JPH0676901B2 - Flowmeter rotor manufacturing method - Google Patents

Flowmeter rotor manufacturing method

Info

Publication number
JPH0676901B2
JPH0676901B2 JP2377887A JP2377887A JPH0676901B2 JP H0676901 B2 JPH0676901 B2 JP H0676901B2 JP 2377887 A JP2377887 A JP 2377887A JP 2377887 A JP2377887 A JP 2377887A JP H0676901 B2 JPH0676901 B2 JP H0676901B2
Authority
JP
Japan
Prior art keywords
tooth
pitch curve
curvature
pitch
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2377887A
Other languages
Japanese (ja)
Other versions
JPS63191923A (en
Inventor
輝夫 山田
Original Assignee
愛知時計電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知時計電機株式会社 filed Critical 愛知時計電機株式会社
Priority to JP2377887A priority Critical patent/JPH0676901B2/en
Publication of JPS63191923A publication Critical patent/JPS63191923A/en
Publication of JPH0676901B2 publication Critical patent/JPH0676901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 イ.発明の目的 イ−1.産業上の利用分野 この発明は容積式流量計用回転子に用いる楕円系歯車の
製造方法に関する。
Detailed Description of the Invention a. OBJECT OF THE INVENTION A-1. Field of Industrial Application The present invention relates to a method for manufacturing an elliptical gear used in a rotor for a positive displacement flow meter.
イ−2.従来技術 容積式流量計用回転子に用いられる楕円系歯車は、その
ピッチ曲線が r=l/(1−e cos2θ) ・・・(1) l:通半径,e:離心率 で表わされる葉数が2の楕円系歯車が使用されていて、
このピッチ曲線に沿って歯形が割り付けられていて、二
つの回転子(歯車)が互いに噛み合って回転し、流体を
計測する。
B-2. Conventional technology The pitch curve of an elliptical gear used in a rotor for a positive displacement type flow meter is r = l / (1-e cos2θ) ... (1) l: through radius, e: eccentricity An elliptic gear with 2 leaves is used.
Tooth shapes are assigned along this pitch curve, and two rotors (gears) rotate by meshing with each other to measure fluid.
このような容積式流量計の構造を第5図に示す。図にお
いて、ケース(1)の内側に楕円系歯車の回転子
(2),(3)が軸(4)(5)により回転可能に支承
されていて、入口(6)から流入した流体は、回転子と
ケースとの間のます(7)で計量されて、出口(8)か
ら流出する。
The structure of such a positive displacement flow meter is shown in FIG. In the drawing, rotors (2) and (3) of elliptical gears are rotatably supported by shafts (4) and (5) inside a case (1), and fluid flowing from an inlet (6) is It is weighed in the muzzle (7) between the rotor and the case and flows out through the outlet (8).
前記(1)式で示される楕円系歯車のピッチ曲線の形状
は、離心率eが大きくなる程偏平となり、しかも離心率
eが0.33以上になると短径部におけるピッチ曲線の曲率
中心がピッチ曲線の外方に凹となる。すなわち、短径部
付近におけるピッチ曲線の任意の点の曲率中心がピッチ
曲線の外側に位置し、しかもその曲率中心までを結ぶ曲
率半径の線分がピッチ曲線の内側を通らない。そのため
離心率eが0.33を越えるとピッチ曲線の形状がルーツ形
状になってくる。第2図に離心率eを0から0.8まで変
化させたときのピッチ曲線の形状を同図(A)〜(I)
に示す。なお、第2図(A)〜(I)はピッチ曲線の周
長を一定にして離心率を変えた場合の形状の変化を示し
ている。
The shape of the pitch curve of the elliptical gear represented by the above formula (1) becomes flatter as the eccentricity e increases, and when the eccentricity e becomes 0.33 or more, the curvature center of the pitch curve in the minor diameter portion becomes the pitch curve. It becomes concave outward. That is, the center of curvature of an arbitrary point of the pitch curve near the minor axis portion is located outside the pitch curve, and the line segment of the radius of curvature connecting to the center of curvature does not pass inside the pitch curve. Therefore, when the eccentricity e exceeds 0.33, the pitch curve becomes roots. FIG. 2 shows the shape of the pitch curve when the eccentricity e is changed from 0 to 0.8 (A) to (I).
Shown in. 2 (A) to (I) show changes in shape when the eccentricity is changed while keeping the circumferential length of the pitch curve constant.
離心率eが0.33より大きくなって、ピッチ曲線がルーツ
形状になった場合の、曲率半径と曲率中心の例を第7図
に示す。第7図は、ピッチ曲線の全体を示しておらず、
ほゞ1/4である第1象限の部分付近のみを示している。
符号(10)で示す曲線がピッチ曲線で、楕円の短径部は
外方に凹となっている。そしてこの部分の曲率半径は符
号(11),(12),(13)で示すように、ピッチ曲線の
外側に位置し、ピッチ曲線の内側に通らない。そして、
この部分の曲率中心の軌跡は符号(14)で示すようにピ
ッチ曲線の外側に位置する。(14)〜(18)はピッチ曲
線が外方に凸となっている部分の曲率半径で、その曲率
中心の軌跡は符号(19)で示されている。曲率半径(1
4)〜(18)はピッチ曲線の内側を通っている。
FIG. 7 shows an example of the radius of curvature and the center of curvature when the eccentricity e is larger than 0.33 and the pitch curve has a roots shape. FIG. 7 does not show the entire pitch curve,
Only the area near the 1st quadrant, which is approximately 1/4, is shown.
The curve indicated by reference numeral (10) is a pitch curve, and the minor axis portion of the ellipse is concave outward. The radius of curvature of this portion is located outside the pitch curve and does not pass inside the pitch curve, as indicated by reference numerals (11), (12) and (13). And
The locus of the center of curvature of this portion is located outside the pitch curve as indicated by reference numeral (14). (14) to (18) are the radii of curvature of the portion where the pitch curve is convex outward, and the locus of the center of curvature is indicated by reference numeral (19). Radius of curvature (1
4) to (18) pass inside the pitch curve.
流量計用回転子として歯車を加工する方法として、ピニ
オンカッタを用いた歯車形削り盤による方法とか、ホブ
を用いたNCホブ盤による方法が従来は用いられていた。
As a method for machining a gear as a rotor for a flow meter, a method using a gear cutting machine using a pinion cutter or a method using an NC hobbing machine using a hob has been conventionally used.
そして、ホブ盤では、離心率eが0.33を越えてピッチ曲
線がルーツ形状になると加工ができないという事もあっ
て、従来は離心率eが0.33より小さい楕円系歯車を回転
子として用いていた。
In the hobbing machine, if the eccentricity e exceeds 0.33 and the pitch curve has a roots shape, machining cannot be performed. Therefore, conventionally, an elliptic gear having an eccentricity e smaller than 0.33 is used as a rotor.
イ−3.本発明が解決しようとする問題点 従来の製造方法のうち、ピニオンカッタを用いた歯車形
削り盤による場合、歯数、歯厚、モジュール、離心率等
の変更を行なおうとすると、基本的には作図により歯形
を決定しなければならず、膨大な時間を費やしていた。
又、ピニオンカッタの製作、歯切時の位置合わせ、再研
磨等に時間がかかり、製作費が高くつくという問題があ
った。
A-3. Problems to be solved by the present invention Among conventional manufacturing methods, in the case of a gear shaper using a pinion cutter, when the number of teeth, tooth thickness, module, eccentricity, etc. are changed. , Basically, I had to decide the tooth profile by drawing, and it took a huge amount of time.
In addition, there is a problem in that it takes time to manufacture the pinion cutter, aligning it during gear cutting, re-polishing, etc., resulting in high manufacturing cost.
ホブを用いたNCホブ盤による場合でも、歯数、歯厚、モ
ジュール、離心率の変更を行なおうとすると、ピニオン
カッタの場合と同様に工具の変更費用と、時間を膨大に
要するという問題点があった。
Even with an NC hobbing machine that uses a hob, if you try to change the number of teeth, thickness, module, and eccentricity, the tool change cost and time will be enormous, as with the pinion cutter. was there.
又、同じ寸法のケースに収容可能な双回転子を用いた流
量計の吐出量(1回転当りの流量容積)を大きくとるに
は、離心率eを大きくした方が良いという理由から、離
心率eを0.33よりも大きく定めたいという要望がある。
離心率eを0.33以上にすると、前述のようにピッチ曲線
がルーツ形状になり、短径部におけるピッチ曲線がピッ
チ曲線の外方に凹となる。このようなピッチ曲線にピニ
オンカッタで歯形を創成すると、歯形は歯面が内歯歯車
のように凹面になり、二つの歯車(回転子)が噛合うと
きのすべり率が増し、耐摩耗性が減少するという問題点
があった。又ピッチ線がルーツ形状になると、歯車の加
工をホブによる切削加工で行なうことは困難であるとい
うことから、離心率eが0.33より大きいものは製造でき
ないという問題点があった。
Further, in order to increase the discharge amount (flow volume per one rotation) of the flowmeter using the twin rotor that can be accommodated in the case of the same size, it is better to increase the eccentricity e. There is a demand to set e larger than 0.33.
When the eccentricity e is 0.33 or more, the pitch curve has a roots shape as described above, and the pitch curve in the minor diameter portion is concave outward of the pitch curve. When a tooth profile is created on such a pitch curve with a pinion cutter, the tooth profile has a tooth surface that is concave like an internal gear, increasing the slip rate when two gears (rotors) mesh, and increasing wear resistance. There was a problem of decrease. Further, if the pitch line has a roots shape, it is difficult to machine the gear by cutting with a hob, so that there is a problem that it is not possible to manufacture a gear having an eccentricity e of more than 0.33.
ロ.発明の構成 ロ−1.問題点を解決するための手段 この発明は上記問題点を解決するための手段として、ピ
ッチ曲線が極方程式 r=l/(1−e cos2θ) l:通半径,e:離心率 で表わされる葉数が2の楕円系歯車において、ピッチ曲
線上に割り付けられた歯の形を、それぞれの歯の歯形中
心線とピッチ曲線との交点におけるピッチ曲線の曲率中
心に中心を持ち、かつピッチ曲線の曲率半径に等しいピ
ッチ円半径を有する平歯車の1歯として定め、さらにピ
ッチ曲線の一部分がピッチ曲線の外方に凹となる場合、
すなわち前記一部におけるピッチ曲線の任意の点の曲率
中心がピッチ曲線の外側にあって、その曲率中心までを
結ぶ曲率半径の線分がピッチ曲線の内側を通らない場合
には、そこに割りつけられた歯の形を、歯形中心線とピ
ッチ曲線との交点に対し、ピッチ曲線の曲率中心と対称
の点をピッチ曲線の法線上に求め、その対称の点を中心
とし、かつピッチ曲線の曲率半径に等しいピッチ円半径
を有する平歯車の1歯として定め、このようにして定め
た歯面をワイヤーカット放電加工で形成することを特徴
とするものである。
B. Configuration of the invention b-1. Means for solving the problems In the present invention, as a means for solving the above problems, the pitch curve is a polar equation r = l / (1-e cos2θ) l: through radius, e In an elliptical gear with a leaf count of 2 represented by eccentricity, center the tooth profile assigned on the pitch curve at the center of curvature of the pitch curve at the intersection of the tooth profile center line and pitch curve. If one tooth of a spur gear having a pitch circle radius equal to the radius of curvature of the pitch curve is provided, and a part of the pitch curve is concave outside the pitch curve,
That is, if the center of curvature of any point of the pitch curve in the above part is outside the pitch curve and the line segment of the radius of curvature connecting to that center of curvature does not pass inside the pitch curve, assign it there. The obtained tooth shape is found on the normal line of the pitch curve with respect to the intersection of the tooth profile centerline and the pitch curve, and the point of symmetry with the center of curvature of the pitch curve. It is characterized in that it is defined as one tooth of a spur gear having a pitch circle radius equal to the radius, and the tooth surface thus defined is formed by wire cut electric discharge machining.
ロ−2.実施例 葉数が2の楕円系歯車のピッチ曲線は前記(1)式で示
され、第3図のようである。
B-2. Example The pitch curve of an elliptical gear having two leaves is represented by the above formula (1) and is as shown in FIG.
そして、その周長Sは次式で求められる。Then, the circumference S is obtained by the following equation.
周長Sを歯数nで割ると歯車のピッチPが求められる。 The pitch P of the gear is obtained by dividing the circumference length S by the number of teeth n.
P=S/n 歯数nはn/2が奇数となる数を選定する。ピッチ曲線の
周上をθ=0の点から順にピッチP=S/nの間隔で分割
し、第1図に示すようにそれぞれ点A1,A2,・・・Anと
し、これらの各点と中心0とを結ぶ動径rとx軸とのな
す角をθ1・・・θnとすると、周上の各点A1,A2,
・・・Anの直角座標は、各点Ak(k=1,2,・・・n)毎
に、Ak(r cos θk,r sin θk)となる。
P = S / n The number of teeth n is selected so that n / 2 is an odd number. The circumference of the pitch curve is divided at intervals of pitch P = S / n from the point of θ = 0 in order and set as points A 1 , A 2 , ... An as shown in FIG. the center 0 and theta 1 the angle between the radius vector r and the x-axis connecting, when theta 2 · · · .theta.n, each point on the circumference a 1, a 2,
The rectangular coordinates of An are Ak (r cos θk, r sin θk) for each point Ak (k = 1, 2, ... N).
点Akにおける歯形を決定するためにまずこの点における
ピッチ曲線の曲率中心Okの直角座標と曲率半径ρkを求
める。
In order to determine the tooth profile at the point Ak, first, the Cartesian coordinates of the curvature center Ok of the pitch curve at this point and the radius of curvature ρk are obtained.
点Akのx,y座標は上記のように x=r cos θk y=r sin θk であるため、曲率中心Okの座標は、 また、曲率半径は で求まる。Since the x and y coordinates of the point Ak are x = r cos θky y = r sin θk as described above, the coordinates of the curvature center Ok are Also, the radius of curvature is Can be obtained with.
そして、点Akに割りつける歯形を、中心が点Okで、ピッ
チ円半径がρkであるピッチ円Cpを有する平歯車の1歯
と見なして定める。第1図ではこのピッチ円を符号Cpを
付した破線で示している。この点Akに割りつけられる歯
形中心線はピッチ曲線の点Akと、その点における曲率中
心Okを結ぶ直線であり、これは点Akにおけるピッチ曲線
の法線に他ならない。
Then, the tooth profile to be assigned to the point Ak is determined by regarding it as one tooth of a spur gear having a pitch circle Cp whose center is the point Ok and whose pitch radius is ρk. In FIG. 1, this pitch circle is shown by a broken line with a symbol Cp. The tooth profile center line assigned to this point Ak is a straight line connecting the point Ak of the pitch curve and the center of curvature Ok at that point, and this is the normal line of the pitch curve at the point Ak.
次に、この歯形中心線に対して、どのように歯形を決め
るかを第4図により説明する。なお第4図の座標軸x軸
とy軸、原点0,角θは第1図、第3図のものとは異なっ
ていて、第4図の説明をし易くするために、新しくつけ
たものである。
Next, how to determine the tooth profile with respect to the tooth profile center line will be described with reference to FIG. Note that the coordinate axes x and y, origin 0, and angle θ in FIG. 4 are different from those in FIGS. 1 and 3, and are newly added to facilitate the explanation of FIG. is there.
第4図では前記点Akを新たにQo,曲率半径ρkをr0,曲率
中心Okを新たに原点0と表わしている。そしてr0はピッ
チ円半径、r1は基礎円半径、r2は歯先円半径,r3は歯底
円半径で、 r1=r0 cos20゜,r2=r0+m,r3=r0−1.25m の関係がある。なお、mはモジュールで、圧力角は20゜
とおいてある。歯面はインボリュート曲線として、 x=r1(cos θ+θsin θ) y=r1(sin θ−θcos θ) で表わされる。図中のP2,Po,P3の各点は、それぞれ歯先
円、ピッチ円、歯底円と歯面とが交わる点である。
In FIG. 4, the point Ak is newly represented as Qo, the radius of curvature ρk is represented as r 0 , and the center of curvature Ok is newly represented as the origin 0. R 0 is the pitch circle radius, r 1 is the base circle radius, r 2 is the tip circle radius, r 3 is the root circle radius, r 1 = r 0 cos 20 °, r 2 = r 0 + m, r 3 = There is a relationship of r 0 −1.25m. In addition, m is a module and the pressure angle is set to 20 °. The tooth surface is represented as an involute curve by x = r 1 (cos θ + θ sin θ) y = r 1 (sin θ−θ cos θ). The points P 2 , Po, and P 3 in the figure are the points where the tip circle, the pitch circle, the root circle, and the tooth surface intersect, respectively.
歯厚係数ηを円弧歯厚/ピッチとすると、図中の角βを
使って、 と表わせる。
If the tooth thickness coefficient η is the arc tooth thickness / pitch, then using the angle β in the figure, Can be expressed as
なお、α=tan20゜−π×20゜/180゜ である。In addition, α = tan 20 ° -π × 20 ° / 180 ° Is.
従って歯厚、つまり歯厚係数が決まれば、Po点が決ま
り、基礎円上の点P1から点Poを通るインボリュート曲線
の定数を求め、順次点P2,P3の座標を求める。こうして
第5図の歯形中心線に対し片側の歯面を形成するインボ
リュート曲線を、図中の点P2,Po,P3を通る曲線として求
めることができる。次に歯形中心線に対し、点P2,Po,P3
を通るインボリュート曲線と対称なインボリュート曲線
の座標を求め、1歯の歯形を完成する。
Therefore, if the tooth thickness, that is, the tooth thickness coefficient is determined, the Po point is determined, the constant of the involute curve passing from the point P 1 to the point Po on the basic circle is determined, and the coordinates of the points P 2 and P 3 are sequentially determined. In this way, the involute curve forming the tooth surface on one side of the tooth profile center line in FIG. 5 can be obtained as a curve passing through the points P 2 , Po, P 3 in the figure. Next, with respect to the center line of the tooth profile, points P 2 , Po, P 3
The coordinates of the involute curve that is symmetric with the involute curve that passes through are obtained, and the tooth profile of one tooth is completed.
順次この方法で、ピッチ曲線上の各点Akにおけるピッチ
曲線の法線を新しい歯形中心として、そのところに歯を
割りつけ、歯先はそれぞれの曲率中心からの円弧または
直線で、隣り合う歯底は直線又は互いに接する円弧で結
ぶ。また、各コーナー部分は小さな円弧でアールをつけ
る。
In this method, the normal line of the pitch curve at each point Ak on the pitch curve is used as the center of the new tooth profile, and the tooth is assigned to that point.The tips are arcs or straight lines from the respective centers of curvature, and the adjacent roots. Are connected by straight lines or arcs that touch each other. Also, each corner is rounded with a small arc.
ピッチ曲線の短径部が第6図のようにルーツ形状になっ
ているときは、点Akにおけるピッチ曲線の法線上で、曲
率中心Okと点Akに対して対称の位置の を求め、この を中心とし、半径が曲率半径ρkと等しい平歯車の1歯
と見なして歯形を定める。こうすると、離心率eが0.33
より大きいルーツ形状のピッチ曲線における短径部の点
Ak(第6図参照)に割りつけた歯の歯面が、凸面とな
り、凹面とはならない。このようにして回転子全体の歯
形を作るが、直接の加工はワイヤーカット放電加工機を
用い数値制御で自動加工を行なう。
When the minor axis portion of the pitch curve has a roots shape as shown in FIG. 6, on the normal line of the pitch curve at the point Ak, the center of curvature Ok and the position of symmetry with respect to the point Ak Ask for this Is defined as one tooth of a spur gear having a radius equal to the radius of curvature ρk and the tooth profile is determined. By doing this, the eccentricity e is 0.33
Point of minor axis in larger roots pitch curve
The tooth surface of the tooth assigned to Ak (see Fig. 6) becomes a convex surface, not a concave surface. In this way, the tooth profile of the entire rotor is made, but direct machining is performed automatically by numerical control using a wire cut electric discharge machine.
なお、歯面をインボリュート曲線に近い円弧で近似する
ことで、ワイヤーカット放電加工機の数値制御のプログ
ラムを簡略化することができる。例えば、インボリュー
ト曲線で形成される歯面が歯先円、ピッチ円とそれぞれ
交わる点P2,Po,P3の3点を通る円弧を考え、その中心P6
と半径rcを定め、この円弧でインボリュート曲線を近似
的におきかえて、歯面を決めることができる。このよう
に1つの円弧でおきかえる代りに、複数の円弧で近似す
れば、精度をより高めることができる。
By approximating the tooth surface with an arc close to an involute curve, the numerical control program of the wire cut electric discharge machine can be simplified. For example, consider an arc passing through three points P 2 , Po, and P 3 where the tooth surface formed by the involute curve intersects the tip circle and the pitch circle, and its center P 6
And the radius rc are defined, and the tooth surface can be determined by approximately replacing the involute curve with this arc. As described above, the accuracy can be further improved by approximating with a plurality of arcs instead of replacing with one arc.
ハ.発明の効果 この発明によれば、流量計用回転子の形状を短時間で決
定し、製造することができ、直接の製造原価が低減でき
るばかりでなく、従来のような、高価なピニオンカッタ
やホブなどの工具を必要としないので、回転子の仕様が
変更になってもその都度工具費を要することがなくなる
という効果がある。
C. EFFECTS OF THE INVENTION According to the present invention, the shape of the rotor for a flow meter can be determined and manufactured in a short time, and not only the direct manufacturing cost can be reduced but also an expensive pinion cutter such as the conventional one can be used. Since a tool such as a hob is not required, there is an effect that the tool cost is not required each time the specifications of the rotor are changed.
又、楕円系歯車の離心率eが0.33以上になって、ルーツ
形状になっても、歯面を凸面にできるため、歯車の回転
中心に対してより適正な歯形になり、耐摩耗性の向上が
得られるという効果がある。
Also, even if the eccentricity e of the elliptical gear is 0.33 or more and the roots are formed, the tooth surface can be made convex so that the tooth profile becomes more appropriate for the center of rotation of the gear and wear resistance is improved. Is obtained.
【図面の簡単な説明】[Brief description of drawings]
第1図はこの発明による歯の割りつけと、歯の形の決め
かたを説明する図、第2図(A)〜(I)は離心率を変
えた場合の楕円系歯車のピッチ曲線の形状を示す図、第
3図は楕円系歯車のピッチ曲線の図、第4図はこの発明
による歯面の決めかたの詳細を説明する図、第5図は容
積式流量計の要部断面、第6図は楕円系歯車の離心率が
0.33以上の場合に、短径部に歯を割りつけてその歯形を
定める方法を説明する図、第7図はピッチ曲線の曲率半
径と曲率中心を説明する図である。 Ok……曲率中心 ρk……曲率半径 Cp……点Akにおけるピッチ円
FIG. 1 is a diagram for explaining tooth allocation and tooth shape determination according to the present invention, and FIGS. 2 (A) to (I) are pitch curves of elliptical gears when eccentricity is changed. FIG. 3 is a diagram showing the shape, FIG. 3 is a diagram of a pitch curve of an elliptical gear, FIG. 4 is a diagram illustrating details of how to determine a tooth surface according to the present invention, and FIG. , Fig. 6 shows that the eccentricity of elliptical gears is
FIG. 7 is a diagram for explaining a method of assigning teeth to the short diameter portion and determining the tooth profile in the case of 0.33 or more, and FIG. 7 is a diagram for explaining the radius of curvature and the center of curvature of the pitch curve. Ok …… Center of curvature ρk …… Radius of curvature Cp …… Pitch circle at point Ak

Claims (2)

    【特許請求の範囲】[Claims]
  1. 【請求項1】ピッチ曲線が極方程式 r=l/(1−e cos2θ) l:通半径,e:離心率 で表わされる葉数が2の楕円系歯車において、ピッチ曲
    線上に割りつけられた歯の形を、それぞれの歯の歯形中
    心線とピッチ曲線との交点におけるピッチ曲線の曲率中
    心に中心を持ち、かつピッチ曲線の曲率半径に等しいピ
    ッチ円半径を有する平歯車の1歯として定め、さらにピ
    ッチ曲線の一部分がピッチ曲線の外方に凹となる場合、
    すなわち前記一部におけるピッチ曲線の任意の点の曲率
    中心がピッチ曲線の外側にあって、その曲率中心までを
    結ぶ曲率半径の線分がピッチ曲線の内側を通らない場合
    には、そこに割りつけられた歯の形を、歯形中心線とピ
    ッチ曲線との交点に対し、ピッチ曲線の曲率中心と対称
    の点をピッチ曲線の法線上に求め、その対称の点を中心
    とし、かつピッチ曲線の曲率半径に等しいピッチ円半径
    を有する平歯車の1歯として定め、このようにして定め
    た歯面をワイヤーカット放電加工で形成することを特徴
    とする流量計用回転子の製造方法。
    1. An elliptic gear having a leaf number of 2 represented by the polar equation r = 1 / (1-e cos2θ) l: through radius, e: eccentricity, which is assigned to the pitch curve. The tooth shape is defined as one tooth of a spur gear having a center at the curvature center of the pitch curve at the intersection of the tooth profile center line of each tooth and the pitch curve and having a pitch circle radius equal to the curvature radius of the pitch curve, Furthermore, if a part of the pitch curve becomes concave outside the pitch curve,
    That is, if the center of curvature of any point of the pitch curve in the above part is outside the pitch curve and the line segment of the radius of curvature connecting to that center of curvature does not pass inside the pitch curve, assign it there. The obtained tooth shape is found on the normal line of the pitch curve with respect to the intersection of the tooth profile centerline and the pitch curve, and the point of symmetry with the center of curvature of the pitch curve. A method for manufacturing a rotor for a flow meter, comprising defining one tooth of a spur gear having a pitch circle radius equal to the radius, and forming the tooth surface thus defined by wire cut electric discharge machining.
  2. 【請求項2】歯面は、それを構成するインボリュート曲
    線を1個以上の円弧で近似し、その円弧の中心座標と、
    半径、およびこの円弧と歯先円、円弧と歯底円との交点
    とで歯面を決めるようにした特許請求の範囲第1項記載
    の流量計用回転子の製造方法。
    2. The tooth surface approximates the involute curve forming the tooth surface with one or more arcs, and the center coordinates of the arcs,
    The method for manufacturing a rotor for a flow meter according to claim 1, wherein a tooth surface is determined by a radius and an intersection of the arc and the tip circle, and the arc and the root circle.
JP2377887A 1987-02-04 1987-02-04 Flowmeter rotor manufacturing method Expired - Fee Related JPH0676901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2377887A JPH0676901B2 (en) 1987-02-04 1987-02-04 Flowmeter rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2377887A JPH0676901B2 (en) 1987-02-04 1987-02-04 Flowmeter rotor manufacturing method

Publications (2)

Publication Number Publication Date
JPS63191923A JPS63191923A (en) 1988-08-09
JPH0676901B2 true JPH0676901B2 (en) 1994-09-28

Family

ID=12119790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2377887A Expired - Fee Related JPH0676901B2 (en) 1987-02-04 1987-02-04 Flowmeter rotor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0676901B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4203531B1 (en) 2008-01-24 2009-01-07 株式会社オーバル Volumetric flow meter

Also Published As

Publication number Publication date
JPS63191923A (en) 1988-08-09

Similar Documents

Publication Publication Date Title
Tsai et al. Surface geometry of straight and spiral bevel gears
US4210410A (en) Volumetric type flowmeter having circular and involute tooth shape rotors
US5545871A (en) Method of making a modified elliptical gear
JP4669011B2 (en) Improvement of rotational displacement machine with asymmetric profile rotor
CN103678818B (en) Precise modeling method for biarc correction cycloidal gear
US6296461B1 (en) Plural screw positive displacement machines
JP4252614B1 (en) Volumetric flow meter and helical gear
US6644947B2 (en) Wave tooth gears using identical non-circular conjugating pitch curves
JPH0676901B2 (en) Flowmeter rotor manufacturing method
CN106874596B (en) Accurate modeling method for Neuman worm gear
CN102049572B (en) Design method for hob of cylindrical gear
JPH0676900B2 (en) Flowmeter rotor manufacturing method
CN110532652A (en) A kind of chamfering blades line parameterization design method of the cylinder tack with chamfering end mill
US1669919A (en) Method of generating helical gears
US2530173A (en) Helical interengaging impellers blower
US4627770A (en) Gear cutter
JP2006212733A (en) Second surface machining grinding wheel for regrindable pinion type cutter with optional tooth form
JP3068699U (en) Gear pump gears
CN204267295U (en) Novel asymmetric twin-screw molded line, double-screw compressor and heat pump
CN107387722A (en) A kind of design method of fan-shaped non-circular gear
CN86108274A (en) Circular-arc teeth shape of screw type compressor rotor
CN109595298B (en) Hyperboloid straight bevel gear and modeling method thereof
CN109373167B (en) Oil pump with double oil outlet channel structure
US2261143A (en) Gear
CN109341629B (en) Method for analyzing influence of intersection angle error of hob mounting shaft on surface error of machined gear

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees