、該
気体の流入路からスートを観察するようにしたので、ス
ス等の微粒子の堆積によつて反応室外からのスートの観
察が妨げられることがなく、したがつて赤外放射温度計
を用いてスートの堆積面における温度を測定する場合に
も、赤外線の透過率が落ちず、このため長時間にわたる
スートの製造工程中においても正確な温度を測定するこ
とができることになる。
As described above, in the present invention, the receiving plate portion is provided in the observation window portion, the gas is introduced into the receiving plate portion to flow into the reaction chamber, and the soot is observed from the inflow passage of the gas. The deposition of fine particles, etc., does not hinder the observation of soot from outside the reaction chamber, and therefore the infrared transmittance is also measured when the temperature at the deposition surface of the soot is measured using an infrared radiation thermometer. Therefore, it is possible to accurately measure the temperature even during the soot manufacturing process for a long time.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来例に使用される装置の略示図、第2図は本
発明に係る方法に使用される装置の略示図である。 (1)……反応室 (3)……スート (4)……観察窓部 G……気体
FIG. 1 is a schematic view of an apparatus used in a conventional example, and FIG. 2 is a schematic view of an apparatus used in the method according to the present invention. (1) ... Reaction chamber (3) ... Soot (4) ... Observation window G ... Gas

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】気相軸付法によりスートを形成すべき反応
室に設けた観察窓部からスートを観察する方法におい
て、上記観察窓部に、スス等の微粒子を受け止めるため
の複数の板状部材からなる受板部を設けておき、当該受
板部内に気体を導入して上記反応室内に流入させつつ該
流入路を介してスートを観察することを特徴とするスー
トの観察方法。
1. A method of observing a soot through an observation window portion provided in a reaction chamber in which a soot is to be formed by a vapor axis method, wherein the observation window portion has a plurality of plate shapes for receiving fine particles such as soot. A soot observing method, characterized in that a receiving plate portion made of a member is provided, and gas is introduced into the receiving plate portion to flow into the reaction chamber while observing the soot through the inflow path.
【請求項2】受板部は通孔を有する1つ以上の仕切板
と、該仕切板より外側にあつて、観察窓部を密閉する密
閉板とから構成されており、気体は上記仕切板の下部に
導入され、通孔から反応室内に流入すると共に当該通孔
及び密閉板を介してスートが観察可能なることを特徴と
する特許請求の範囲第1項記載のスートの観察方法。
2. The receiving plate part is composed of one or more partition plates having through holes and a sealing plate which is located outside the partition plate and seals the observation window part, and the gas is the partition plate. The soot observing method according to claim 1, wherein the soot is introduced into the lower part of the chamber, flows into the reaction chamber from the through hole, and the soot can be observed through the through hole and the sealing plate.
【請求項3】受板部は通孔を有する多数の仕切板から構
成されており、気体は各仕切板間に導入されると共に通
孔を介してスートが観察可能であることを特徴とする特
許請求の範囲第1項記載のスートの観察方法。
3. The receiving plate portion is composed of a large number of partition plates having through holes, and gas is introduced between the partition plates and soot can be observed through the through holes. The soot observing method according to claim 1.
JP9168183A 1983-05-25 1983-05-25 How to observe soot Expired - Lifetime JPH0678171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9168183A JPH0678171B2 (en) 1983-05-25 1983-05-25 How to observe soot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9168183A JPH0678171B2 (en) 1983-05-25 1983-05-25 How to observe soot

Publications (2)

Publication Number Publication Date
JPS59217638A JPS59217638A (en) 1984-12-07
JPH0678171B2 true JPH0678171B2 (en) 1994-10-05

Family

ID=14033232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9168183A Expired - Lifetime JPH0678171B2 (en) 1983-05-25 1983-05-25 How to observe soot

Country Status (1)

Country Link
JP (1) JPH0678171B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127946U (en) * 1987-02-10 1988-08-22
JP4762408B2 (en) * 2000-10-10 2011-08-31 古河電気工業株式会社 Method for manufacturing optical fiber porous preform
TWI419617B (en) * 2010-11-05 2013-12-11 Ind Tech Res Inst View port device for plasma process and process observation device of plasma apparatus
JP5294354B2 (en) * 2011-04-18 2013-09-18 古河電気工業株式会社 Method for manufacturing optical fiber porous preform
CN109796121A (en) * 2019-02-26 2019-05-24 安徽丹凤集团桐城玻璃纤维有限公司 Kiln is used in a kind of production of glass fabric

Also Published As

Publication number Publication date
JPS59217638A (en) 1984-12-07

Similar Documents

Publication Publication Date Title
US4609562A (en) Apparatus and method for depositing coating onto porous substrate
US2784115A (en) Method of producing titanium dioxide coatings
JPH0678171B2 (en) How to observe soot
TW201527570A (en) Smart device fabrication via precision patterning
US6497118B1 (en) Method and apparatus for reducing refractory contamination in fused silica processes
US5232509A (en) Apparatus for producing low resistivity tungsten thin film comprising reaction temperature measuring thermocouples
KR102242451B1 (en) Glass raw material melting apparatus and manufacturing method of molten glass
JP5294354B2 (en) Method for manufacturing optical fiber porous preform
CN117268270B (en) Real-time monitoring device and method for continuous chemical vapor deposition interface layer thickness
JP3295444B2 (en) Method for producing porous silica preform
US11370690B2 (en) Apparatus and method for manufacturing glass preforms for optical fibers
JP2001107249A (en) Atmospheric pressure cvd film deposition system
JPH07237938A (en) Method for producing hermetically coated optical fiber and apparatus therefor
JPS60215515A (en) Preparation of synthetic quartz mass and device therefor
JP3012098B2 (en) Film forming apparatus and film forming method
JPS6090844A (en) Method for depositing fine powder of optical glass
List et al. On-line control of the deposition of optical coatings by magnetron sputtering
JPH03141133A (en) Production of porous glass matrix for optical fiber
JP2697898B2 (en) Method for producing hermetic coated optical fiber
JPH07106263A (en) Reaction furnace
JPH02212326A (en) Device for producing optical fiber preform
US20020014091A1 (en) Method and apparatus for minimizing air infiltration in the production of fused silica glass
JPS60162774A (en) Method for controlling thickness of film
JPH0710587A (en) Production of optical fiber preform
JPH02180735A (en) Hermetically coating device for optical fiber